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NOTE ON THE STOKES STRUCTURE OF FOURIER
TRANSFORM

TAKURO MOCHIZUKI

ABSTRACT. We study the Stokes structure of the Fourier transform of a mero-
morphic flat bundle on a projective line. We describe it in terms of the rapid
decay homology introduced by S. Bloch and H. Esnault.

1. INTRODUCTION

Let (V, V) be a meromorphic flat bundle on P!. Tt is interesting to study a D-
module Four(V) on P!, obtained as the Fourier transform of (V, V). S. Bloch—H.
Esnault [4] and R. Garcia Lépez [10] introduced the local Fourier transform of
D-modules, to describe the formal completion of Four(V) at oo in terms of the
formal completion of (V,V) at the poles. See also the work of D. Arinkin [1].
The explicit formula was proved by J. Fang [8] and C. Sabbah [19]. (See also the
work due to L. Fu [9] on the explicit formula for ¢-adic local Fourier transform,
and the previous influential work due to G. Laumon [12] and B. Malgrange [16].)

Then, it is natural to study the Stokes structure of Four(V') at co. We should
mention that Malgrange described it in his comprehensive work [16]. In this
paper, we would like to give another apparently different description in terms of
the homology theory introduced by Bloch-Esnault [5]. It would be desirable to
have several ways to understand such a basic object, and the method using the
Bloch-Esnault homology seems more elementary and direct in some aspects.

We should also mention that the argument in this paper is based on a method
in an unpublished manuscript by A. Beilinson-S. Bloch-P. Deligne-H. Esnault
[3]. Namely, we can investigate the asymptotic behaviour of periods by using
the steepest descent method. (Such an estimate of periods seems to have also
essentially appeared in [16].) And, we use the non-degeneracy of Vandermonde
matrices to deduce that some tuple of flat sections gives a frame compatible with
the Stokes filtration.

In this small note, we would like to add details on a construction of a family
of cycles to [3], i.e., we choose the paths for integration in more explicit ways,
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and indicate how to modify the cycles when the Stokes structure of (V, V) is non-
trivial, instead of using an observation due to C. Skiadas in [3] on the general
existence of a path along which the behaviour of a given harmonic function can
be controlled. It would make the Stokes structure of Four(V') more visible, at
least. In some concrete cases, we can take specific flat frames of Four(V) on
sectors around oo, which seems useful to understand its Stokes structure in an
explicit way.

As already suggested, it is our main purpose to understand the part of [3]
related with the Stokes structure. The following is in our mind. Let k and
K Dbe subfields of C. For simplicity, we assume that k is algebraically closed.
Let (V,V) be a meromorphic flat bundle on P!, defined over k. Then, Four(V)
is also defined over k. Assume that the local system associated to (V,V) is
equipped with a K-structure, compatible with the Stokes structure. Then, the
space T/)(Gl“ Sout(V)) of the multi-valued flat sections of Gr Four(V') is equipped
with a (K, k)-structure. We will observe that it is described in terms of the data
around the poles of (V, V). (See Corollary 5.11.) It seems a small refinement of a
result in [3], where the (K, k)-structure of the determinant line of ¢ (Gr Four(V))
is studied in relation with “e-factor”.

Let us give an outline of the paper. In Subsection 2.1 we recall basic facts
on meromorphic flat bundles on curves. In particular, we review the notions of
the Stokes filtration and the associated graded meromorphic flat bundle Gr(V').
Subsection 2.2 is devoted to a review of basic facts on Fourier transform and local
Fourier transform. We observe a property on the lattice of the Fourier transform
induced by a good lattice pair in Lemma 2.6 based on [8], which is useful for our
argument in Subsection 5.3, although not essential. In Subsection 2.3, we prepare
a lemma to study the asymptotic behaviour of a family of the pairings between
1-forms and paths, following [3], which will be used in Subsections 3.3 and 4.3.
In Subsection 2.4, after a brief description of homology theories due to Bloch-
Esnault [5], we explain some procedures to make a 1-chain for a meromorphic flat
bundle V' from a chain for Gr(V'). It will be used in Subsection 5.1. In Subsection
2.5, we recall that a flat section of Four(V)V is associated to a family of cycles
of the dual of V@ L(t7). (See Subsection 2.2 for the notation.) In Subsection
2.6, we recall that a (K, k)-structure of a meromorphic flat bundle V' induces a
(K, k)-structure on the space of the multi-valued flat sections of V.

In Subsections 3.1 and 4.1, for the functions F in (3.1) and (4.1), we give
concrete and elementary ways to choose paths I' such that (i) each I' contains a
critical point P of Re F, (ii) Re Fir has the maximum at P, and it rapidly decays
in moving away from P. In Subsections 3.2 and 4.2, we describe a construction
of cycles for the dual of V ® L(¢7) by using the perturbation of the above paths
I, where V is elementary in the sense that V' ~ Gr(V'). Subsections 3.3 and 4.3
are devoted to estimates for the pairings for the cycles and V-valued one forms.
As a result, we obtain a quite concrete description of the Stokes structure of the
Fourier transform of elementary meromorphic flat bundles. In Subsection 3.4,
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a construction of cycles and an estimate of pairings are recalled for the regular
singular case.

In Subsection 5.1, we explain the construction of cycles for the dual of V& L(t7)
from the cycles in Subsections 3.2 and 4.2, where V is a general meromorphic
flat bundle. Subsection 5.2 is devoted to estimates of the cycles with a V-valued
one forms. In Subsection 5.3, we give a description of the Stokes filtration of the
Fourier transform Four(V') in terms of the flat sections associated to the above
cycles (Theorem 5.6). Then, we observe that the study on the induced (K, k)-
structure on Gr(Four(V)) can be reduced to those on the Fourier transform of
the elementary meromorphic flat bundles associated to the poles of V' (Corollary
5.10).

