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UNIFORMIZATION OF FAKE PROJECTIVE FOUR SPACES

SAI-KEE YEUNG

Abstract. We give criteria for a fake projective four space to be uniformized
by the complex hyperbolic space of complex dimension four. This is achieved
through a classification of the Chern numbers of a rational homology complex
projective space of complex dimension four.

1. Statements of results

1.1. The problem of characterization of Pn
C

in terms of topological conditions
has a long history. In particular, Severi raised the question of whether a complex
surface homeomorphic to P 2

C
has to be biholomorphic to P 2

C
. The answer is

affirmative and is achieved only after the solution of Calabi Conjecture in the
case of negative scalar curvature by Aubin and Yau (cf. [16] or [1], page 5).

In higher dimensions we do not have the tools to approach the problem if the
manifolds considered are not Kähler. From this point on, we assume that the
complex manifold involved is equipped with a Kähler metric. In such a case, the
result is proved by Hirzebruch and Kodaira [7] if all the Pontryagin classes are
the same as Pn

C
. Fujita [3] deduced the same conclusion for a projective algebraic

fourfold M if c1(M) > 0 and the integral cohomology ring of M is the same as
P 4

C
. More recently, Libgober and Wood in [10] showed that it was sufficient to

assume that the cohomology ring of M was the same as P 4
C
.

The motivation of the present article comes from a complementary point of
view. In [14], examples of Kähler fourfolds with the same Betti numbers as
P 4

C
but with infinite fundamental groups are constructed. These are called fake

projective four spaces, a generalization of the notion of Mumford’s fake projective
plane in [11]. While fake projective planes are classified in Prasad-Yeung [13], see
also Cartwright-Steger [2], the result is not known in higher dimensions. For such
purpose, similar to complex dimension two as explained in the survey article [18],
we may reduce the task into three steps, namely, uniformization of such complex
manifolds as complex ball quotients, proof of arithmeticity of the lattices involved,
and classification of such arithmetic quotients. The third step was achieved in
[14] and the second step requires a generalization of the arguments in [9] and [17].
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Our main purpose here is to address the problem encountered in the first step.
The main result is a uniformization statement about compact Kähler manifolds
of complex dimension four which are rational homological projective spaces of
the same dimension.

1.2. We begin with the following definition.

Definition 1.1.

(a) A connected compact Kähler manifold M of complex dimension n is said to
be a (rational) homology complex projective space if M has the same (rational)
homology group as the complex projective space of the same dimension.
(b) A connected compact Kähler manifold M of complex dimension n is said to
be a fake projective space if M has the same Betti numbers as Pn

C
but is different

from Pn
C
.

(c) A fake projective space is said to be an arithmetic fake projective space if M is
biholomorphic to the quotient of the complex hyperbolic space by an arithmetic
lattice in PU(n, 1).

The definition in (b) follows the usual terminology of fake projective planes
in dimension two. Fake projective spaces are rational homology complex projec-
tive spaces other than the projective spaces themselves. First examples of fake
projective space were obtained in complex dimension 2 by Mumford [11]. More
recently, two more examples of such fake projective planes were found in a related
manner by Ishida and Kato, and an example with an automorphism of order 7
related to Mumford’s example was constructed by Keum. A classification of fake
projective planes was given in [13], [2]. We refer the readers to [13] and [18] for
further details and references in complex dimension 2.

For n > 2, Gopal Prasad and the author classified all arithmetic fake projective
spaces and constructed in complex dimension 4 four classes of fake projective four
spaces [14]. Since only fake projective spaces of complex dimension four exist
among all dimensions greater than 2, we concentrate on complex dimension four.
To bridge the gap in the definition of fake projective four space and arithmetic
fake projective four space, the first step is to have some uniformization result
about manifolds having the same rational homology groups as the projective four
space. This turns out to be rather intricate and is not completely solved. The
following is a result in this direction, which needs one extra assumption apart
from being a rational homology complex projective four space. It also limits the
possibility of the Chern numbers of a homology complex projective four space.

Theorem 1.2. (a). The Chern numbers (c4
1, c1c3, c

2
1c2, c

2
2, c4) of a rational ho-

mology complex projective space of complex dimension 4 can only take one of the

following two sets of values,

(i) (625, 50, 250, 100, 5), or,

(ii) (225, 50, 150, 100, 5).
(b). Let M be a fake projective four space. Suppose that the Chern numbers of

M are not given by (a)(ii). Then M is biholomorphic to the quotient of B4
C

by
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a torsion free lattice in PU(4, 1). In particular, M is a complex ball quotient of

complex dimension 4 if any one of the following conditions is satisfied

(i) c4
1(M) 6= 225,

(ii) H4(M, Z) modulo torsion is generated by θ ∪ θ, where θ is a generator of

H2(M, Z) modulo torsion,

(iii) The canonical line bundle KM does not have length 1, in other words, the

cycle corresponding to KM is not the generator of the Neron-Severi group modulo

torsion.

