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ON THE GINI MEAN DIFFERENCE

PHAM XUAN BINH

Abstract. Gini mean difference (GMD) was proposed by Gini in 1912 for
measuring income inequalities or economic wealth. The aim of this paper is
to prove an estimation of this GMD in the general case of distribution.

1. Introduction

Many achievements have been made since the first article on Gini mean dif-
ference (GMD) by Italian mathematician Corrado Gini (1912). During the last
more than 80 years, GMD became one of the most popular inequalities measure
used in economics. The mean difference is a measure of statistical dispersion
which equals the average absolute difference of two independent random values
X and X ′ drawn from a probability distribution F : E|X −X ′|.

Up to now, many results on bounds for E|X−X ′| have been obtained in many
special cases of the distribution F (see, for example, [1]-[5]). In this paper, we
attempt to give a proof of the following inequality in the general case of the
distribution F :

E|X −X ′| ≤ 2√
3

√

V ar(X).

Also, some identities related to GMD are investigated.

2. Main results

Let X be a random variable with the distribution function F such that EX2 <

+∞. Let us denote by X ′ a random variable that is independent of X and has
the same distribution as X. For the distribution function F (x) = P (X ≤ x), we
define the function G by

G(x) =
F (x) + F (x−)

2
, x ∈ R.
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Lemma 2.1 (Hermite-Hadamard inequality, see [8], [9]). Let f : [a, b) → R be a

convex function. Then,

f

(

a+ b

2

)

≤ 1

b− a

b
∫

a

f(x)dx

(

≤ f(a) + f(b)

2

)

.

Lemma 2.2. Let F = Fd be a pure jump distribution function. Then:

(i) EG(X) =
1

2
,

(ii) for q > 1 we have E[G(X)]q ≤ 1

q + 1
.

Proof. (i) We know that F = Fd has at most a countable number of jumps. Let
{xk : k ∈ N} be those jumps. Then,

EG(X) =
1

2

+∞
∫

−∞

[F (x) + F (x−)]dF (x)

=
1

2

∑

k

[F (xk) + F (x−k )][F (xk)− F (x−k )]

=
1

2

∑

k

[F 2(xk)− F 2(x−k )]

=
1

2

+∞
∫

−∞

d
[

F 2(x)
]

=
1

2
.

(ii) By Lemma 2.1, we have

E[G(X)]q =
1

2

+∞
∫

−∞

[

F (x) + F (x−)

2

]q

dF (x)

=
∑

k

[

F (xk) + F (x−
k
)

2

]q

[F (xk)− F (x−k )]

≤
∑

k

F (xk)
∫

F (x−

k
)

yqdy =

1
∫

0

yqdy =
1

q + 1
.

�

Lemma 2.3. Let F = Fc be a continuous distribution function. Then, for q ≥ 1
we have

E[G(X)]q =
1

q + 1
.
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Proof. The formula for partial integration (see [7], page 66) gives us

E[G(X)]q =

+∞
∫

−∞

[F (x)]qdF (x)

= [F (x)]q+1
∣

∣

+∞

−∞
− q

+∞
∫

−∞

[F (x)]qdF (x)

= 1− qE[G(X)]q .

�

Now we return to the general case.

Proposition 2.4. The following statements hold:

(i) EG(X) =
1

2
;

(ii) E[G(X)]2 ≤ 1

3
;

(iii) V ar{G(X)} ≤ 1

12
.

Proof. By the Lebesgue Decomposition Theorem we see that F can be uniquely
written as a convex combination of a discrete distribution function Fd and a
continuous distribution function Fc, i.e., F = αFd + (1− α)Fc where 0 ≤ α ≤ 1.
(i) At first, by continuity of Fc and the formula for partial integration, we obtain

+∞
∫

−∞

Fd(x) + Fd(x
−)

2
dFc(x) +

+∞
∫

−∞

Fc(x)dFd(x)

=

+∞
∫

−∞

Fd(x)dFc(x) +

+∞
∫

−∞

Fc(x)dFd(x)

=

+∞
∫

−∞

d[Fc(x)Fd(x)] = 1.

