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AN ASYMPTOTIC EXPANSION OF A WEAK SOLUTION

FOR A NONLINEAR WAVE EQUATION

LE THI PHUONG NGOC, LE KHANH LUAN, AND NGUYEN THANH LONG

Abstract. In this paper, we consider a nonlinear wave equation associated
with the Dirichlet boundary condition. First, the existence and uniqueness of
a weak solution are proved by using the Faedo-Galerkin method. Next, we
present an asymptotic expansion of high order in many small parameters of a
weak solution. This extends recent corresponding results where an asymptotic
expansion of a weak solution in two or three small parameters is established.

1. Introduction

In this paper, we consider the following initial and boundary value problem:

(1.1) utt −
∂

∂x
(µ(u)ux) = f(x, t, u, ux, ut), 0 < x < 1, 0 < t < T,

(1.2) u(0, t) = u(1, t) = 0,

(1.3) u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where ũ0, ũ1, µ, f are given functions satisfying conditions specified later.
Equation (1.1) constitutes a relatively simple case of a more general equation

as follows:

(1.4) utt −
∂

∂x
(µ(x, t, u)ux) = f(x, t, u, ux, ut), 0 < x < 1, 0 < t < T.

In the special cases that the function µ(x, t, u) is independent of u, µ(x, t, u) ≡ 1
or µ(x, t, u) = µ(x, t), and the nonlinear term f has the simple forms, problem
(1.4) with various initial-boundary conditions has been studied by many authors,
for example Ortiz, Dinh [18], Long, Dinh [2, 3, 6, 8], Long, Diem [9], Long, Dinh,
Diem [10–12], Long, Truong [13,14], Long, Ngoc [15], Ngoc, Hang, Long [16] and
the references therein.

In [4], Ficken and Fleishman established the unique global existence and sta-
bility of solutions for the equation

(1.5) uxx − utt − 2αut − βu = εu3 + γ, ε > 0.
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Rabinowitz [19] proved the existence of periodic solutions for

(1.6) uxx − utt − 2αut = εf(x, t, u, ux, ut),

where ε is a small parameter and f is periodic in time.
In a paper of Caughey and Ellison [1], a unified approach to the previous cases

was presented discussing the existence and uniqueness and asymptotic stability
of classical solutions for a class of nonlinear continuous dynamical systems.

In [11], Long, Dinh and Diem have studied the linear recursive schemes and
asymptotic expansion for the nonlinear wave equation

(1.7) utt − uxx = f(x, t, u, ux, ut) + εg(x, t, u, ux, ut),

with the mixed nonhomogeneous conditions

(1.8) ux(0, t)− h0u(0, t) = g0(t), u(1, t) + h1u(1, t) = g1(t).

In the case of g0, g1 ∈ C3(R+), f ∈ CN+1([0, 1]×R+×R
3), g ∈ CN ([0, 1]×R+×

R
3), and some other conditions, an asymptotic expansion of the weak solution uε

of order N + 1 in ε is considered.
However, by the fact that it is difficult to consider problem (1.4) with some

initial-boundary conditions in the case that µ(x, t, u) depends on u, few works
were done as far as we know. In order to solve this problem, the linearization
method for nonlinear term is usually used. Let us present this technique as
follows.

First, we note that for each v = v(x, t) belonging to X, a suitable space of
function, we can give some suitable assumptions to obtain a unique solution
u ∈ X of the problem with respect to µ = µ(x, t, v(x, t)) = µ̃(x, t) and f =

f(x, t, v, vx, vt) = f̃(x, t). It is obvious that u depends on v, so we can suppose
that u = A(v). Therefore, the above problem can be reduced to a fixed point
problem for the operator A : X → X. Based on these ideas, with a chosen first
term u0, the usual iteration um = A(um−1), m = 1, 2, ..., is applied to establish
a sequence {um} that converges to the solution of the problem, and hence the
existence results follow.

Without loss of generality we need only to consider the problem (1.1)-(1.3)
instead of the problem (1.2)-(1.4) in order to avoid making the treatment too
complicated.

The paper consists of four sections. First, some preliminaries are assembled
in Section 2. We begin Section 3 by establishing a sequence of approximate
solutions of the problem (1.1)-(1.3) based on the Faedo-Galerkin method. Thanks
to a priori estimates, this sequence is bounded in an appropriate space, from
which, using compact embedding theorems and Gronwall’s lemma, we deduce
the existence of a unique weak solution of problems (1.1) – (1.3). In Sections 4,
an asymptotic expansion of a weak solution u = uε1,ε2,...,εp(x, t) of order N +1 in
p small parameters ε1, ε2, ..., εp for the equation
(1.9)
utt − ∂

∂x ([µ(u) +
∑p

i=1 εiµi(u)] ux) = f(x, t, u, ux, ut) +
∑p

i=1 εifi(x, t, u, ux, ut),



AN ASYMPTOTIC EXPANSION 697

associated to (1.1)2,3, with µ ∈ CN+2(R), µi ∈ CN+1(R), µ(z) ≥ µ0 > 0, µi(z) ≥
0 for all z ∈ R, f ∈ CN+1([0, 1] × R+ × R

3) and fi ∈ CN([0, 1] × R+ × R
3),

i = 1, 2, ..., p is established. This result is a relative generalization of [12–14],
where an asymptotic expansion of a solution in two or three small parameters is
obtained.

2. Preliminaries

Let Ω = (0, 1). We denote the function spaces used in this paper by the usual
notations Lp = Lp(Ω), Hm = Hm (Ω) , Hm

0 = Hm
0 (Ω) .

Let 〈·, ·〉 be either the scalar product in L2 or the dual pairing of a continuous
linear functional and an element of a function space. The notation || · || stands
for the norm in L2 and we denote by || · ||X the norm in the Banach space X. We
call X ′ the dual space of X. We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞, the Banach
space of real functions u : (0, T ) → X measurable, such that ||u||Lp(0,T ;X) < +∞,
with

||u||Lp(0,T ;X) =





(∫ T
0 ||u(t)||pXdt

)1/p
, if 1 ≤ p < ∞,

ess sup
0<t<T

||u(t)||X , if p = ∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) =

∆u(t), denote u(x, t), ∂u
∂t (x, t),

∂2u
∂t2

(x, t), ∂u
∂x(x, t),

∂2u
∂x2 (x, t), respectively. For f ∈

Ck([0, 1]×R+×R
3), f = f(x, t, u, v, w), we put D1f = ∂f

∂x , D2f = ∂f
∂t , D3f = ∂f

∂u ,

D4f = ∂f
∂v , D5f = ∂f

∂w and Dαf = Dα1
1 ...Dα5

5 f, α = (α1, ..., α5) ∈ Z
5
+, |α| =

α1 + ...+ α5 = k, D(0,0,...,0)f = f.
On H1 we shall use the norm

(2.1) ||v||H1 =
(
||v||2 + ||vx||2

)1/2
.

Then the following lemma is known as a standard one.

Lemma 2.1. The embedding H1 ↪→ C0(Ω) is compact and

(2.2) ‖v‖C0(Ω) ≤
√
2 ‖v‖H1 for all v ∈ H1.

Remark 2.1. OnH1
0 , the two norms v 7−→ ||v||H1 and v 7−→ ||vx|| are equivalent.

Furthermore,

(2.3) ||v||C0(Ω) ≤ ||vx|| for all v ∈ H1
0 .

3. Existence and uniqueness of a weak solution

We make the following assumptions:

(H1) ũ0 ∈ H1
0 ∩H2, ũ1 ∈ H1

0 ,

(H2) µ ∈ C2(R), µ (z) ≥ µ0 > 0 ∀z ∈ R,

(H3) f ∈ C1(Ω× R+ × R
3).
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With µ and f satisfying the assumptions (H2) and (H3) respectively, for each
T ∗ > 0 and M > 0 we put

(3.1) K̃M (µ) = ‖µ‖C2([−M,M ]) , KM (f) = ‖f‖C1(D∗(M)) ,

where D∗(M) = {(x, t, u, v, w) ∈ [0, 1] × [0, T ∗]× R
3 : |u| , |v| , |w| ≤ M}.

Also for each T ∈ (0, T ∗] and M > 0, we set

W (M,T ) =
{
v ∈ L∞(0, T ;H1

0 ∩H2) : vt ∈ L∞(0, T ;H1
0 ) and vtt ∈ L2(QT ),

with ||v||L∞(0,T ;H1
0∩H

2), ||vt||L∞(0,T ;H1
0 )
, ||vtt||L2(QT ) ≤ M

}
,

(3.2)

(3.3) W1(M,T ) = {v ∈ W (M,T ) : vtt ∈ L∞(0, T ;L2)},
with QT = Ω× (0, T ).

We choose the first term u0 ≡ ũ0 ∈ W1(M,T ), suppose that

(3.4) um−1 ∈ W1(M,T ), m ≥ 1,

and associate with the problem (1.1)-(1.3) the following variational problem:
Find um ∈ W1(M,T ) such that

(3.5) 〈u′′m(t), v〉 + 〈µm(t)∇um(t),∇v〉 = 〈Fm(t), v〉 ∀v ∈ H1
0 ,

(3.6) um(0) = ũ0, u′m(0) = ũ1,

where
(3.7)
µm(x, t) = µ(um−1(x, t)), Fm(x, t) = f(x, t, um−1(x, t),∇um−1(x, t), u

′
m−1(x, t)).