2. PRELIMINARY

2.1. Meromorphic flat bundles on curves. We recall some basic facts on
meromorphic flat bundles on curves. See [3], [7], [16], [18], [21] and [17], for
example.

2.1.1. Formal meromorphic flat bundle. We implicitly use the bijection (C(( )/z™
C[z] =~ 2™ 'C[z~!]. Recall Hukuhara-Levelt- Turrittin theorem. Let (V,V) be a
formal meromorphic flat bundle on (C(( ), i.e., Visa C((#))-vector space of finite
rank equipped with a connection ViV — V ® Ql C(2)/C" There exists a positive
integer e with the following property:

e Let ¢ be an e-th root of z. Then, there exist a subset Irr(V) C C(¢)/C[<]
and a V-flat decomposition

(2.1) (V. V) @c) CO) = B (Va,Va),

aclrr(V)

such that Vq — dd are regular singular for any a € Irr(V), where § are
lifts of a to C((¢)).

If (17, @) itself has such a decomposition, it is called unramified. We call (2.1)
the Hukuhara-Levelt-Turrittin decomposition of (V, V) in this paper.

Let (‘7, %) be unramified. For a negative integer m, let Irr(V,m) denote the
image of Irr(V) via the natural map 7, : C((2))/C[z] — C((2))/2™"1C[z]. We
have the coarser decompositions:

(?’ﬁ) _ EB (f}b(m)’ﬁgm) ), V(m EB Va
belrr(V,m) Nm (a)=b
In the case ‘Irr(V)‘ > 1, we have the number my € Z.o determined by the
conditions |[Irr(V,mo — 1)| = 1 and |[Irr(V, mg)| > 1. We set dec(V) := —my.

For a given a € C((2)), we will often use the symbol L(a) to denote the line
bundle C((z)) e with the connection Ve = e - da.
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Let (V,V) be not necessarily unramified. Let Irr(V) denote the quotient of
Irr(V) by the action of the Galois group of the extension C((¢))/C((z). Let a
be a representative of an element of E(@) There exists the subfield K, of
C((¢) determined by the conditions (i) a € Kq/Kq N C[(], (i) g*a # a for
any g € Gal(K./C((2)) \ {1}. We take a lift @ of a to Ko Let gq denote

Spec K — SpecC((2)). Then, there exists a regular singular connection R, on
K, for each a € Trr(V) such that (V, V) ~ D aciir(v) da (L(E) ® Ra>. We set

(2.2) Qra(V, V) == qa*<L(E) ® Ra>.

2.1.2. Stokes structure. We set A = {z € C||z| < 1} and A* := A\ {0}.
The point 0 € A is often denoted by O. When we distinguish a variable such
as z, we use the symbol A, and A}. Let M(A,O) denote the space of mero-
morphic functions on A, whose poles are contained in {O}. Let H(A) be the
space of holomorphic functions on A. We implicitly use the natural bijection
M(A,0)/z™ H(A) ~ C((2)/z"C[z]. Any a € M(A,O) has the Laurent ex-
pansion a = Y _a;2/. For a non-zero a, let ord(a) be the minimum j such that
aj # 0. We formally set ord(0) := 0. For any a € M(A,0)/H(A), we set
ord(a) := min{ord(a),0}, where a is any lift of a to M(A,O).

Let © : A(O) — A be the real blow up of A at O. The fiber 7~1(0) is
naturally identified with S' = {e\/__w | 0 eR/ 27TZ}. In this paper, “sector” of
A* means a closed sector, i.e., a subset of the form {rem‘g | 0<r<mrgy Oy <
0 < 01} =: S[ro; 0o, 01] for some 1y > 0 and 6y < 6;. The number 01 — 6 is called
the angle of S. For a sector S in A*, its closure in 8(0) is denoted by S. The
iAntersection SN 7~1(0) is denoted by Z. The completion along Z is denoted by
Z.

For anon-zero a € M (A, Q)/H(A), we have a C™-function F, := |z|~ 4% Re(a)
on A(O), where @ is a lift of a to M(A, O). The set 7~ 1(0) N F;1(0) is indepen-
dent of the choice of a.

Let Z be a finite subset of M(A,O)/H(A), and let S = S[rg;6p,01] be a
sector in A*. For each distinct pair a; € Z (i = 1,2), we implicitly assume
that Z N (Fy,—a,) " 1(0) is contained in the interior of Z, regarded as a subset
of #=1(0). Recall that an order <g on Z is associated to S, namely a; <g as
for aj,a2 € 7, if Fy _q, > 0 on Z. It means that there exists 7y > 0 such that
—Re(a1(Q)) < —Re(az(Q)) for any @ € S[ri;6p,01]. For two sectors S’ C S,
a1 <g ay clearly implies a1 <g/ as, but the converse is not true in general.

Full Stokes filtration in the unramified case. Let (V,V) be a meromorphic flat
bundle on (A,O). It is called unramified, if the induced formal meromorphic
flat bundle (V, V)| 5 = (V,V)®0 C((2)) is unramified. The formal decomposition
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(2.1) for (V, V)| induces the decomposition:

~

(V V)‘ —1(0) @ W_l(vaava)
aclrr(V)

Let P be any point of 771(0). According to a classical asymptotic analysis (see
[23], for example), there exists a sector S such that (i) P is contained in the
interior of S, (ii) we have a flat decomposition

(2.3) T VV)s= P (Vas,Vas)

a€lrr(V)
satisfying V. WSz =T (T?a)@. Although such a splitting (2.3) is not unique, it is
easy to show that the flat subbundles

SV)ZEBVb,S

b<ga

are independent of the choice of (2.3). Thus, we obtain a filtration FS of V|§

indexed by the ordered set (Irr(V), <g), which is called the full Stokes filtration

of V‘g. If S C S, we have a compatibility ff/ = fga + .7?5 , which induces an

isomorphism Grf g ~ Grf “onS.