1.3. The Chern numbers in Theorem 1.2 (a)(i) are satisfied by the complex
projective space of complex dimension 4 and also by the four classes of arithmetic
fake projective spaces constructed in Prasad-Yeung [14]. It is not clear to the
author whether there are connected Kähler manifolds with Chern numbers given
in Theorem 1.2 (a)(ii). To illustrate the intricate nature of the problem, let us
mention two facts here.

The first fact is that there are actually examples of disconnected projective
algebraic manifolds which have the same Chern numbers as given by Theorem
1.2 (a)(ii). This follows from a result of Milnor (cf. [5], see also [4]), since the
data given above satisfy

−c4
1 + 4c2

1c2 + c1c3 + 3c2
2 − c4 ≡ 0 mod 720,

2c4
1 + c2

1c2 ≡ 0 mod 12,

c1c3 − 2c4 ≡ 0 mod 4.

The second fact is that in complex dimension 3, there are actually examples of
fake projective three space which are not uniformized by the complex three balls.
We refer the readers to §3.

1.4. Here is the organization of the paper. The proof of Theorem 1.2 is given in
§2. This is achieved by generalizing an argument of Libgober and Wood [10] who
assumed that the cohomology ring of M is the same as P 4

C
. We remark that for

the cases that we are interested in, the cohomology ring may not be generated
completely by the generator of Neron-Severi group. In §3, we give remarks about
the situations in complex dimension 3.

2. Uniformization in complex dimension 4

2.1. We give a proof of the main result in this section.
Proof of Theorem 1.2

Libgober and Wood [10] proved that a compact Kähler manifold having the
same cohomology ring as P 4

C
is actually biholomorphic to P 4

C
. Here we modify

their method and deal with the weaker assumption in terms of Betti numbers. To
explain the difference, we let θ be an ample generator of i∗H2(M, Z) ∩H1,1(M),
where i∗ : H2(M, Z) → H2(M, C) is the map induced by the embedding i :
Z → C. The difficulty we need to deal with is that θ when regarded as class in
H2(M, Z) may only generate a proper subring of cohomology ring ⊕jH

j(M, Z)
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modulo torsion instead of the whole ⊕jH
j(M, Z) modulo torsion. Hence the

Chern classes are assumed to be only rational instead of integral multiples of θ.
In the following we denote by ci(X) the Chern number and Ci(X) the Chern

class of a manifold X. We simply denote ci(M) by ci for our manifold M when
there is no danger of confusion.

Since the Betti numbers of a rational homology four space M satisfy b2i(M) =
b2i(P 4

C
) = 1 and b2i+1(M) = b2i+1(P 4

C
) = 0 for 0 6 i 6 3, we conclude from

Hodge decomposition of a compact Kähler manifold that the only non-vanishing
Hodge numbers are given by hp,p(M) = 1 for 0 6 p 6 4.

It follows from Hirzebruch’s Riemann-Roch Theorem that χ(M,Ωp) = χ(P 4
C
,Ωp)

for p = 0, 1, 2, which give rise to three identities among the Chern numbers. The
values p = 3 and 4 do not lead to new information. Equivalently we quote the
formula on page 145 of [10],

(2.1) c4(M) = c4(P
4
C) = 5

(2.2) c1c3(M) = c1c3(P
4
C) = 50

(2.3) (3c2
2 + 4c2c

2
1 − c4

1)(M) = (3c2
2 + 4c2c

2
1 − c4

1)(P
4
C) = 675.

As h2,0 is trivial, it follows that M is projective algebraic. We denote by θj

for j > 1 the generator of i∗H2j(M, Z)∩Hj,j(M) normalized so that the pairing
with the fundamental class of M of θj ∧ θn−j,

∫

M
θj ∧ θn−j, is positive. From

definition, there is a positive integer k such that θ2 = kθ2. From Poincaré Duality,
θ2
2 = θ4. Hence θ4 = k2θ4.
As hi,i = 1, we may write the i-th Chern classes as Ci = aiθ

i ∈ H i,i(M) ∩
i∗H2i(M, Z), where ai are rational numbers for 1 < i 6 4, and a1 is an integer.
The third equation above can then be written as

3a2
2k

2 + 4a2a
2
1k

2 − a4
1k

2 = 675.

We now narrow down the possibility of a1 and k from the above equation.
From the Chern number inequality which follows from the solution of Calabi
Conjecture in the case of negative scalar curvature by Aubin and Yau (cf. [15]),
we know that (2c2 − 4

5
c2
1) · θ2 > 0. Since all the relevant cohomology groups

i∗H2j(M, Z) ∩ Hj,j(M) are of dimension 1, it follows that c2c
2
1 >

2
5
c4
1 and c2

2 >
4
25

c4
1. Substituting to the equation above we conclude that

675 > 3 · (
4

25
+ 4 ·

2

5
− 1)c4

1 =
27

25
a4

1k
2.