Then we have the following theorem.

Theorem 3.1. Suppose that (H1)-(H3) hold. Then, there exist constants M > 0,
T > 0 such that the problem (3.5)-(3.7) has a unique solution um ∈ W1(M,T ).

Proof. The proof consists of three steps.
Step 1: The Faedo-Galerkin Approximation (introduced by Lions [5]). Con-

sider a special basis {wj} on H1
0 : wj(x) =

√
2 sin(jπx), j ∈ N, formed by the

eigenfunctions of the Laplacian −∆ = − ∂2

∂x2 .
Put

(3.8) u(k)m (t) =

k∑

j=1

c
(k)
mj(t)wj ,

where the coefficients c
(k)
mj satisfy the system of linear differential equations

(3.9)




〈ü(k)m (t), wj〉+ 〈µm(t)∇u

(k)
m (t),∇wj〉 = 〈Fm(t), wj〉, 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,
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in which

(3.10)

{
ũ0k =

∑k
j=1 α

(k)
j wj → ũ0 strongly in H1

0 ∩H2,

ũ1k =
∑k

j=1 β
(k)
j wj → ũ1 strongly in H1

0 .

Then the system (3.9) can be rewritten in the form

(3.11)

{
c̈
(k)
mj(t) +

∑k
i=1 b

(k)
mij(t)c

(k)
mi (t) = fmj(t),

c
(k)
m (0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 ≤ j ≤ k,

where

(3.12) b
(k)
mij(t) = 〈µm(t)∇wi,∇wj〉, fmj(t) = 〈Fm(t), wj〉, 1 ≤ i, j ≤ k.

Note that by (3.4) it is not difficult to prove that the system (3.11) has a unique

solution c
(k)
mj(t), 1 ≤ j ≤ k on [0, T ]. We omit the details.

Step 2: A Priori Estimates. Put

(3.13) s(k)m (t) = p(k)m (t) + q(k)m (t) +

∫ t

0
||ü(k)m (s)||2ds,

where

(3.14) p(k)m (t) = ||u̇(k)m (t)||2 + ||
√

µm(t)∇u(k)m (t)||2,

(3.15) q(k)m (t) = ||∇u̇(k)m (t)||2 + ||
√

µm(t)∆u(k)m (t)||2.
Then, it follows from (3.8), (3.9), (3.13) – (3.15) that

s(k)m (t) =s(k)m (0) + 2〈∇µm(0)∇ũ0k,∆ũ0k〉+ 2〈Fm(0),∆ũ0k〉

+

∫ t

0
ds

∫ 1

0
µ′
m(x, s)

(
|∇u(k)m (x, s)|2 + |∆u(k)m (x, s)|2

)
dx

+ 2

∫ t

0
〈 ∂
∂s

(
∇µm(s)∇u(k)m (s)

)
,∆u(k)m (s)〉ds

− 2〈∇µm(t)∇u(k)m (t),∆u(k)m (t)〉

+ 2

∫ t

0
〈Fm(s), u̇(k)m (s)〉ds − 2〈Fm(t),∆u(k)m (t)〉

+ 2

∫ t

0
〈∂Fm

∂t
(s),∆u(k)m (s)〉ds +

∫ t

0
||··u

(k)

m (s)||2ds

=q(k)m (0) + 2〈∇µm(0)∇ũ0k,∆ũ0k〉+ 2〈Fm(0),∆ũ0k〉+
7∑

j=1

Ij.

(3.16)

We shall estimate the terms Ij , j = 1, 2, ..., 7 on the right hand side of (3.16) as
follows.

First term. From (3.1), (3.4), and (3.7) we have

(3.17)
∣∣µ′

m(x, t)
∣∣ ≤ MK̃M (µ).
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Hence,

I1 =

∫ t

0
ds

∫ 1

0
µ′
m(x, s)

(
|∇u(k)m (x, s)|2 + |∆u(k)m (x, s)|2

)
dx

≤ 1

µ0
MK̃M (µ)

∫ t

0
s(k)m (s)ds.

(3.18)

Second term. The Cauchy-Schwarz inequality leads to
(3.19)

|I2| = 2

∣∣∣∣
∫ t

0
〈 ∂
∂s

(
∇µm(s)∇u(k)m (s)

)
,∆u(k)m (s)〉ds

∣∣∣∣ ≤
2√
µ0

∫ t

0
Ĩ2(s)

√
q
(k)
m (s)ds,

where Ĩ2(s) =
∥∥∥ ∂
∂s

(
∇µm(s)∇u

(k)
m (s)

)∥∥∥ and so

Ĩ2(s) =

∥∥∥∥∇µm(s)∇u̇(k)m (s) +
∂

∂s
(∇µm(s))∇u(k)m (s)

∥∥∥∥

≤ ‖∇µm(s)‖C0(Ω)

∥∥∥∇u̇(k)m (s)
∥∥∥+

∥∥∥∥
∂

∂s
∇µm(s)

∥∥∥∥
∥∥∥∇u(k)m (s)

∥∥∥
C0(Ω)

≤
(
‖∇µm(s)‖C0(Ω) +

1√
µ0

∥∥∥∥
∂

∂s
∇µm(s)

∥∥∥∥
)√

s
(k)
m (s).

(3.20)

On the other hand, by ∇µm(x, s) = µ′(um−1(x, s))∇um−1(x, s), we get

‖∇µm(s)‖C0(Ω) ≤ K̃M (µ) ‖∇um−1(s)‖C0(Ω) ≤ K̃M (µ)
√
2 ‖∇um−1(s)‖H1

= K̃M (µ)
√
2

√
‖∇um−1(s)‖2 + ‖∆um−1(s)‖2 ≤ 2MK̃M (µ).

(3.21)

Similarly, from the equality

∂

∂s
∇µm(x, s) =µ′′(um−1(x, s))u

′
m−1(x, s)∇um−1(x, s)

+ µ′(um−1(x, s))∇u′m−1(x, s)
(3.22)

we obtain∥∥∥∥
∂

∂s
∇µm(s)

∥∥∥∥ ≤ K̃M (µ)
[∥∥u′m−1(s)

∥∥
C0(Ω) ‖∇um−1(s)‖+ ||∇u′m−1(s)||

]

≤ (1 +M)MK̃M (µ).

(3.23)

This inequality and (3.20), (3.21) imply

(3.24) Ĩ2(s) =

∥∥∥∥
∂

∂s

(
∇µm(s)∇u(k)m (s)

)∥∥∥∥ ≤
(
2 +

1 +M√
µ0

)
MK̃M (µ)

√
s
(k)
m (s).

Consequently,

(3.25) |I2| ≤
2√
µ0

(
2 +

1 +M√
µ0

)
MK̃M (µ)

∫ t

0
s(k)m (s)ds.
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Third term. Applying again the Cauchy-Schwarz inequality, we infer

|I3| =
∣∣∣−2〈∇µm(t)∇u(k)m (t),∆u(k)m (t)〉

∣∣∣ ≤ 1

β

∥∥∥∇µm(t)∇u(k)m (t)
∥∥∥
2
+ β

∥∥∥∆u(k)m (t)
∥∥∥
2

(3.26)

for all β > 0. On the other hand,

∥∥∥∇µm(t)∇u(k)m (t)
∥∥∥ =

∥∥∥∥∇µm(0)∇ũ0k +

∫ t

0

∂

∂s

(
∇µm(s)∇u(k)m (s)

)
ds

∥∥∥∥

≤ ‖∇µm(0)‖C0(Ω) ‖∇ũ0k‖+
∫ t

0
Ĩ2(s)ds.

(3.27)

Thus,

|I3| ≤
β

µ0
q(k)m (t) +

2

β
||∇µm(0)||2

C0(Ω)||∇ũ0k||2

+
2

β
T

(
2 +

M + 1√
µ0

)
M2K̃2

M (µ)

∫ t

0
s(k)m (s)ds

(3.28)

for all β > 0.
Fourth term. Using (H3) we obtain from (3.1), (3.4) and (3.14)

I4 =2

∫ t

0
〈Fm(s), u̇(k)m (s)〉ds ≤ 2KM (f)

∫ t

0
||u̇(k)m (s)||ds

≤TK2
M (f) +

∫ t

0
p(k)m (s)ds.

(3.29)

Fifth term. Combining (3.4), (3.7) and (3.13)-(3.15), we get

|I5| =
∣∣∣−2〈Fm(t),∆u(k)m (t)〉

∣∣∣ ≤ 1

β
‖Fm(t)‖2 + β

∥∥∥∆u(k)m (t)
∥∥∥
2

≤ 1

β

∥∥∥∥Fm(0) +

∫ t

0

∂Fm

∂s
(s)ds

∥∥∥∥
2

+
β

µ0
q(k)m (t)

≤ 2

β
‖Fm(0)‖2 + 2

β
T

∫ T

0

∥∥∥∥
∂Fm

∂s
(s)

∥∥∥∥
2

ds+
β

µ0
s(k)m (t) for all β > 0.