By the restriction, we obtain filtrations 5 (Vis) of (V,V)g for small sectors
S. The flat subbundle ,7?[;9 (V|s) is characterized by the following condition:

(A): Let vy,...,v, be a meromorphic frame of V. Let f be a flat section of

Vis. We have the expression f =} fiv;s. Weset f:=(fili=1,...,7).

Then, f is contained in ,7?[;9 (Vs) if and only if the following holds for some

C>0:
| exp(6)] = O(|217°)

Moreover, f is contained in ﬁﬁb(vs) if and only if | f exp(b)| = O (exp(—e|z|7?))
for some €, > 0.

The system of filtrations {.7? S } satisfies the above compatibility. Such a system
of filtrations is called a Stokes data. It is known that the meromorphic flat bundle
(V, V) on (A, O) can be reconstructed from a flat bundle (V, V)|a~ with the Stokes
data. (See [7], [15], [16] and [21]. See also Chapter 7 of [17].)

Remark 2.1. If the angle of S is smaller than 7/dec(V'), we have a splitting of
(V,V)s as in (2.3). See [23], for example. O

Stokes filtration in the level m. Let m be a negative integer. For a given decom-
position (2.3), we set

Vg = @ Vas, BTV = PV

77m( ) ¢ C<Sb
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Then, we obtain a filtration F (") 9 of V‘g by flat subbundles, which is independent
of the choice of a splitting (2.3). The flat subbundle ]-'c(lm) S(V‘g) is characterized
by fém)s(v‘g)lz = @bgsaw_l(f/b(m)). Since the order <g depends on S, we do
not have a global filtration. However, the system of filtrations {.7-" (m) S } satisfies
the above compatibility, and we obtain the associated graded bundle, denoted
by Gr(m)(V‘A*) on A*. Since it is equipped with an induced Stokes data, it is
naturally prolonged to a meromorphic flat bundle, denoted by Gr(m)(V). In the
case m = —1, Grl=(V) is denoted by Gr(V).

Pull back via a ramified covering. Let ¢ : (A;0') — (A,0) be a ramified
covering of order p. The pull back induces the bijection Irr(V) ~ Irr(¢*V).
For a small sector S C A*, we have the isomorphism of the Stokes filtrations
Flom)e™H(S) ~ ©*F(m) S We also have a natural isomorphism

©* Grl™(V, V) ~ GrP™ o*(V, V).

Ramified case. Let (V, V) be a meromorphic flat bundle on (A, O), which is not
necessarily unramified. Let ¢ : (A’,O") — (A, O) be a ramified covering such
that ¢*(V,V) is unramified. Taking Gr with respect to the full Stokes filtra-
tion, we obtain the graded bundle Gr(¢"V) = @ erpr(prv) Gral@™V). Let Irr(V)
denote the quotient of Irr(¢*V) by the action of the Galois group Gal(y). Let
q : Tir(¢*V) — Irr(V) be the projection. For each ¢ € Irr(V), the bundle
Daco1(9) Gra(p*V) is Gal(p)-equivariant. The descent is denoted by Gr(V).
We have the natural isomorphism Grc(V)‘ 6= Grc(V‘@), where the right hand is
asin (2.2). We set Gr(V) := @ceE(V) Gr (V). If (V,V) ~ Gr(V, V), we say that
(V,V) is elementary, by following [18].

Remark 2.2. We can regard Gr (V) as a meromorphic flat bundle on (P, {0, c0})
in a natural way, which is regular singular at oo. O

2.1.3. A condition. Let G be the Galois group of the extension of fields C((u))/C((t)),
where t = uP. Let M be a G-equivariant free CJu]-module with a meromorphic
connection V such that

e M is an unramifiedly good lattice of (M (xu), V), i.e., it has the Hukuhara-
Levelt-Turrittin decomposition (M,V) = @(Mq, V4) compatible with
the decomposition (2.1) for (M(xu),V), and V4 — da are logarithmic
with respect to M.

e There exist numbers t(a) € R such that the eigenvalues v of Res(Vy)
satisfy t(a) < Re(a) < t(a) + 1.

Let M’ be the k[t]-module obtained as the descent of M, ie., M is the G-
invariant part of M, which is equipped with an induced connection V.

Lemma 2.3. Let ¢/ be an endomorphism of (M', V') such that @tho is the
identity. Then, ' is the identity.



STOKES STRUCTURE OF FOURIER TRANSFORM 113

Proof. We have the induced endomorphism ¢ of (M,V). It is easy to observe
that ¢p,—¢ is the identity. By a standard argument, we obtain ¢ is the identity,
and hence ¢’ is also the identity. O

2.2. Fourier transform and local Fourier transform. We recall basic facts
on Fourier transform and local Fourier transform. See [1], [4], [8], [10], [16], [19]
and the references therein for more details.