Now, by Lemma 2.1, Lemma 2.2, and

G(x) = α
Fd(x) + Fd(x

−)

2
+ (1− α)Fc(x),

we have

EG(X) =

+∞
∫

−∞

F (x) + F (x−)

2
dF (x)

=

+∞
∫

−∞

[

α
Fd(x) + Fd(x

−)

2
+ (1− α)Fc(x)

]

d[αFd(x) + (1− α)Fc(x)]
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= α2

+∞
∫

−∞

Fd(x) + Fd(x
−)

2
dFd(x) + (1− α)2

+∞
∫

−∞

Fc(x)dFc(x)

+ α(1− α)

+∞
∫

−∞

Fd(x) + Fd(x
−)

2
dFc(x) + (1− α)α

+∞
∫

−∞

Fc(x)dFd(x)

=
α2

2
+

(1− α)2

2
+ α(1− α)

+∞
∫

−∞

Fd(x)dFc(x) + α(1− α)

+∞
∫

−∞

Fc(x)dFd(x)

=
α2

2
+

(1− α)2

2
+ α(1− α) =

1

2
.

(ii) By Lemma 2.1, Lemma 2.2 and the formula for partial integration we have

E[G(X)]2 =

+∞
∫

−∞

[

α
Fd(x) + Fd(x

−)

2
+ (1− α)Fc(x)

]2

d[αFd(x) + (1− α)Fc(x)]

=

+∞
∫

−∞

{

α2

[

Fd(x) + Fd(x
−)

2

]2

+ (1− α)2F 2
c (x)

+ 2α(1 − α)

[

Fd(x) + Fd(x
−)

2

]

Fc(x)
}

d[αFd(x) + (1− α)Fc(x)]

= α3

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]2

dFd(x)

+ α2(1− α)

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]2

dFc(x)

+ (1− α)2α

+∞
∫

−∞

F 2
c (x)dFd(x) + (1− α)3

+∞
∫

−∞

F 2
c (x)dFc(x)

+ 2α2(1− α)

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]

Fc(x)dFd(x)

+ 2α(1 − α)2
+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]

Fc(x)dFc(x)

= α3

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]2

dFd(x) + α2(1− α)

+∞
∫

−∞

F 2
d (x)dFc(x)
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+ (1− α)2α

+∞
∫

−∞

F 2
c (x)dFd(x) +

(1− α)3

3

+ 2α2(1− α)

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]

Fc(x)dFd(x)

+ 2α(1 − α)2
+∞
∫

−∞

Fd(x)Fc(x)dFc(x).(2.1)

We now give the upper bound and compute the remaining five terms on the right
hand side of (2.1):

α3

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]2

dFd(x) ≤
α3

3
,(2.2)

α2(1− α)

+∞
∫

−∞

F 2
d (x)dFc(x) = α2(1− α) − α2(1− α)

+∞
∫

−∞

Fc(x)dF
2
d (x)

= α2(1− α)− α2(1− α)
∑

k

Fc(xk)
[

F 2
d (xk)− F 2

d (x
−

k
)
]

,(2.3)

2α2(1− α)

+∞
∫

−∞

[

Fd(x) + Fd(x
−)

2

]

Fc(x)dFd(x) =

= 2α2(1− α)
∑

k

Fd(xk) + Fd(x
−

k )

2
Fc(xk)[Fd(xk)− Fd(x

−

k )]

= α2(1− α)
∑

k

Fc(xk)[F
2
d (xk)− F 2

d (x
−

k )],(2.4)

(1− α)2α

+∞
∫

−∞

F 2
c (x)dFd(x) = α(1 − α)2

∑

k

F 2
c (xk)[Fd(xk)− Fd(x

−

k )],(2.5)

2α(1 − α)2
+∞
∫

−∞

Fd(x)Fc(x)dFc(x) = α(1 − α)2
+∞
∫

−∞

Fd(x)
[

dF 2
c (x)