(3.30)

Note that

∂Fm

∂t
(t) =D2f [um−1] +D3f [um−1]u

′
m−1(t) +D4f [um−1]∇u′m−1(t)

+D5f [um−1]u
′′
m−1(t),

(3.31)

where Dif [um−1] = Dif(x, t, um−1(x, t),∇um−1(x, t), u
′
m−1(x, t)), i = 2, ..., 5. So,

from (3.1), (3.4) and (3.31) we obtain
∥∥∥∥
∂Fm

∂t
(t)

∥∥∥∥ ≤KM (f)
(
1 +

∥∥u′m−1(t)
∥∥+

∥∥∇u′m−1(t)
∥∥+

∥∥u′′m−1(t)
∥∥)

≤KM (f)
(
1 + 2M +

∥∥u′′m−1(t)
∥∥) .

(3.32)



702 LE THI PHUONG NGOC, LE KHANH LUAN, AND NGUYEN THANH LONG

Hence,

|I5| ≤
2

β
||Fm(0)||2 + 4

β
TK2

M (f)

∫ T

0

[
(1 + 2M)2 +

∥∥u′′m−1(s)
∥∥2
]
ds+

β

µ0
s(k)m (t)

≤ 2

β
||Fm(0)||2 + 4

β
TK2

M (f)
[
(1 + 2M)2T +M2

]
+

β

µ0
s(k)m (t) for all β > 0.

(3.33)

Sixth term. By (3.1), (3.4), (3.15), (3.32) we obtain

|I6| =2

∣∣∣∣
∫ t

0
〈∂Fm

∂t
(s),∆u(k)m (s)〉ds

∣∣∣∣

≤
∫ t

0

∥∥∥∥
∂Fm

∂t
(s)

∥∥∥∥ ds+
∫ t

0

∥∥∥∥
∂Fm

∂t
(s)

∥∥∥∥
∥∥∥∆u(k)m (s)

∥∥∥
2
ds

≤KM (f)

[
(1 + 2M)T +

√
T

(∫ T

0

∥∥u′′m−1(s)
∥∥2 ds

)1/2
]

+
1

µ0
KM (f)

∫ t

0

(
1 + 2M +

∥∥u′′m−1(s)
∥∥) q(k)m (s)ds

≤KM (f)
[
(1 + 2M)T +

√
TM

]

+
1

µ0
KM (f)

∫ t

0

(
1 + 2M +

∥∥u′′m−1(s)
∥∥) q(k)m (s)ds.

(3.34)

Seventh term. Equation (3.9) can be rewritten as

(3.35) 〈ü(k)m (t), wj〉 − 〈 ∂

∂x

(
µm(t)∇u(k)m (t)

)
, wj〉 = 〈Fm(t), wj〉, 1 ≤ j ≤ k.

Hence, by replacing wj with ü
(k)
m (t) and integrating we obtain

I7 =

∫ t

0

∥∥∥ü(k)m (s)
∥∥∥
2
ds ≤ 2

∫ t

0

∥∥∥∥
∂

∂x

(
µm(s)∇u(k)m (s)

)∥∥∥∥
2

ds+ 2

∫ t

0
‖Fm(s)‖2 ds

≤2

∫ t

0

∥∥∥∥
∂

∂x

(
µm(s)∇u(k)m (s)

)∥∥∥∥
2

ds+ 2TK2
M (f).

(3.36)

We estimate the term
∥∥∥ ∂
∂x

(
µm(s)∇v

(k)
m (s)

)∥∥∥ .
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By (3.1), (3.4) and (3.13)-(3.15)

∥∥∥∥
∂

∂x

(
µm(s)∇u(k)m (s)

)∥∥∥∥ =
∥∥∥∇µm(s)∇u(k)m (s) + µm(s)∆u(k)m (s)

∥∥∥

≤‖∇µm(s)‖C0(Ω)

∥∥∥∇u(k)m (s)
∥∥∥+ ‖µm(s)‖C0(Ω)

∥∥∥∆u(k)m (s)
∥∥∥

≤ 1√
µ0

MK̃M (µ)

√
p
(k)
m (s) +

1√
µ0

K̃M (µ)

√
q
(k)
m (s)

≤ 1√
µ0

(1 +M)K̃M (µ)

√
s
(k)
m (s).

(3.37)

Therefore, from (3.36) and (3.37) we obtain

(3.38) I7 ≤ 2TK2
M (f) +

2

µ0
(1 +M)2K̃2

M (µ)

∫ t

0
s(k)m (s)ds.

Choosing β > 0 such that 2β
µ0

≤ 1
2 , from (3.13)-(3.16) and seven above we get

the estimations

s(k)m (t) ≤C̃0k(β, f, µ, ũ0, ũ1, ũ0k, ũ1k) + C̃1(β, f,M, T )

+

∫ t

0

(
C̃2(β, f, µ,M, T ) +

2

µ0
KM (f)

∥∥u′′m−1(s)
∥∥
)
s(k)m (s)ds,

(3.39)

where
(3.40)



C̃0k(β, f, µ, ũ0, ũ1, ũ0k, ũ1k) = 2s(k)m (0) + 4〈∇µm(0)∇ũ0k,∆ũ0k〉

+ 4〈Fm(0),∆ũ0k〉+
4

β
||∇µm(0)||2

C0(Ω)
||∇ũ0k||2 +

4

β
||Fm(0)||2,

C̃1(β, f,M, T ) = 2

(
3 +

4

β

[
(1 + 2M)2T +M2

])
TK2

M (f)

+ 2
[
(1 + 2M)

√
T +M

]√
TKM (f),

C̃2(β, f, µ,M, T ) = 2 +
2

µ0

[
1 + 2

√
µ0

(
2 +

M + 1√
µ0

)]
MK̃M (µ)

+
2

µ0
(1 + 2M)KM (f) + 4

[
2

β
T

(
2 +

M + 1√
µ0

)
M2 +

1

µ0
(1 +M)2

]
K̃2

M (µ).

By (H1) we can deduce from (3.10), (3.40)1 that there exists M > 0, indepen-
dent of m and k, such that

(3.41) C̃0k(β, f, µ, ũ0, ũ1, ũ0k, ũ1k) ≤
1

2
M2.

Notice that, by the assumptions (H2) , (H3) , we deduce from (3.40)2,3 that

(3.42) lim
T→0+

C̃1(β, f,M, T ) = lim
T→0+

T C̃2(β, f, µ,M, T ) = 0.
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So, by (3.40) and (3.42), we can choose T > 0 such that
(3.43)(

1

2
M2 + C̃1(β, f,M, T )

)
exp

(
T C̃2(β, f, µ,M, T ) +

2

µ0
KM (f)

√
TM

)
≤ M2,

and
(3.44)

kT =

(
1 +

1√
µ0

)√
T

√
4K2

M (f) + (3 + 2M)2 M2K̃2
M (µ)e

T
[
1+ 1

2µ0
MK̃M (µ)

]

< 1.

Finally, it follows from (3.39), (3.41) and (3.43) that

s(k)m (t) ≤M2 exp

(
−T C̃2(β, f, µ,M, T ) − 2

µ0
KM (f)

√
TM

)

+

∫ t

0

(
C̃2(β, f, µ,M, T ) +

2

µ0
KM (f)

∥∥u′′m−1(s)
∥∥
)
s(k)m (s)ds.

(3.45)

By using Gronwall’s lemma we deduce from (3.4), (3.43), (3.45) that

s(k)m (t) ≤M2 exp

(
−T C̃2(β, f, µ,M, T )− 2

µ0
KM (f)

√
TM

)

× exp

[∫ T

0

(
C̃2(β, f, µ,M, T ) +

2

µ0
KM (f)

∥∥u′′m−1(s)
∥∥
)
ds

]

≤M2 exp

(
−T C̃2(β, f, µ,M, T )− 2

µ0
KM (f)

√
TM

)

× exp

[
T C̃2(β, f, µ,M, T ) +

2

µ0
KM (f)

√
T
∥∥u′′m−1

∥∥
L2(QT )

]
≤ M2.

(3.46)

Therefore,

(3.47) u(k)m ∈ W (M,T ) ∀m,k ∈ N.

Step 3. Limiting Process.

By (3.47) we can extract from {u(k)m } a subsequence, still denoted by {u(k)m },
such that

(3.48)





u(k)m → um in L∞(0, T ;H1
0 ∩H2) weakly*,

u̇(k)m → u′m in L∞(0, T ;H1
0 ) weakly*,

ü(k)m → u′′m in L2(QT ) weakly,

as k → ∞, and

(3.49) um ∈ W (M,T ).