2.2.1. Fourier transform. Let M be a C[t](0¢)-module. Recall that we have a
C[7](0;)-module Four(M), called the Fourier transform of M. We set Four(M) :=
M as a C-vector space, and the actions of 7 and 0, are given by 7m = —dym

and 0,m = tm, respectively. It is known to be isomorphic to the cokernel of
Ot +1

M ® C[r] = M ® CJ[r], where the C[r](0;)-module structure on M @ C[r] is
given by 0, (m@ 7)) =tmert +fm@ 7! and 7(m @ 7°) = m @ 71 The
Fourier transform has the sheaf theoretic version. Namely, for a D-module M
on P}, its Fourier transform Four(M) on Pl is defined by the sheaf-theoretic
version of the above procedure, which we briefly describe. (See [16] for example.)
Let m; be the projection of P} x P! onto the i-th component. We put D :=
({00} xPL)U(P{ x {oo}). Let L(¢7) be the meromorphic flat bundle Op1p1 (¥D) €
with the flat connection Ve = ed(t7). Then, Four(M) is given as follows:

Four(M) := mot (Tf M @ L(t1)) = Rmos <DRP%XM/M (TiM @ L(tr)) [1])

Here, my; denotes the push-forward of D-modules via 3, DRpi1,p1/p1 (TfM @

L(tr)) denotes the relative de Rham complex of mf M ® L(tr) over PL, and [1]
denotes the shift of degree.

2.2.2. Local Fourier transform. The local Fourier transforms F(9:0) and F(°:%0)
for D-modules were introduced in [4], which are functors from C((7"))-connections
to C((Z))-connections, where T' and Z are just formal variables. (See also [1] and
[10].)

Let (V,V) be a meromorphic flat bundle on P}. Let Sing(V, V) be the set of
poles of (V, V). For each ¢ € Sing(V, V) \ {oo}, we regard (V, V)F:?as a C(T))-
connection by the coordinate change T' =t — ¢. If oo € Sing(V, V), we regard
(V,V) as a C((T))-connection by the coordinate change T = t~!. We set

Z = 7~!. Then, we are given the following isomorphism:

o o) _ (0.0) __
Four(V) —, = F ((V,V)Ht:oo})@es (@V)\{f (V. V) 5= ) 2 L(c/2)
c€Sing(V, oo

[f=c0

Remark 2.4. Local Fourier transform F(°0) is also introduced in [4]. (]

2.2.3. Explicit stationary phase formula. Fu [9] proved an explicit formula to
describe the local Fourier transform of ¢-adic sheaves up to isomorphisms, which
is called the explicit stationary phase formula. (See also the influential works
by Laumon [12] and Malgrange [16].) Fang [8] and Sabbah [19] computed the
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explicit stationary phase formula for meromorphic flat bundles. Here, we follow
Sabbah’s description.

Any p € UC[U] gives a ramified covering SpecC(U)) — SpecC((T")) by
T = p(U). For any a € C((U)), let L(a) be a meromorphic flat line bundle on
SpecC((U)) given by L(a) = C(U)) e with Ve = eda. Let R be a C((U))-regular
connection. We obtain a C((T')-connection p,(L(a) ® R). Any C((T)-connection
can be obtained as the direct sum of such connections. (See [19] for more details
on ambiguity in the classification.)

The case of F®) If a # 0 in C((U))/C[U], we set

7O = LY g0y = aw) - 2 gy,

@ (U) /)"
~ n dU
R=R® L, Lp= <<C((U)), d—EF).
Here, n = —ordy(a). Then, according to [8] and [19], the local Fourier transform

F(0,00) <p* (L(a) ® R)) is isomorphic to f)fko) (L(ﬁ(o)) ® E), where f)fko) is the push-

forward Spec C((U)) — Spec C((Z)) given by Z = p(O(U). In the case a = 0, it is
easy to see F(O®)R ~ R for a regular singular C((T'))-connection R, as remarked
in [8] and [19].

The case of F(>®) Let p, a and R be as above. We set p := ordy(p) and
n = —ordy(a). Assume n > p. We set

PNU) = —%, AU == a(U) + plU) «(U), R=R® L,

Then, F() (p,(L(a) ® R)) ~ 5L (L(@>)) ® é) In the case n < p, we have
F©) (p(L(a) ® R)) = 0.

Remark 2.5. In [8] and [19], an explicit formula is given also for F(°:0). O

2.2.4. Good lattice pair. We recall the notion of good lattice pair for a mero-
morphic flat bundle on a complex curve. (See [6] and [4].) Let X be a smooth
complex curve. Let D be a finite subset of X. Let (V, V) be a meromorphic flat
bundle on (X, D), i.e., V is a locally free Ox(xD)-module of finite rank with a
connection V. Let V and W be lattices of V' such that (i) V ¢ W C V, (i)
V(V) Cwx(D)® W, (iii) the following morphism is a quasi-isomorphism:

(V Y. wx(D) ®W> — <V Y. ox(D) & V)

Such a pair (V, W) is called a good lattice pair. A similar notion for a meromor-
phic flat bundle on C((¢)) is also defined. We know a rather canonical construction
of such a pair given in Lemma 3.3 of [4], which we describe in the case X = A
and D = {O} for simplicity:
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e Let (V, V) be an unramified meromorphic flat bundle on (A, O). Let E be
the Deligne—MalAgrange lattice of V, i.e., we have the flat decomposition
(E, V)@ = P(F4, Vq) such that (i) V4 — da are logarithmic with respect
to Eq, (ii) any eigenvalues a of Res(Vy) satisfy 0 < Re(a) < 1. We set
V.= E. We put W= &b zord “Ea, and let W be the corresponding lattice
of V. Then, (V,W) is a good lattice pair.

e Let (V,V) be a meromorphic flat bundle on (A, O), which is not neces-
sarily unramified. Take a ramified covering ¢ : (A’;0") — (A, O) such
that ¢*(V,V) is unramified. Let (V',W’') be the good lattice pair for
©*(V, V) as above, which is Gal(p)-equivariant. The descent (V, W) is a
good lattice pair for (V, V).