]

= α(1− α)2 − α(1− α)2
+∞
∫

−∞

F 2
c (x)dFd(x)



690 PHAM XUAN BINH

= α(1− α)2 − α(1− α)2
∑

k

F 2
c (xk)[Fd(xk)− Fd(x

−

k )].(2.6)

From (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6) we obtain

E[G(X)]2 ≤ α3

3
+ α2(1− α) + α(1− α)2 +

(1− α)3

3

≤ α3

3
+ α2 − α3 + α+ α3 − 2α2 +

1

3
− 3α

3
+

3α2

3
− α3

3

≤ 1

3
.

(iii) V arG(X) = E[G(X)]2 − [EG(X)]2 ≤ 1

3
− 1

4
=

1

12
. �

Proposition 2.5. Let g be a non-decreasing function on R such that Eg(X) <
+∞. Then,

E|g(X) − g(X ′)| = 4E

{

g(X)

[

G(X) − 1

2

]}

,

where G(x) =
F (x) + F (x−)

2
for all x ∈ R.

Proof. We have

E|g(X) − g(X ′)| =
+∞
∫

−∞

+∞
∫

−∞

|g(u) − g(v)|dF (u)dF (v)

=

∫∫

u<v

[g(v) − g(u)]dF (u)dF (v) +

∫∫

u>v

[g(u) − g(v)]dF (u)dF (v)

= 2

∫∫

u<v

[g(v) − g(u)]dF (u)dF (v)

= 2

∫∫

u<v

g(v)dF (u)dF (v) − 2

∫∫

u<v

g(u)dF (u)dF (v)

= 2

+∞
∫

−∞

g(v)

v−
∫

−∞

dF (u)dF (v) − 2

+∞
∫

−∞

g(u)

+∞
∫

u+

dF (v)dF (u)

= 2

+∞
∫

−∞

g(v)F (v−)dF (v) − 2

+∞
∫

−∞

g(u)
[

1− F (u+)
]

dF (u)

= 2

+∞
∫

−∞

g(x)F (x−)dF (x)− 2

+∞
∫

−∞

g(x)
[

1− F (x+)
]

dF (x)
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= 2

+∞
∫

−∞

g(x)
[

F (x+) + F (x−)− 1
]

dF (x)

= 4

+∞
∫

−∞

g(x)

[

F (x+) + F (x−)

2
− 1

2

]

dF (x)

= 4

+∞
∫

−∞

g(x)

[

F (x) + F (x−)

2
− 1

2

]

dF (x)

= 4

+∞
∫

−∞

g(x)

[

G(x) − 1

2

]

dF (x) = 4E

{

g(X)

[

G(X)− 1

2

]}

.

�

Corollary. Under the assumption stated in Proposition 2.5, the following equal-

ities hold:

(i)

E|g(X) − g(X ′)| = 4E[g(X) − Eg(X)]G(X)

= 4E[g(X) − Eg(X)][G(X) − a]

= 4E[g(X) − b][G(X) − 1

2
]

for all a, b ∈ R.

(ii)

E|X −X ′| = 4E

(

X[G(X) − 1

2
]

)

= 4E [(X − EX)G(X)]

= 4E

(

(X − EX) [G(X) − 1

2
]

)

= 4E[X − EX][G(X) − a]

= 4E[X − b][G(X) − 1

2
]

for all a, b ∈ R.

We are now in a position to state the main result.

Theorem 2.6.

E|X −X ′| ≤ 2√
3

√

V ar(X).

Equality holds if and only if X has a uniform distribution on some interval [a, b].
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Proof. By the Cauchy-Schwarz inequality, the Corollary of Proposition 2.5 and
part (iii) of Proposition 2.4, we obtain

E|X −X ′| = 4E[X −EX][G(X) − 1

2
]

= 4E[X −EX][G(X) −EG(X)]

≤ 4
√

V arX.V arG(X)

≤ 4

√

1

12

√

V ar(X)

≤ 2√
3

√

V ar(X).