Based on (3.48), passing to the limit as k → ∞ in (3.9)-(3.10), we have um
satisfying (3.5) – (3.7). On the other hand, it follows from (3.5) and (3.48)1 that
(3.50)
u′′m = µ′(um−1)∇um−1∇um+µm∆um+f(x, t, um−1,∇um−1, u

′
m−1) ∈ L∞(0, T ;L2).
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Consequently, um ∈ W1(M,T ), and the proof of Theorem 3.1 is complete. �

Theorem 3.2. Suppose that (H1)-(H3) hold. Then, there exist M > 0 and
T > 0 satisfying (3.41), (3.43), (3.44) such that the problem (1.1)-(1.3) has a
unique weak solution u ∈ W1(M,T ). Furthermore, the linear recurrent sequence
{um} defined by (3.5)-(3.7) converges to the solution u strongly in the space

(3.51) W1(T ) = {w ∈ L∞(0, T ;H1
0 ) : w

′ ∈ L∞(0, T ;L2)},
with the estimation

(3.52) ‖umx − ux‖L∞(0,T ;L2) +
∥∥u′m − u′

∥∥
L∞(0,T ;L2)

≤ CkmT for all m ∈ N,

where C is a constant depending only on T, ũ0, ũ1 and kT .

Proof. (i) Existence. First, we note that W1(T ) is a Banach space with respect
to the norm (see Lions [5])

(3.53) ‖w‖W1(T ) = ‖wx‖L∞(0,T ;L2) +
∥∥w′
∥∥
L∞(0,T ;L2)

.

Next, we prove that {um} is a Cauchy sequence inW1(T ). Let vm = um+1−um.
Then vm satisfies the variational problem
(3.54)



〈v′′m(t), w〉 + 〈µm+1(t)∇vm(t),∇w〉 = 〈 ∂
∂x [(µm+1(t)− µm(t))∇um(t)] , w〉

+ 〈Fm+1(t)− Fm(t), w〉 , ∀w ∈ H1
0 ,

vm(0) = v′m(0) = 0.

Taking w = v′m in (3.54)1, after integrating in t, we get
(3.55)

zm(t) =
∫ t
0 ds

∫ 1
0 µ′

m+1(x, s) |∇vm(s)|2 dx+ 2
∫ t
0 〈Fm+1(s)− Fm(s), v′m(s)〉 ds

+2
∫ t
0 〈 ∂

∂x [(µm+1(s)− µm(s))∇um(s)] , v′m(s)〉ds =
∑3

i=1 Ji,

in which

(3.56) zm(t) = ‖v′m(t)‖2 +
∥∥∥
√

µm+1(t)∇vm(t)
∥∥∥
2
,

and all integrals on the right hand side of (3.55) are estimated as follows.
First integral. By (H2),

(3.57) |J1| ≤
∣∣∣
∫ t
0 ds

∫ 1
0 µ′

m+1(x, s) |∇vm(s)|2 dx
∣∣∣ ≤ 1

µ0
MK̃M (µ)

∫ t
0 zm(s)ds.

Second integral. Also by (H3),

‖Fm+1(t)− Fm(t)‖ ≤2KM (f)
[
‖∇vm−1(t)‖+

∥∥v′m−1(t)
∥∥]

≤2KM (f) ‖vm−1‖W1(T ) ,
(3.58)

so

|J2| ≤2

∣∣∣∣
∫ t

0

〈
Fm+1(s)− Fm(s), v′m(s)

〉
ds

∣∣∣∣

≤4TK2
M (f) ‖wm−1‖2W1(T ) +

∫ t

0
zm(s)ds.

(3.59)
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Third integral. Using (H2),

(3.60)

|J3| = 2
∣∣∣
∫ t
0 〈 ∂

∂x [(µm+1(s)− µm(s))∇um(s)] , v′m(s)〉ds
∣∣∣

≤ 2
∫ t
0

∥∥ ∂
∂x [(µm+1(s)− µm(s))∇um(s)]

∥∥ ‖v′m(s)‖ ds
≤
∫ t
0

∥∥ ∂
∂x [(µm+1(s)− µm(s))∇um(s)]

∥∥2 ds+
∫ t
0 zm(s)ds.

Note that

∂

∂x
[(µm+1(t)− µm(t))∇um(t)]

= (µm+1(t)− µm(t)) ∆um(t) + µ′(um(t))∇vm−1(t)∇um(t)

+
(
µ′(um(t))− µ′(um−1(t))

)
∇um−1(t)∇um(t).

(3.61)

Hence ∥∥∥∥
∂

∂x
[(µm+1(t)− µm(t))∇um(t)]

∥∥∥∥
≤‖µm+1(t)− µm(t)‖C0(Ω) ‖∆um(t)‖

+
∥∥µ′(um(t))

∥∥
C0(Ω) ‖∇vm−1(t)‖ ‖∇um(t)‖C0(Ω)

+
∥∥µ′(um(t))− µ′(um−1(t))

∥∥
C0(Ω) ‖∇um−1(t)‖ ‖∇um(t)‖C0(Ω) .

(3.62)

On the other hand,
(3.63)

||∇um(t)||C0(Ω) ≤
√
2 ‖∇um(t)‖H1 ≤

√
2
√

||∇um(t)||2 + ‖∆um(t)‖2 ≤ 2M,

‖µ′(um(t))‖C0(Ω) ≤ K̃M (µ),

‖µm+1(t)− µm(t)‖C0(Ω) ≤ K̃M (µ) ‖∇vm−1(t)‖ ≤ K̃M (µ)||vm−1||W (T )1 ,

‖µ′(um(t))− µ′(um−1(t))‖C0(Ω) ≤ K̃M (µ) ‖∇vm−1(t)‖ ≤ K̃M (µ)||vm−1||W1(T ).

Therefore, we deduce from (3.62) and (3.63) that

(3.64)
∥∥ ∂
∂x [(µm+1(t)− µm(t))∇um(t)]

∥∥ ≤ (3 + 2M)MK̃M (µ)||vm−1||W1(T ).

Hence

(3.65) |J3| ≤ (3 + 2M)2 M2TK̃2
M (µ)||vm−1||2W1(T ) +

∫ t
0 zm(s)ds.

A combination of (3.55), (3.56), (3.57), (3.59) and (3.65) yields

(3.66)
zm(t) ≤ T

[
4K2

M (f) + (3 + 2M)2M2K̃2
M (µ)

]
||vm−1||2W1(T )

+
(
2 + 1

µ0
MK̃M (µ)

) ∫ t
0 zm(s)ds.

Using Gronwall’s lemma, this inequality leads to

(3.67) ‖vm‖W1(T ) ≤ kT ‖vm−1‖W1(T ) ∀m ∈ N,
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consequently

(3.68) ‖um+p − um‖W1(T ) ≤
km
T

1−kT
‖u1 − u0‖W1(T ) ∀m, p ∈ N,

where kT is as in (3.44).
It follows that {um} is a Cauchy sequence in W1(T ). Then there exists u ∈

W1(T ) such that

(3.69) um → u strongly in W1(T ).

Therefore, a subsequence {umj
} of {um} can be found such that

(3.70)





umj
→ u in L∞(0, T ;H1

0 ∩H2) weakly*,

u′mj
→ u′ in L∞(0, T ;H1

0 ) weakly*,

u′′mj
→ u′′ in L2(QT ) weakly,

and

(3.71) u ∈ W (M,T ).

Note that

(3.72)

{
‖µ(um−1)− µ(u)‖L∞(QT ) ≤ K̃M (µ) ‖um−1 − v‖W1(T ) ,

‖Fm − f(·, ·, u, ux, u′)‖L∞(0,T ;L2) ≤ 2KM (f) ‖um−1 − u‖W1(T ) .

Hence, from (3.69) and (3.72) we get

(3.73)

{
µ(um) → µ(u) strongly in L∞(QT ),

Fm → f(·, ·, u, ux, u′) strongly in L∞(0, T ;L2).

Finally, passing to the limit in (3.5) – (3.7) as m = mj → ∞, it follows from
(3.69), (3.70) and (3.73) that there exists u ∈ W (M,T ) satisfying the equation
(3.74){

〈u′′(t), w〉 + 〈µ(u(t))ux(t), wx〉 =
〈
f(·, t, u(t), ux(t), u′(t)), w

〉
,∀w ∈ H1

0 ,

u(0) =ũ0, u′(0) = ũ1.

Moreover, by (H2), (H3) we obtain from (3.71), (3.73)2 and (3.74)1 that

(3.75) u′′ = µ′(u)u2x + µ(u)uxx + f(x, t, u, ux, u
′) ∈ L∞(0, T ;L2),

thus u ∈ W1(M,T ) and Step 1 follows.
(ii) Uniqueness of a weak solution.
Let u1, u2 ∈ W1(M,T ) be two weak solutions of the problem (1.1)−(1.3). Then

u = u1 − u2 satisfies the variational problem

(3.76)





〈u′′(t) , w〉 + 〈µ1(t)ux(t), wx〉 = 〈 ∂
∂x ([µ1(t)− µ2(t)] u2x(t)) , w〉

+ 〈F2(t)− F1(t), w〉 ∀w ∈ H1
0 ,

u(0) = u′(0) = 0,

µi(t) = µ(ui(t)), Fi(t) = f(x, t, ui(t), uix(t), u
′
i(t)), i = 1, 2.