The above is called the BDE-good lattice pair for (V, V) in this paper. Note that
(z_"V, z_"W) is also a good lattice pair for each n > 0.

2.2.5. The induced lattice of the local Fourier transform. Recall that the local
Fourier transform can be described in terms of any good lattice pair [4]. Moreover,
any good lattice pair induces a lattice of the local Fourier transform.

The case of F(0°) Let (V, V) be a C((T)-connection. Let (V, W) be a good lat-
tice pair for (V, V). Then, according to [4], the local Fourier transform F(0:°) (V)
is naturally isomorphic to

cok<zﬁ AT V(Z) — W(Z) dT/T).

We will often identify dT with 1. The action of 9z on F©) (V) is induced by
Oz(vZ% = —Tw Z*72 4 v Z~1. Tt is naturally equipped with the lattice

24)  FOUT Y W) = cok(V[[Z]] Zvidr

WIZ] dT/T) c FO) (),
which is preserved by the action of Z20;. We have the naturally defined map
T-'w — .7-"(0700)(‘7;1),)/\)). For any v € ‘7, we can choose a good lattice pair
(V, W) such that v is contained in T-'WW. Hence, we have an induced map ¢ :
V — FO2) (V). If {v € V| Vv =0} =0, then ¢ is an isomorphism of C-vector
spaces. We have the relations todr = —Z torand toT = —Z%0z 0. For a given
N, if L is a sufficiently large number, we have L(TLW) c zN .7:(0’00)(‘7; V,W),
which is obvious from the definition (2.4). See [4] for more details.

The case of F©). Let (V,V) be a C((T)-connection such that each direct
summand has slope > 1. Let (V, W) be a good lattice pair for (V, V). According
to [4], the local Fourier transform F(°%) (V) is naturally isomorphic to

Cok<Z§ —T24T : V(Z)) — W(Z)) dT/T).
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The action of dz is induced by dz(v Z¢) = —T~ 1w 2724 ¢v Z*~1. Tt is naturally
equipped with the lattice

Foo) ([ ), W) = cok(zﬁ — 77247 - V[Z] — W]Z] dT/T) C Flooma) (),

We have the naturally defined map TW — W dT /T given by w +—— w(—dT/T?).
We also have WdT /T — F>)(V;V,W). As in the case of F(>) we ob-
tain an induced map ¢ : V — F (‘X”OO)(‘A/), which is shown to be an isomor-
phism of C-vector spaces. We have the relations ¢ o (T2?0r) = Z~! o and
toT ' = —Z%297 0. For a given N, if L is a sufficiently large number, we
have L(TLW) czZN ,7-"(00700)(‘7; V, W), which is obvious from the definition. See
[4] for more details.

2.2.6. A property of the induced lattice. Let (V,V) be a C((T))-connection. Let
v, W) be the BDE-good lattice pair for (‘7, @) For any non-negative integer N,
we set YY) .= t=NVy and W) = t=NWy. Then, (17(N),W(N)) is also a good
lattice pair.

Lemma 2.6. F0:2) (V; Y W) gpd Feo00) (V: I W)Y are the descent
of lattices as in Subsection 2.1.3.

Proof. This is essentially contained in [8]. We give only an outline. See [8] for
details of the computation in the following argument, although there are small
minor changes foerur convenience. It is easy to observe that we have only to
consider the case V ~ p,(L(a) ® R), where p(u) = uP, a € v 'Clu"], and R is
a regular singular connection of rank one. So we set £ := C((u)) e equipped with
a connection

g — ), ag A0,

We may assume M < —Rea,, < M + 1/p for some M. We may also assume the
irreducibility, i.e., aj # 0 for some j such that j # 0 modulo p. Let V := CJu] e
and W := CJu] u="™ e. We have only to consider the lattice associated to (V,W).

udye = ep (—aou_" —aju”

The case of F(0>) If ¢ = 0, the claim is clear from the relation (Zdz) ot =
to(0rT). Hence, we have only to consider the case a # 0. For i = 1,...,p+n, we
set v; 1= L(u_ie), which give a frame of f(ovoo)(p*ﬁ;p*v,p*W). Let us consider
the extension of fields C((¢))/C((Z)), where (TP = Z. We set w; := (* Z~ 1 v; for
i=1,...,p+n. We have the following:

7 ) _ ; .
ZaZwi:< n ——> w; — ¢ Z aj ¢? Witn—j, (1<i<p)
prn P 0<j<n
) _ .
ZaZwi:<p+n—1> w; — (" wi—p, (p+1<i<p+n)

Let E be the lattice of C((¢)) @ F(©>)(p, L) generated by wi, . .., wy4n. Note that
f(o’oo)(p*ﬁ; p«V, px V) is the descent of E. Let us show that E is as in Subsection
2.1.3.
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Let us introduce some (n+ p)-square matrices. We indicate only the (possibly)
non-zero entries. Let J be given by J; ; = 1 in the case j = i+1. Let © be given by
Opri1 = an_i(" " fori=0,...,n. Let O be given by (Op)pin1 = ag. Let Cp be
given by (Cp);; = —in/p fori =1,...,p. Let C; be given by (C1);; =i — (p+n)
fori=1,...,p4+n. Weset I'=J+0 and 'y = J + ©y. We have the expansion
L=To+> T ¢?, where I'; are constant matrices.

Then, the action of (0 is expressed by the matrix A = —(p +n) ("™ +
(p + n)Co + Cy with respect to the frame w = (wy,...,Wptyn). Since I'y has
distinct eigenvalues, there exists a matrix G € GLj4,(C[¢]) such that GG
is diagonal. Then, the matrix G™'AG + G7'(0;G expresses the action of (I,
with respect to w G. Note that GT'AG + G~1¢9;G and G~'T"G have the same
polar parts. Then, by using a well-established argument in [13], we can show that
FE is an unramifiedly good lattice.