Hence |a2
1|k 6 25. Since both a1 and k > are integers, |a1| can only take the

values of 1 and 5 and k can only take the values of 1, 5 or 25.
Solving a2k from the same equation, we obtain

a2k =
−2a2

1k ±
√

(7a4
1k

2 + 2025)

3
.
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As C2 is an integral class, a2k ∈ Z. With the earlier constraint on |a1| and
k, it is easy to check that the following are the only possibility for a2k to be an
integer,

Case (1) a2
1k = 25, or

Case (2) a2
1k = 15.

In case (1), a2k = 10 or −80/3. The latter possibility is ruled out again by the
Chern number inequality. Hence a2k = 10, and therefore (2c2 − 4

5
c2
1) · θ

2 = 0.
From the result of Yau mentioned earlier, the Chern number equality implies that
the universal covering of M is the complex hyperbolic space B4

C
equipped with

the Bergman metric unless M is just P 4
C

equipped with the Fubini-Study metric.
Hence the Chern numbers are given by those written in Theorem 1.2 (a)(i).

In case (2), it follows from a2
1k = 15 that a1 = 1 and k = 15. In such a case,

the Chern numbers of M are precisely the ones written in Theorem 1.2 a(ii).
Hence for a fake projective four space M with Chern numbers satisfying The-

orem 1.2 a(i), M is a quotient of B4
C

by a torsion free lattice in PU(4, 1). On
the other hand, if the Chern numbers are given by Theorem 1.2 (a)(ii), which
corresponds to Case (2) above, KM is the generator θ of the Neron-Severi group
modulo torsion as a1 = 1, and θ ∧ θ = 15θ2 does not generate H4(M, Z) modulo
torsion. Theorem 1.2 (b) follows.

This concludes the proof of Theorem 1.2.

3. Remarks on complex dimension 3

3.1. For completeness, we collect some results about fake projective spaces in
complex dimension three.

3.2. It is observed in Prasad-Yeung [14] from Hirzebruch’s Proportionality Prin-
ciple that there is no arithmetic fake projective space of odd complex dimension.
We observe that there is a slightly stronger result in complex dimension 3 in the
sense that there is no fake projective three-fold of general type. We give a brief
argument as follows.

From the same proof as in Theorem 1.2, we know that a generator θ of H1,1 as
a d-closed differential form is cohomologous to the Kähler form ω. From Hodge
decomposition b2 = h2,0+h1,1+h0,2, we conclude that H2(M, Q) has rank one and
is represented by θ. The vanishing of h2,0 once again shows that M is projective
algebraic.

With the assumption on Betti numbers and hence on Hodge numbers, it follows
from Hirzebruch’s Riemann-Roch Theorem for χ(Ωp), p = 1, 2 that c3(M) =
c3(P

3
C
) = 4 and c1c2(M) = c1c2(P

3
C
) = 24. As the second Betti number is 1,

the first Chern class satisfies C1(M) = aθ. The coefficient a cannot be 0, for
otherwise c1c2(M) = 0 instead of 24 mentioned earlier. The Chern number
inequality following the work of Aubin and Yau (cf. [15]) for negative c1 implies
that

(2c2(M) −
3

4
c2
1)θ > 0.
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Since M is of general type, we know that a < 0. This implies that 2c2c1(M) 6
3
4
c3
1 < 0, contradicting to c2c1(M) = 24.

3.3. In the opposite direction, there does exist an algebraic threefold which has
the same rational homology group as P 3

C
if one is not confined to threefolds of

general type. In fact, it is known that the hyperquadric Q2 ⊂ P 4
C

has the same
rational homology group as P 3

C
. This follows for example from Theorem 22.1.1

on page 160 of Hirzebruch [6]. There are other examples as mentioned in [8].
In general, the discussions of 3.2 implies that for a fake projective three space

M, the first Chern class satisfies C1(M) = aθ for some a > 0. It follows that a
fake projective three space has to be a Fano manifold.

3.4. If one imposes the stronger condition that the integral (co)homology ring of
M of dimension 3 is isomorphic as a ring to the corresponding one of P 3

C
, we can

conclude that M is biholomorphic to P 3
C
. This was proved in [8]. The problem

was reduced to results on classification of Fano threefolds. Here the ring structure
of the cohomology ring is used to exclude the hyperquadrics.

3.5. We summarize the above discussion as follows.

Theorem 3.1.

(a) There is no fake projective three space M of general type.

(b). There is no fake projective three space M with the same rational cohomology

ring as P 3
C
.

(c). Any fake projective threefold has to be Fano.

(d) A complete list of Fano fake projective threefolds is known and can be found

in [8]. Examples are given by hyperquadrics in P 4
C
.

3.6. As mentioned in the introduction, the classification of fake projective planes
and thus rational homology complex projective two spaces is complete following
the work of [13] and [2], see also [18].
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