708 LE THI PHUONG NGOC, LE KHANH LUAN, AND NGUYEN THANH LONG

We take w = u′ in (3.76)1 and integrate in t to get

ρ(t) =

∫ t

0
ds

∫ 1

0
µ′
1(x, s)u

2
x(x, s)dx + 2

∫ t

0

〈
F1(s)− F2(s), u

′(s)
〉
ds

+ 2

∫ t

0

〈
∂

∂x
([µ1(s)− µ2(s)]u2x(s)) , u

′

〉
ds,

(3.77)

where

(3.78) ρ(t) =
∥∥u′(t)

∥∥2 +
∥∥∥
√

µ1(t)ux(t)
∥∥∥
2
.

It follows from (3.77), (3.78) that

(3.79) ρ(t) ≤ KM

∫ t

0
ρ(s)ds,

in which

(3.80) KM = 4

(
1 +

1√
µ0

)
KM (f) +

[
1

µ0
+

2√
µ0

(2 +M)M

]
K̃M (µ).

Using Gronwall’s lemma it follows from (3.79) that ρ ≡ 0, i.e., u1 ≡ u2.
Theorem 3.2 is proved completely. �

Remark 3.1. (i) In the case that µ ≡ 1, f = f(t, u, ut) with f ∈ C1(R+ × R
2)

and f(t, 0, 0) = 0 ∀t ≥ 0, some results in [3] have been obtained here.
(ii) In the case that µ ≡ 1, f ∈ C1(Ω×R+ × R

3) and the boundary condition
in [9] standing for (1.2), we have also obtained the results concerning the ones in
the paper [9].

4. Asymptotic expansion of the solution with respect to many

small parameters

In this section, suppose that (H1)-(H3) hold. We also make the assumptions:

(H4) µi ∈ C2(R), µi ≥ 0, i = 1, 2, ..., p,

(H5) fi ∈ C1([0, 1] × R+ ×R
3), i = 1, 2, ..., p.

We consider the following perturbed problem, where ε1, ..., εp are p small param-
eters such that 0 ≤ εi ≤ εi∗ < 1, i = 1, 2, ..., p:

(P−→ε )





utt − ∂
∂x (µ−→ε (u)ux) = F−→ε (x, t, u, ux, ut), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

µ−→ε (u) = µ(u) +
∑p

i=1 εiµi(u),

F−→ε (x, t, u, ux, ut) = f(x, t, u, ux, ut) +
∑p

i=1 εifi(x, t, u, ux, ut).

By Theorem 3.2, the problem (P−→ε ) has a unique local solution u depending on
−→ε = (ε1, ..., εp) : u−→ε = u (ε1, ..., εp) . When −→ε = (0, ..., 0), (P−→ε ) is denoted
by (P0). We shall study the asymptotic expansion of the solution of (P−→ε ) with
respect to p small parameters ε1, ε2, ..., εp.
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We use the following notations. For a multi-index α = (α1, ..., αp) ∈ Z
p
+ and

−→ε = (ε1, ..., εp) ∈ R
p, we put

(4.1)





|α| = α1 + ...+ αp, α! = α1!...αp!,

‖−→ε ‖ =
√

ε21 + ...+ ε2p,
−→ε α = εα1

1 ...ε
αp
p ,

α, β ∈ Z
p
+, α ≤ β ⇐⇒ αi ≤ βi ∀i = 1, ..., p.

First, we state the following lemma.

Lemma 4.1. Let m, N ∈ N and uα ∈ R, α ∈ Z
p
+, 1 ≤ |α| ≤ N. Then

(4.2)

(∑
1≤|α|≤N

uα
−→ε α

)m

=
∑

m≤|α|≤mN
T
(m)
N [u]α

−→ε α,

where the coefficients T
(m)
N [u]α, m ≤ |α| ≤ mN depending on u = (uα), α ∈ Z

p
+,

1 ≤ |α| ≤ N are defined by the recurrent formulas
(4.3)



T
(1)
N [u]α =uα, 1 ≤ |α| ≤ N,

T
(m)
N [u]α =

∑

β∈A
(m)
α (N)

uα−βT
(m−1)
N [u]β , m ≤ |α| ≤ mN, m ≥ 2,

A(m)
α (N) ={β ∈ Z

p
+ : β ≤ α, 1 ≤ |α− β| ≤ N, m− 1 ≤ |β| ≤ (m− 1)N}.

The proof of Lemma 4.1 can be found in [13]. �

Now we assume

(H6) µ ∈ CN+2(R), µi ∈ CN+1(R), µ ≥ µ0 > 0, µi ≥ 0, i = 1, 2, ..., p,

(H7) f ∈ CN+1([0, 1] ×R+ × R
3), fi ∈ CN ([0, 1] × R+ × R

3), i = 1, 2, ..., p,

and use the notations f [u] = f(x, t, u, ux, ut), µ[u] = µ(u).
Let u0 be a unique weak solution of the problem (P0) (as in Theorem 3.2)

corresponding to −→ε = (0, ..., 0), i.e.,

(P0)





u′′0 −
∂

∂x
(µ(u0)u0x) = f(x, t, u0, u0x, u

′
0) ≡ f [u0], 0 < x < 1, 0 < t < T,

u0(0, t) = u0(1, t) = 0,

u0(x, 0) = ũ0(x), u
′
0(x, 0) = ũ1(x),

u0 ∈ W1(M,T ).

Let us consider the sequence of weak solutions uγ , γ ∈ Z
p
+, 1 ≤ |γ| ≤ N, defined

by the following problems:

(P̃γ)





u′′γ −
∂

∂x
(µ(u0)uγx) = Fγ , 0 < x < 1, 0 < t < T,

uγ(0, t) = uγ(1, t) = 0,

uγ(x, 0) = u′γ(x, 0) = 0,

uγ ∈ W1(M,T ),
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where Fγ , γ ∈ Z
p
+, 1 ≤ |γ| ≤ N, are defined by the recurrent formulas

(4.4)

Fγ =





f [u0] ≡ f(x, t, u0, u0x, u
′
0), |γ| = 0,

πγ [f ] +

p∑

i=1

π(i)
γ [fi] +

∑

1≤|ν|≤|γ|, ν≤γ

∂

∂x

[(
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

)
∇uγ−ν

]
,

1 ≤ |γ| ≤ N,

with ρδ[µ] = ρδ[µ; {uγ}γ≤δ ], ρ
(i)
δ [µ] = ρ

(i)
δ [µ; {uγ}γ≤δ], πδ[f ] = πδ[f ; {uγ}γ≤δ],

π
(i)
δ [f ] = π

(i)
δ [f ; {uγ}γ≤δ], |δ| ≤ N, also defined by the recurrent formulas

(4.5) ρδ[µ] =

{
µ(u0), |δ| = 0,
∑|δ|

m=1
1
m!µ

(m)(u0)T
(m)
δ [u], 1 ≤ |δ| ≤ N,

(4.6)





δ = (δ1, δ2, ..., δp) ∈ Z
p
+, δ

(i−) = (δ1, ..., δi−1, δi − 1, δi+1, ..., δp),

ρ
(i)
δ [µ] = ρδ(i−) [µ] = ρδ1,δ2,...,δi−1, δi−1, δi+1,...,δp[µ],

ρ
(i)
δ [µ] = ρδ1,δ2,...,δi−1,−1,δi+1,...,δp[µ] = 0, if δi = 0,

(4.7)

πδ[f ] =





f [u0], |δ| = 0,
∑

1≤|m|≤|δ|

∑
(α,β,γ)∈A(m,N)

α+β+γ=δ

1
m!D

mf [u0]T
(m1)
N [u]αT

(m2)
N [∇u]βT

(m3)
N [u′]γ ,

1 ≤ |δ| ≤ N,

where m = (m1,m2,m3) ∈ Z
3
+, |m| = m1 +m2 +m3, m! = m1!m2!m3!, D

mf =

Dm1
3 Dm2

4 Dm3
5 f, A(m,N) = {(α, β, γ) ∈

(
Z
p
+

)3
: m1 ≤ |α| ≤ m1N, m2 ≤ |β| ≤

m2N, m3 ≤ |γ| ≤ m3N},

(4.8)





π
(i)
δ [f ] = πδ(i−) [f ] = πδ1,δ2,...,δi−1,δi−1,δi+1,...,δp[f ], i = 1, 2, ..., p,

π
(i)
δ [f ] = πδ1,δ2,...,δi−1,−1,δi+1,...,δp[f ] = 0, if δi = 0,

δ = (δ1, δ2, ..., δp) ∈ Z
p
+, δ

(i−) = (δ1, ..., δi−1, δi − 1, δi+1, ..., δp).

Then we have the following lemma.