We obtain the irregular decomposition EI@ = ®b€h’r(§) Eb. Since we have

assumed the irreducibility, the action of Gal on Irr(V) is transitive, and hence
the eigenvalues of the residues are independent of b, which we denote by «.
By the above construction, we can observe that « depends on the coeflicients
a; continuously. Moreover, according to the explicit stationary phase formula
recalled in Subsection 2.2.3, « is determined by a, up to ambiguity of integers.
Hence, we can take v(b) such that t(b) < Re(a) < v(b) + 1 for any choice of a; as
above with M < Re(a,) < M 4 1/p. We can check it also by a direct calculation

of the trace of the connection form. Thus, we obtain the claim of Lemma 2.6 for
F(0,00)

The case of F(°>) . For any integer m, we put
Vi :=u" "C[u] e, Wy, = u” " "Clu] e.

We set v; := L(u‘i e). Then, v; (i =m+1,...,m+n—p) give a frame of the in-
duced lattice F(°0:%0) (17, Vins Wi ). Note that vy, is a section of F(00,00) (‘77 Vi, Win),

and we have v, z—g = 0 in ,7-"(00700)(‘7; Vs Wm)|z=0. Hence, we have the expres-
sion:

(2.5) U = Z Zaj(Z)vj, aj(Z) € C[Z]

Let us consider the extension C((¢))/C((Z)) given by (" P = Z. We set w; :=
¢* Z~1v;. We obtain the lattice 9,,, generated by w11, . . , Wytn—p in .7-"(00700)(‘7)®
C((¢)). From (2.5), we obtain that wy, € U,,, and hence U,,_1 C V,,. In partic-
ular, we have w; € U, for any j < m +n — p, which we will implicitly use in the
following argument.
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Because T20p (u_ie) =—ip~lu""Pe — (aou_i_"+p e+ au Pl o
anu”"Pe), we have the following relation:
1 i—n+p) " e
(izntp)c” =~ 3

W; = ——Wi—n4p —
ao app ‘= a0

wi_j

Hence, we have the relation between tuples of vectors

(Wit Witn) = (Wi, .., wign—1) A,

where A® are the n-square matrices such that A,(;)l are as follows:

) 7 Qp— n—
AN =1 (k=2,...,n) A,(C?n:—%{ B (k£ 1L,p+1)

Can" (i +p)"
ag a

_(np 1 .
S A% =0 (otherwise)
ap ap ’

A(i)

() _
Al,n - p+1,n

Because Z9zv; = —Z_1Ui+p, we have Z0zw; = —( 7" Wiyp + (—1 +i/(n —p)) w;.
Hence, we obtain the following relation

ZaZ(w—;D—l-lv s awn—p) = (w—p—l-lv s awn—p) (F - C_nA(_p+1) e A(_l) A(O))7

where T" is the diagonal matrix whose (j, j)-th entries are (j — n)/(n — p).

Let C be the n-square matrix such that Cj; = A,(;)l for (k,1) # (1,n) and

Cin = 0. Then, the polar part of I' — ¢ AP L AO) g equal to the polar
part of —(~"CP. There exists G € GL,(C[¢]) such that the following holds:

e G~1CG is the direct sum of p-square matrix U1 and (n—p)-square matrix
Uss, where Usys is diagonal. ‘
e For the expansion G = Z;‘io Gj (7, the 0-th term Gy is of the form

[ Gon O
GO - ;
Go21 Go2
where Go.11 is a p-square matrix.

We set (W_pi1,...,Wn—p):=(W_pt1,...,Wn—p) G. We can observe that wy, ...,
Wp—p give a frame of F () (V:1, Wy). We also have

ZaZ(wlv v aﬁ;n—p) = (ﬁ;l)' . awn—p) (A+ U22)7

where the entries of A are contained in C[(]. Then, we can conclude the claim
of Lemma 2.6 for F(°>°°) by using the argument in the case of F(:%), (]

2.3. Asymptotic behaviour of some integrals. We prepare a lemma to study
the asymptotic behaviour of a family of the pairings between 1-forms and paths,
following [3]. Let A, be a disc {z||z] < 1}. Let U be an open subset of C.
Let G(z,u) be a holomorphic function on A, x U. The restriction to {z} x U
is denoted by G.. We set Z = {(z,u) | 0uG(z,u) = 0}. We assume that (i)
Z is smooth, (ii) the naturally induced morphism Z — A, is an isomorphism.
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We obtain the section v : A, ~ Z C A, x U. We also assume that 02G(z,u) is
nowhere vanishing on Z.

Let v : A, x [—€,¢] — A, x U be a C*®-map over A, such that v(z,0) =
(z,v(2)). Let v, denote the restriction to {z} X [—¢,¢]. Assume the following on
7o0:

e The image of 79 is contained in {Re Go(u) > ReGo(v(0))}, and
Re Go(70(s)) = Re Go(v(0)) holds if and only if s = 0.
e 7,(0) satisfies Re[G{ (70(0)) 74(0)?] > 0.

We can take a holomorphic function w on A, x U such that w? = G(z,u) —
G (z, V(z)). We determine the signature of w by the condition that Rew o~y is
increasing around 0. For simplicity, we assume that (id,w) : A, x U — A, x C
is injective. The image is denoted by U. We set U, := U xa, {z}. Let ¥
denote the induced C*°-map A, x [—¢,€¢] — U, and 7, denote the induced map
{z} x [—€,¢] — U..