It is clear that equality holds if and only if X and G(X) are linearly dependent,
that is, if and only if X has a uniform distribution on some interval [a, b]. �

We give now some useful identities for the Gini mean difference.

Proposition 2.7.

E|X −X ′| = 2

+∞
∫

−∞

+∞
∫

−∞

(x− y)[G(x) −G(y)]dF (x)dF (y).

Proof. By part (ii) of the Corollary of Proposition 2.5 we have

2

+∞
∫

−∞

+∞
∫

−∞

(x− y)[G(x)−G(y)]dF (x)dF (y)

=2

+∞
∫

−∞

+∞
∫

−∞

xG(x)dF (x)dF (y) − 2

+∞
∫

−∞

+∞
∫

−∞

yG(x)dF (x)dF (y)

− 2

+∞
∫

−∞

+∞
∫

−∞

xG(y)dF (x)dF (y) + 2

+∞
∫

−∞

+∞
∫

−∞

yG(y)dF (x)dF (y)

=4

+∞
∫

−∞

xG(x)dF (x) − 4

+∞
∫

−∞

xdF (x)

+∞
∫

−∞

G(y)dF (y)

=4EXG(X) − 2EX = 4EX[G(X) − 1

2
] = E|X −X ′|.

�

Proposition 2.8.

E|X −X ′| = 2

+∞
∫

−∞

F (x)[1 − F (x)]dx = 2

+∞
∫

−∞

G(x)[1 −G(x)]dx.
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Proof. By the equality max{X,X ′} =
1

2
(X+X ′)+

1

2
|X−X ′| and since max{X,X ′}

has the distribution function F 2, we have

E|X −X ′| = 2E
(

max{X,X ′}
)

− 2EX

= 2

+∞
∫

−∞

xdF 2(x)− 2

+∞
∫

−∞

xdF (x)

= 2

+∞
∫

0

[1− F 2(x)]dx − 2

0
∫

−∞

F 2(x)dx

− 2

+∞
∫

0

[1− F (x)]dx + 2

0
∫

−∞

F (x)dx

= 2

+∞
∫

0

[1− F (x)]F (x)dx + 2

0
∫

−∞

F (x)[1 − F (x)]dx

= 2

+∞
∫

−∞

F (x)[1 − F (x)]dx.

On the other hand, since the set {x ∈ R : F (x) 6= G(x)} has at most a countable
number of points, we have

+∞
∫

−∞

F (x)[1− F (x)]dx =

+∞
∫

−∞

G(x)[1 −G(x)]dx.

�

We conclude the paper with the following note. As pointed out in Proposition
2.8 and the Corollary of Proposition 2.5, we obtain the identity

E|X −X ′| = 2

+∞
∫

−∞

F (x)[1− F (x)]dx = 4E

(

X[G(X) − 1

2
]

)

= 4

+∞
∫

−∞

x

[

G(x)− 1

2

]

dF (x) = 2

+∞
∫

−∞

x[2G(x) − 1]dF (x).

When the distribution function F is continuous, we can use the formula for
partial integration to get

E|X −X ′| = 2

+∞
∫

−∞

F (x)[1 − F (x)]dx = 2

+∞
∫

−∞

x[2F (x) − 1]dF (x).
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However, in general it frequently happens that

E|X −X ′| = 2

+∞
∫

−∞

F (x)[1 − F (x)]dx 6= 2

+∞
∫

−∞

x[2F (x) − 1]dF (x),

because the formula for partial integration can not be applied (see [4], page 883).

For example, if P (X = 0) = P (X = 1) =
1

2
then it is easy to check that

E|X −X ′| = 2

+∞
∫

−∞

F (x)[1 − F (x)]dx = 2

+∞
∫

−∞

G(x)[1 −G(x)]dx

= 2

+∞
∫

−∞

x[2G(x) − 1]dF (x) =
1

2
,

while

2

+∞
∫

−∞

x[2F (x)− 1]dF (x) = 2(2 − 1)
1

2
= 1.
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