Lemma 4.2. Let ρν [µ], πν [f ], |ν| ≤ N, be the functions defined by the formulas
(4.5) and (4.7). Put h =

∑
|γ|≤N uγ

−→ε γ. Then we have

(4.9) µ(h) =
∑

|ν|≤N
ρν [µ]

−→ε ν + ‖−→ε ‖N+1
R̃

(1)
N [µ,−→ε ],

(4.10) f [h] =
∑

|ν|≤N
πν [f ]

−→ε ν + ‖−→ε ‖N+1
R

(1)
N [f,−→ε ],

with
∥∥∥R̃(1)

N [µ,−→ε ]
∥∥∥
L∞(0,T ;L2)

+
∥∥∥R(1)

N [f,−→ε ]
∥∥∥
L∞(0,T ;L2)

≤ C, where C is a constant

depending only on N, T, f, µ, uγ , |γ| ≤ N.
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Proof. (i) In the case that N = 1, the proof of (4.9) is easy, so we only consider
the case that N ≥ 2. We write h = u0 +

∑
1≤|γ|≤N uγ

−→ε γ ≡ u0 + h1.

By using Taylor’s expansion of the function µ(h) = µ(u0 + h1) around the
point u0 up to order N + 1, (4.2) leads to

µ(u0 + h1) =µ(u0) +

N∑

m=1

1

m!
µ(m)(u0)h

m
1 +

1

N !

∫ 1

0

(1− θ)Nµ(N+1)(u0 + θh1)h
N+1
1 dθ

=µ(u0) +
N∑

m=1

1

m!
µ(m)(u0)

∑

m≤|ν|≤mN

T (m)
ν [u]−→ε ν + R̃

(1)
N [µ, h1]

=µ(u0) +
N∑

m=1

1

m!
µ(m)(u0)

∑

m≤|ν|≤N

T (m)
ν [u]−→ε ν

+
N∑

m=1

1

m!
µ(m)(u0)

∑

N+1≤|ν|≤mN

T (m)
ν [u]−→ε ν + R̃

(1)
N [µ, h1]

(4.11)

with

(4.12) R̃
(1)
N [µ, h1] =

1

N !

∫ 1

0
(1− θ)Nµ(N+1)(u0 + θh1)h

N+1
1 dθ.

We also note that
(4.13)

N∑

m=1

1

m!
µ(m)(u0)

∑

m≤|ν|≤N

T (m)
ν [u]−→ε ν =

∑

1≤|ν|≤N




|ν|∑

m=1

1

m!
µ(m)(u0)T

(m)
ν [u]


−→ε ν .

On the other hand, if we put
(4.14)

R̃
(1)
N [µ,−→ε ] = ‖−→ε ‖−N−1

(
N∑

m=1

1
m!µ

(m)(u0)
∑

N+1≤|ν|≤mN

T
(m)
ν [u]−→ε ν + R̃

(1)
N [µ, h1]

)
,

by the boundedness of the functions uγ , ∇uγ , u
′
γ , |γ| ≤ N in the function space

L∞(0, T ;H1), we then obtain from (4.3), (4.12), (4.14) that
∥∥∥R̃(1)

N [µ,−→ε ]
∥∥∥
L∞(0,T ;L2)

≤
C, where C is a constant depending only on N, T, µ, uγ , |γ| ≤ N. Therefore, we
obtain from (4.5), (4.11), (4.13), (4.14) that

µ(u0 + h1) =µ(u0) +
∑

1≤|ν|≤N




|ν|∑

m=1

1

m!
µ(m)(u0)T

(m)
ν [u]


−→ε ν + ‖−→ε ‖N+1

R̃
(1)
N [µ,−→ε ]

=
∑

|ν|≤N

ρν [µ]
−→ε ν + ‖−→ε ‖N+1

R̃
(1)
N [µ,−→ε ].

(4.15)

Hence, part 1 of Lemma 4.2 is proved.
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(ii)We only prove (4.10) for N ≥ 2. By using Taylor’s expansion of the function
f [u0 + h1] around the point u0 up to order N + 1, we deduce from (4.2) that

f [u0 + h1]

=f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1

+
∑

2≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

1

m!
Dmf [u0]h

m1

1 (∇h1)
m2 (h′

1)
m3 +R

(1)
N [f, h1]

=f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1

+
∑

2≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

∑

|m|≤|ν|≤|m|N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

+R
(1)
N [f, h1]

(4.16)

=f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1

+
∑

2≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

∑

|m|≤|ν|≤N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

+
∑

2≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

∑

N+1≤|ν|≤|m|N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

+R
(1)
N [f, h1],

where
(4.17)

R
(1)
N [f, h1] =

∑

|m|=N+1
m=(m1,m2,m3)∈Z3

+

N + 1

m!

∫ 1

0
(1−θ)NDmf [u0+θh1]h

m1
1 (∇h1)

m2 (h′1)
m3dθ.

We also note that

f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1

+
∑

2≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

∑

|m|≤|ν|≤N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

=f [u0] +
∑

1≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

∑

|m|≤|ν|≤N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

=f [u0] +
∑

1≤|ν|≤N

∑

1≤|m|≤|ν|

m=(m1,m2,m3)∈Z
3
+

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

=
∑

|ν|≤N
πν [f ]

−→ε ν .

(4.18)
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Similarly, we have also

∑

2≤|m|≤N

m=(m1,m2,m3)∈Z
3
+

∑

N+1≤|ν|≤|m|N

∑

(α,β,γ)∈A(m,N)
α+β+γ=ν

1

m!
Dmf [u0]T

(m1)
α [u]T

(m2)
β [∇u]T (m3)

γ [u′]−→ε ν

+R
(1)
N [f, h1] = ‖−→ε ‖N+1

R
(1)
N [f,−→ε ],

(4.19)

where
∥∥∥R(1)

N [f,−→ε ]
∥∥∥
L∞(0,T ;L2)

≤ C, with C a constant depending only on N, T, f,

uγ , |γ| ≤ N.
Then, (4.10) holds. Lemma 4.2 is proved. �

Remark 4.1. Lemma 4.2 is a generalization of a formula contained in ( [7], p.262,
(4.38)), and it is useful for obtaining the following Lemma 4.3. These lemmas
are the key to the asymptotic expansion of a weak solution u = u (ε1, ..., εp) of
order N + 1 in p small parameters ε1, ..., εp as it will be seen below.

Let u−→ε = u (ε1, ..., εp) ∈ W1(M,T ) be a unique weak solution of the problem
(P−→ε ). Then, v = u−→ε −∑|γ|≤N uγ

−→ε γ ≡ u−→ε − h satisfies

(4.20)



v′′ − ∂

∂x
(µ−→ε (v + h)vx) = F−→ε [v + h]− F−→ε [h] +

∂

∂x
([µ−→ε (v + h)− µ−→ε (h)] hx)

+E−→ε (x, t), 0 < x < 1, 0 < t < T,

v(0, t) = v(1, t) = 0,

v(x, 0) = v′(x, 0) = 0,

µ−→ε (v) = µ(v) +
∑p

i=1 εiµi(v),

F−→ε [v] = f [v] +
∑p

i=1 εifi[v] = f(x, t, v, vx, vt) +
∑p

i=1 εifi(x, t, v, vx, vt),

where

E−→ε (x, t) =f [h]− f [u0] +

p∑

i=1

εifi[h] +
∂

∂x

([
µ(h)− µ(u0) +

p∑

i=1

εiµi(h)

]
hx

)

−
∑

1≤|γ|≤N
Fγ

−→ε γ .

(4.21)

Then we have the following lemma.

Lemma 4.3. Suppose that (H1), (H6) and (H7) hold. Then

(4.22) ‖E−→ε ‖L∞(0,T ;L2) ≤ K̂∗ ‖−→ε ‖N+1
,

where K̂∗ is a constant depending only on N, T, f, fi, µ, µi, uγ , |γ| ≤ N, i =
1, 2, ..., p.
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Proof. We consider only the case that N ≥ 2. By using formulas (4.9), (4.10) for
the functions fi[h] and µi[h], we obtain

(4.23)

{
µi(h) =

∑
|ν|≤N−1 ρν [µi]

−→ε ν + ‖−→ε ‖N R̃
(1)
N−1[µi,

−→ε ],
fi[h] =

∑
|ν|≤N−1 πν [fi]

−→ε ν + ‖−→ε ‖N R
(1)
N−1[fi,

−→ε ].

By (4.6), (4.8), we write εiµi(h) and εifi[h] as follows:

εiµi(h) =
∑

|ν|≤N−1
ρν [µi]εi

−→ε ν + εi ‖−→ε ‖N R̃
(1)
N−1[µi,

−→ε ]

=
∑

1≤|ν|≤N, νi≥1

ρν1,ν2,...,νi−1, νi−1, νi+1,...,νp[µi]
−→ε ν + εi ‖−→ε ‖N R̃

(1)
N−1[µi,

−→ε ]

=
∑

1≤|ν|≤N

ρ(i)ν [µi]
−→ε ν + εi ‖−→ε ‖N R̃

(1)
N−1[µi,

−→ε ].

(4.24)

Similarly

(4.25) εifi[h] =
∑

1≤|ν|≤N
π(i)
ν [fi]

−→ε ν + εi ‖−→ε ‖N R
(1)
N−1[fi,

−→ε ].