There exists r; > 0 such that the following holds for any |z| < 7.

e The image of 7, is contained in {Re w? > 0}, and Re(%(s)2) = 0 holds
if and only if s = 0.

e There exists €; > 0 such that (i) the restriction of Re7, to [—e1, €] is
a diffeomorphism into R, (ii) there exist 71 > 0 and #; > 0 such that

Re(%(s)z eﬁ%) > for any |s| > € and |¢| < 6;.

Let ¢ be a positive number. Let 65 > 0 be such that 8¢ < 6;. We put
S = {Te\/__19|7‘ < 71, |0] < 62}. We have Re(7.(s)*27¢) > n1 |2[~* for any
|s| > €1 and for any z € S.

Let f(z,u)du be a holomorphic section of ngU/s. Assume that |f(z,u)]| is

dominated by |z|V* (—log |2|)2 for some Ny, No € R. We consider the asymptotic
behaviour of the following pairings for z — 0 in S:

(2.6) F(2) ::/ e_zieG(z’“)f(z,u)du

Lemma 2.7. We have the following estimate:
(2.7)

ez*ZG(z,V(z)) F(Z) _ ( 2m

/
m)l Cf (e w(2) 2

= 0|21+ (~10g |2)) ™)

Here, the signature of (OEG(z,V(z)))l/z 1s determined by the condition

Re ((830(,2, v(z))) 1/2 7;(0)) > 0.



120 TAKURO MOCHIZUKI

In particular, if f ~ 2V (log 2)2, d.e., fz=M(log2)™™2 and f~%2" (log 2)™V? are
bounded on S x U, then we have

2

/
W)l 2f(2’,1/(z)) SU/2

F(Z) ~ e—z’ZG(z,V(z))(

Proof. We have only to use a standard argument. By the change of variables,
(2.6) is rewritten as follows:

e / e gz, w) dw = ¢ CED) F(2)

The contribution of {s | €1 < |s| < €} to H(z) can be dominated by e~ l=I7 2
for some 7, > 0. Let us consider the contribution of {|s| < e;1}. Let ay(z) =
Re(7.(%€1)). Let Li(z) be the segment connecting a+(z) and 7.(+e;). Then,
the contribution of {|s| < €} is the same as the sum of the integrals over L (z)
and [a_(2),a4(z)]. The contribution of L (z) can be dominated by e~ IA7'ms for
some 73 > 0.

Note that ‘ai(z) - ai(0)| < C'|z| for some C > 0. By a standard argument,
we obtain the uniform estimate

‘H(z) — g(z,O)ﬁzéﬂ‘ = O(\z[NlJrqlog ]zHN2).

—1/2
By using the relation g(z,0) = 2'/2 <8§G(z,u(z))> f(z,u(z)), we obtain
(2.7). O

2.4. Some operations for 1-chains. Let X be a compact complex curve with
a locally finite subset D, which may have a boundary. Bloch and Esnault [5]
introduced an appropriate homology theory H, (X ,D; (V, V)) for a meromorphic
flat bundle (V,;V) on (X, D). We are especially interested in the 1-homology
group. Roughly, it is made of 1-cycles of (X, D) equipped with rapid decay
flat sections, modulo the boundary of 2-chains equipped with rapid decay flat
sections. They showed that the naturally defined pairing

(2.8) HHr(X\D,(V,V)) @ H.(X,D;(VY,V)) — C

is perfect, if X is a compact Riemann surface. Here H7), denotes the algebraic
de Rham cohomology. (See [5] for the precise definition and more results.) Hien
[11] generalized their homology theory for meromorphic flat bundles on higher
dimensional varieties.

For simplicity, we will sometimes impose the following connectedness condition
. N
on 1-chains ) ;*; s; ® I';.

(Connected): Thereexist Ry, ..., Ry+1 € X such that (i) OT'; = {R;, Ri+1},
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2.4.1. Lift and descent for a ramified covering. Let 7 : (X', D") — (X, D) be a
ramified covering. We have the following standard operations for 1-chains with
values in meromorphic flat bundles on P} or P.. We mention them just for
reference in our later argument.

(Push-forward): Let (V’/, V') be a meromorphic flat bundle on (X', D). A
1-chain for (V’,V’) naturally induces a 1-chain for 7.(V', V') on (X, D).

(Descent): Let (V,V) be a meromorphic flat bundle on (X, D). A 1-chain
for 7*(V, V) on (X', D’) naturally induces a 1-chain for (V, V) on (X, D).

(Lift): Let > s; ® I'; be a connected 1-chain for (V,V) on (X, D). Take
xg € 1\ D. A choice of 7o € 7~ !(z0) determines the lift of 3" s; ® T; to
that for 7(V, V) on (X', D').

2.4.2. Lift with respect to Stokes filtration for meromorphic flat bundles on (P!,
{0,00}). We prepare some notation. For two points P,Q € C, let Seg(P, Q) de-
note the segment connecting P and Q. Let Ray (P, co) denote the ray connecting
P and oo, i.e., Ray(P,c0) := {tP | t> 1}. We also use the symbol Ray(0, P) to
denote Seg(0, P). For two points P, € C such that |P| = |Q] =: r, let Arc(P, Q)
denote the shorter arc connecting P and Q in the circle {|z| = r}, where we will
not consider the case P = —Q).

We introduce some operations for lifting of 1-chains with respect to Stokes
filtrations, which will be used in Subsection 5.1. Let (V,V) be a meromorphic
flat bundle on (P!, {0,00}) such that (i) unramified at 0, (ii) regular singular at
o0. Let £ be a meromorphic flat bundle on (P!, {0,00}) with rank £ = 1.