First, we deduce from (4.23)2 and (4.25) that

f [h]− f [u0] +

p∑

i=1

εifi[h]

=
∑

1≤|ν|≤N
πν [f ]

−→ε ν + ‖−→ε ‖N+1
R

(1)
N [f,−→ε ]

+

p∑

i=1

[∑
1≤|ν|≤N

π(i)
ν [fi]

−→ε ν + εi ‖−→ε ‖N R
(1)
N−1[fi,

−→ε ]
]

=
∑

1≤|ν|≤N

[
πν [f ] +

p∑

i=1

π(i)
ν [fi]

]
−→ε ν

+ ‖−→ε ‖N+1

[
R

(1)
N [f,−→ε ] +

p∑

i=1

εi
‖−→ε ‖ ‖−→ε ‖N R

(1)
N−1[fi,

−→ε ]
]

=
∑

1≤|ν|≤N

[
πν [f ] +

p∑

i=1

π(i)
ν [fi]

]
−→ε ν + ‖−→ε ‖N+1

R
(1)
N [f, f1, ..., fp,

−→ε ],

(4.26)

whereR
(1)
N [f, f1, ..., fp,

−→ε ] = R
(1)
N [f,−→ε ]+∑p

i=1
εi

‖−→ε ‖ ‖−→ε ‖N R
(1)
N−1[fi,

−→ε ] is bounded
in the function space L∞(0, T ;L2) by a constant depending only on N, T, f, fi,
uγ , |γ| ≤ N, i = 1, 2, ..., p.
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On the other hand, we deduce from (4.23)1 and (4.24), that
[
µ(h) − µ(u0) +

p∑

i=1

εiµi(h)

]
hx

=





∑

1≤|ν|≤N

[
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

]
−→ε ν




∑

|α|≤N
∇uα

−→ε α

+

{
‖−→ε ‖N+1

R̃
(1)
N [µ,−→ε ] +

p∑

i=1

εi ‖−→ε ‖N R̃
(1)
N−1[µi,

−→ε ]
}
∑

|α|≤N
∇uα

−→ε α

=





∑

1≤|ν|≤N

[
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

]
−→ε ν




∑

|α|≤N
∇uα

−→ε α

+ ‖−→ε ‖N+1

{
R̃

(1)
N [µ,−→ε ] +

p∑

i=1

εi
‖−→ε ‖R̃

(1)
N−1[µi,

−→ε ]
}
∑

|α|≤N
∇uα

−→ε α

=





∑

1≤|ν|≤N

[
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

]
−→ε ν




∑

|α|≤N
∇uα

−→ε α

+ ‖−→ε ‖N+1
R̃

(1)
N [µ, µ1, ..., µp,

−→ε ]

=
∑

1≤|ν|≤N, |α|≤N

(
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

)
∇uα

−→ε ν+α

+ ‖−→ε ‖N+1
R̃

(1)
N [µ, µ1, ..., µp,

−→ε ]

=
∑

1≤|γ|≤2N

∑

1≤|ν|≤N, |γ−ν|≤N

(
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

)
∇uγ−ν

−→ε γ

+ ‖−→ε ‖N+1
R̃

(1)
N [µ, µ1, ..., µp,

−→ε ]

=
∑

1≤|γ|≤N

∑

1≤|ν|≤|γ|, ν≤γ

(
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

)
∇uγ−ν

−→ε γ

+ ‖−→ε ‖N+1
R̃

(2)
N [µ, µ1, ..., µp,

−→ε ],

(4.27)

where
(4.28)



R̃
(1)
N [µ, µ1,

−→ε ] =
{
R̃

(1)
N [µ,−→ε ] +

p∑

i=1

εi
‖−→ε ‖ R̃

(1)
N−1[µi,

−→ε ]
}
∑

|α|≤N
∇uα

−→ε α,

‖−→ε ‖N+1
R̃

(2)
N [µ, µ1, ..., µp,

−→ε ] = ‖−→ε ‖N+1
R̃

(1)
N [µ, µ1, ..., µp,

−→ε ]

+
∑

N+1≤|γ|≤2N

∑

1≤|ν|≤N, |γ−ν|≤N

(
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

)
∇uγ−ν

−→ε γ .
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Hence

∂

∂x

([
µ(h)− µ(u0) +

p∑

i=1

εiµi(h)

]
hx

)

=
∑

1≤|γ|≤N

∑

1≤|ν|≤|γ|, ν≤γ

∂

∂x

[(
ρν [µ] +

p∑

i=1

ρ(i)ν [µi]

)
∇uγ−ν

]
−→ε γ

+ ‖−→ε ‖N+1 ∂

∂x
R̃

(2)
N [µ, µ1, ..., µp,

−→ε ].

(4.29)

Combining (4.4) – (4.8), (4.21), (4.26) and (4.29), the result is

E−→ε (x, t) =f [h]− f [u0] +

p∑

i=1

εifi[h]

+
∂

∂x

([
µ(h)− µ(u0) +

p∑

i=1

εiµi(h)

]
hx

)
−
∑

1≤|γ|≤N
Fγ

−→ε γ

= ‖−→ε ‖N+1
[
R

(1)
N [f, f1, ..., fp,

−→ε ] + ∂

∂x
R̃

(2)
N [µ, µ1, ..., µp,

−→ε ]
]
.

(4.30)

By boundedness of the functions uγ , ∇uγ , u
′
γ , |γ| ≤ N in the function space

L∞(0, T ;H1), we obtain from (4.26) and (4.28), that

(4.31) ‖E−→ε ‖L∞(0,T ;L2) ≤ K̂∗ ‖−→ε ‖N+1
,

where K̂∗ is a constant depending only on N, T, f, fi, µ, µi, uγ , |γ| ≤ N,
i = 1, 2, ..., p.

The proof of Lemma 4.3 is complete. �

Now we consider the sequence {vm} defined by

(4.32)





v0 ≡ 0,

v′′m − ∂
∂x (µ−→ε (vm−1 + h)vmx) = F−→ε [vm−1 + h]− F−→ε [h]

+ ∂
∂x ([µ−→ε (vm−1 + h)− µ−→ε (h)] hx)

+E−→ε (x, t), 0 < x < 1, 0 < t < T,

vm(0, t) = vm(1, t) = 0,

vm(x, 0) = v′m(x, 0) = 0, m ≥ 1.

For m = 1 we have the problem

(4.33)





v′′1 − ∂

∂x
(µ−→ε (h)v1x) = E−→ε (x, t), 0 < x < 1, 0 < t < T,

v1(0, t) = v1(1, t) = 0,

v1(x, 0) = v′1(x, 0) = 0.
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By multiplying the two sides of (4.33)1 by v′1, we find without difficulty from
(4.22) that

||v′1(t)||2 + ||
√

µ1,−→ε (t)v1x(t)||2

=2

∫ t

0
〈E−→ε (s), v

′
1(s)〉ds +

∫ t

0
ds

∫ 1

0
µ′
1,−→ε (x, s)v

2
1x(x, s)dx

≤TK̂2
∗ ‖−→ε ‖2N+2

+

∫ t

0

∥∥v′1(s)
∥∥2 ds +

∫ t

0
ds

∫ 1

0

∣∣∣µ′
1,−→ε (x, s)

∣∣∣ v21x(x, s)dx,

(4.34)

where µ1,−→ε (x, t) = µ−→ε (h(x, t)) = µ(h(x, t)) +
∑p

i=1 εiµi(h(x, t)).

As µ′
1,−→ε

(x, t) = µ′
−→ε
(h(x, t))h′(x, t), we have

(4.35)
∣∣µ′

1,ε1(x, t)
∣∣ ≤ M∗

(
K̃M∗

(µ) +

p∑

i=1

K̃M∗
(µi)

)
≡ ζ0, with M∗ = (N + 1)M.

It follows from (4.34), (4.35) that
(4.36)

||v′1(t)||2 + µ0 ‖v1x(t)‖2 ≤ TK̂2
∗ ‖−→ε ‖

2N+2
+

∫ t

0

∥∥v′1(s)
∥∥2 ds + ζ0

∫ t

0
||v1x(s)||2ds.

Using Gronwall’s lemma this inequality gives
(4.37)

||v′1||L∞(0,T ;L2)+‖v1x‖L∞(0,T ;L2) ≤ (1+
1√
µ0

)
√
TK̂∗ ‖−→ε ‖N+1

exp

[
1

2
T

(
1 +

ζ0
µ0

)]
.

We shall prove that there exists a constant CT , independent of m and −→ε , such
that
(4.38)∥∥v′m

∥∥
L∞(0,T ;L2)

+ ‖vmx‖L∞(0,T ;L2) ≤ CT ‖−→ε ‖N+1
with ‖−→ε ‖ ≤ ε∗ < 1 for all m.

By multiplying the two sides of (4.32)1 with v′m and after integration in t we
obtain from (4.22) that

||v′m(t)||2 + µ0||vmx(t)||2

≤TK̂2
∗ ‖−→ε ‖

2N+2
+

∫ t

0

∥∥v′m(s)
∥∥2 ds+

∫ t

0
ds

∫ 1

0

∣∣∣µ′
m,−→ε (x, s)

∣∣∣ v2mx(x, s)dx

+ 2

∫ t

0
‖F−→ε [vm−1 + h]− F−→ε [h]‖

∥∥v′m(s)
∥∥ ds

+ 2

∫ t

0

∥∥∥∥
∂

∂x
([µ−→ε (vm−1 + h)− µ−→ε (h)] hx)

∥∥∥∥
∥∥v′m(s)

∥∥ ds

=TK̂2
∗ ‖−→ε ‖

2N+2
+

∫ t

0

∥∥v′m(s)
∥∥2 ds+ Î1(t) + Î2(t) + Î3(t),

(4.39)

where µm,−→ε (t) = µ−→ε (vm−1 + h). We now estimate the integrals on the right -
hand side of (4.39) as follows.
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Estimating Î1(t). We have µ′
m,−→ε

(x, t) = µ′
−→ε
(vm−1 + h)(v′m−1 + h′), hence

(4.40)
∣∣∣µ′

m,−→ε (x, t)
∣∣∣ ≤ M∗∗

(
K̃M∗∗

(µ) +

p∑

i=1

K̃M∗∗
(µi)

)
≡ ζ1, with M∗∗ = (N + 2)M.

It follows from (4.40) that

(4.41) Î1(t) =

∫ t

0
ds

∫ 1

0

∣∣∣µ′
m,−→ε (x, s)

∣∣∣ v2mx(x, s)dx ≤ ζ1

∫ t

0
||vmx(s)||2ds.

Estimating Î2(t).We also note that ‖f [vm−1 + h]− f [h]‖ ≤ 2KM∗∗
(f) ‖vm−1‖W1(T )

and || fi[vm−1 +h]− fi[h] || ≤ 2KM∗∗
(fi) ‖vm−1‖W1(T ) , so

(4.42) ‖F−→ε [vm−1 + h]− F−→ε [h]‖ ≤ ζ2 ‖vm−1‖W1(T ) ,

where ζ2 = ζ2(M∗∗, f, f1, ..., fp) = 2KM∗∗
(f) + 2

∑p
i=1KM∗∗

(fi). Therefore, we
deduce from (4.42) that

Î2(t) =2

∫ t

0
‖F−→ε [vm−1 + h]− F−→ε [h]‖

∥∥v′m(s)
∥∥ ds

≤Tζ22 ‖vm−1‖2W1(T ) +

∫ t

0

∥∥v′m(s)
∥∥2 ds.

(4.43)

Estimating Î3(t). First, we need an estimation for
∥∥ ∂
∂x ([µ(vm−1 + h)− µ(h)] hx)

∥∥ .
From the equation

∂

∂x
([µ(vm−1 + h)− µ(h)] hx) = [µ(vm−1 + h)− µ(h)] hxx

+
∂

∂x
[µ(vm−1 + h)− µ(h)] hx

it follows that

∥∥∥∥
∂

∂x
([µ(vm−1 + h)− µ(h)] hx)

∥∥∥∥
≤‖µ(vm−1 + h)− µ(h)‖C0(Ω) ‖hxx(s)‖

+

∥∥∥∥
∂

∂x
[µ(vm−1 + h)− µ(h)]

∥∥∥∥ ‖hx(s)‖C0(Ω)

≤
√
2 ‖h(s)‖H2

[
‖µ(vm−1 + h)− µ(h)‖C0(Ω) +

∥∥∥∥
∂

∂x
[µ(vm−1 + h)− µ(h)]

∥∥∥∥
]

≡
√
2 ‖h(s)‖H2

[
Î
(1)
3 (s) + Î

(2)
3 (s)

]
.

(4.44)

Concerning Î
(1)
3 (s) we have

(4.45) Î
(1)
3 (s) = ‖µ(vm−1 + h)− µ(h)‖C0(Ω) ≤ K̃M∗∗

(µ) ‖vm−1‖W1(T ) .
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Concerning Î
(2)
3 (s) we also obtain

Î
(2)
3 (s) =

∥∥∥∥
∂

∂x
[µ(vm−1 + h)− µ(h)]

∥∥∥∥
≤
∥∥µ′(vm−1 + h)∇vm−1

∥∥+
∥∥[µ′(vm−1 + h)− µ′(h)

]
∇h
∥∥

≤(1 + ‖∇h(s)‖)K̃M∗∗
(µ) ‖∇vm−1(s)‖ ≤ (1 +M∗)K̃M∗∗

(µ) ‖vm−1‖W1(T ) .

(4.46)

We deduce from (4.44), (4.45) and (4.46) that

(4.47)

∥∥∥∥
∂

∂x
([µ(vm−1 + h)− µ(h)] hx)

∥∥∥∥ ≤
√
2M∗(2+M∗)K̃M∗∗

(µ) ‖vm−1‖W1(T ) .

Next, by µ−→ε (v) = µ(v) +
∑p

i=1 εiµi(v), it follows that

(4.48)

∥∥∥∥
∂

∂x
([µ−→ε (vm−1 + h)− µ−→ε (h)] hx)

∥∥∥∥ ≤ ζ3 ‖vm−1‖W1(T ) ,

where
(4.49)

ζ3 = ζ3(M,N, T, µ, µ1, ..., µp) =
√
2M∗(2 +M∗)

(
K̃M∗∗

(µ) +

p∑

i=1

K̃M∗∗
(µi)

)
.

By (4.49)

Î3(t) =2

∫ t

0

∥∥∥∥
∂

∂x
([µ−→ε (vm−1 + h)− µ−→ε (h)] hx)

∥∥∥∥
∥∥v′m(s)

∥∥ ds

≤Tζ23 ‖vm−1‖2W1(T ) +

∫ t

0

∥∥v′m(s)
∥∥2 ds.

(4.50)

Combining (4.39), (4.41), (4.43), (4.50) yields

||v′m(t)||2 + µ0||vmx(t)||2 ≤TK̂2
∗ ‖−→ε ‖

2N+2
+ T (ζ22 + ζ23 ) ‖vm−1‖2W1(T )

+ 3

∫ t

0

∥∥v′m(s)
∥∥2 ds+ ζ1

∫ t

0
||vmx(s)||2ds.

(4.51)

By using Gronwall’s lemma, we get

(4.52) ‖vm‖W1(T ) ≤ σT ‖vm−1‖W1(T ) + δ for all m ≥ 1,

where

σT =
√

ζ22 + ζ23ηT ,

δ =ηT K̂∗ ‖−→ε ‖N+1
,

ηT =

(
1 +

1√
µ0

)
exp

[
1

2
T (1 +

ζ1
µ0

)

]√
T .

(4.53)

Assume that

(4.54) σT < 1, with a suitable constant T > 0.

We shall now require the following lemma whose proof is immediate.
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Lemma 4.4. Suppose the sequence {Ψm} satisfies

(4.55) Ψm ≤ σΨm−1 + δ for all m ≥ 1,Ψ0 = 0,

where 0 ≤ σ < 1, δ ≥ 0 are given constants. Then,

(4.56) Ψm ≤ δ/(1 − σ) for all m ≥ 1.

Applying Lemma 4.4 with Ψm = ‖vm‖W1(T ) , σ = σT =
√

ζ22 + ζ23ηT < 1,

δ = ηT K̂∗ ‖−→ε ‖N+1
, it follows from (4.56) that

(4.57)∥∥v′m
∥∥
L∞(0,T ;L2)

+ ‖vmx‖L∞(0,T ;L2) = ‖vm‖W1(T ) ≤ δ/(1 − σT ) = CT ‖−→ε ‖N+1
,

where CT = ηT K̂∗

1−
√

ζ22+ζ23ηT
.

On the other hand, the linear recurrent sequence {vm} defined by (4.32) con-
verges strongly in the space W1(T ) to the weak solution v of problem (4.20).
Hence, letting m → +∞ in (4.57) gives

∥∥v′
∥∥
L∞(0,T ;L2)

+ ‖vx‖L∞(0,T ;L2) ≤ CT ‖−→ε ‖N+1
,

or
(4.58)∥∥∥∥u

′ −
∑

|γ|≤N
u′γ

−→ε γ

∥∥∥∥
L∞(0,T ;L2)

+

∥∥∥∥ux −
∑

|γ|≤N
uγx

−→ε γ

∥∥∥∥
L∞(0,T ;L2)

≤ CT ‖−→ε ‖N+1
.

Thus, we have the following theorem.

Theorem 4.5. Suppose that (H1), (H2), (H6) and (H7) hold. Then, there exist
constants M > 0 and T > 0 such that for every −→ε with ‖−→ε ‖ ≤ ε∗ < 1, the
problem (P−→ε ) has a unique weak solution u = u−→ε ∈ W1(M,T ) satisfying an
asymptotic estimation up to order N + 1 as in (4.58), where the functions uγ ,

|γ| ≤ N are the weak solutions of the problems (P̃γ), |γ| ≤ N, respectively.

Remark 4.2. Typical examples for asymptotic expansions of a weak solution in
a small parameter can be found in the works of many authors, such as [3], [7], [9],
[10], [11], [18]. However, to our knowledge, in the case of asymptotic expansion in
many small parameters, there are only partial results, for example, [12] – [14], [17],
concerning asymptotic expansions of a solution in two or three small parameters.
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