P1. Weput 7 := {fy < argu < 6; } for some 6; € R (i = 0,1) such that |1 —6| <
7/ dec(V). We can take a flat splitting (V, V)7 = Dectir(w)(Vo,7: Vo) of the
full Stokes filtration.

Let a € Irr(V). Let > s; @ I'; be a 1-chain for Grg(V) ® £ such that I'; ¢ 7
for any i. By taking the lift s; of s; to V7 ® £ via the splitting, we obtain a
1-chain Y 5 ®T; for V® L.

P2. Assume that we are given a connected 1-chain Zf\;l s; @I for Gr(()m) V)eL
such that I'; are contained in regions 7; = {GY') < arg(u) < Géi)}, on which we
have flat splittings V|7, = @belrr(v,m) Vb(’"%) of the Stokes filtrations in the level m.
Let s; be the lift of s; to VO(,%)®£ by the splitting. We set §; := s;—5;41 on T;N7T; 11,

which naturally induce flat sections of fgg)zﬂz“. We have R1,..., Ry € P!
such that OT'; = {R;, Ri+1}. We put T; := Ray[R;,0] (i = 2,...,N), which is
contained in 7; N 7;41. By taking appropriate orientation for 7;, we obtain a
1-chain ZZJ\LI S5 + ZZ]\LQ 5 @T; for V@ L.
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P3. We set n := dec(V, V). Assume that we have an element a € Irr(V, —n) of the
form a = au™". Let 6; (i = 1,2) satisfy (i) Re(a)(eV 1) = 0, (ii) 63 — 61 = 7/n,
(iii) we have Re(a)(eV =) > 0 for 0; < 6 < 6s.

Take a small § > 0 such that Re(by — by)(eV =) % 0 for any 6 with 0 <
|0—6;| < 0, where b, are distinct elements of Irr(V, —n). We set T} := {61 —6/2 <
arg(u) < 91} and Ty := {92 < arg(u) < 0 + 5/2}. Take Q; € T;. Let I';
(i = 1,2) be paths connecting 0 and @; in T;. Let I's be a path connecting @; in
{61 —6/2 < arg(u) < 02+ 6/2}.

91—% e 02 :924—%
bQu Is Q2

enTe elrze

Let s; (i = 1,2,3) be flat sections along I'; such that s; = s3 at @;. They give a
1-chain }, ;58 ® I for Gra_n)(V) ® L.

We set Tq := {0 — §/2 < arg(u) < 6y — 6/2} and T := {0 — 6 < arg(u) <
Oy + 9 } We may have flat splittings of the Stokes filtrations in the level —n:

(2.9) Vir= @ Vv’
belrr(V,—n)

Let 51 be the lift of s1 to Vjz; by the splitting (2.9) with i = 1. It induces
a flat section 53 of V along I's. We have the decomposition §3‘Q2 =) S3p
corresponding to the decomposition (2.9) with ¢ = 2. Note that s3, = 0 unless

—Re(b)(eV~1%2) < 0.
Let b = fu~" be such that — Re(b)(eY~1%2) < 0. Take P, € {0 < |arg(u) —
02| < 6} such that —Re(b)(P;) < 0. Let I'y be the union of the segments

Seg(Pp, Q2) and Ray(0, P,) with the appropriate orientation. Let s be the flat
section of V" along I'y induced by s3 . Then, we obtain the following 1-chain for

V&L
Z@@R%—Z@,a@ﬂ
i=1,3

We can clearly exchange the role of 61 and 6-.

P4. We restrict ourselves to the case £L = L(—u"?/z) for some z € C\ {0}, i.e.,
L = Op1(+{0, 00}) e with a connection Ve = ed(—u"?/z). We set n := dec(V, V).
Assume p < n. Assume that we have an element a € Irr(V,—n) of the form

a=au " witha #0. Let 3 ,_; 53 5;®I; be a 1-chain for Grg_n)(V)®L(—u_p/z)
of the following form:

'y = Ray (0, 70 e\/__wl) Iy = Ray(O, 70 e\/__h%) I's = Arc(ro e\/__wl, 70 e\/__wQ)
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T L TE

! 01 ! I's Y

—C 1 =10
Ty [ : T

We assume Re (e_p\/__192 /z) <0.
For j = 1,2, we take sectors 7U) = 5[27‘0;09),99)] D I'; with the following
property:
e We have a flat splitting of the full Stokes filtration of WT(l):

(2.10) Vo = @ Verw
belrr(V)

. 052) - 0%2) is sufficiently close to m/n, and we have a flat splitting of the
Stokes filtration in the level —n:

(2.11) Vo = 5(7_772)>
belrr(V,—n)

Moreover, we have Re(e ?V~=1/2) < 0 for any 0 €]6§2)7 052) [= {952) <0<
0},

Let 51 be the lift of s1 to V, 7) on T by the splitting (2.10). It induces a flat
section s3 of V along I's. We obtain the decomposition corresponding to (2.11):

Sgpoev 102 = D 53
belrr(V,—n)

Let 52,9 be the flat section along Py := I'; induced by 53 ¢. For each non-zero irreg-
ular value b € Irr(V, —n), we take ¢(b) 6]952), 9%2)[ such that Re( e‘”ﬁw(b)) <
0, where S u™" is the top term of b. Let P, be the union of the arc Arc (7‘0 e\/__w?,
0 e\/__l‘p(b)) and the ray Ray (7‘0 e\/__lﬂp(b), 0) with the appropriate orientation.
Let sy be the flat section of V' along Py induced by s3p. Then, we obtain a
family of cycles:

5T+ Y 5He@Py+3530Ts
belrr(V,—n)

2.4.3. Translation. For z € C, let L(—t/z) denote a line bundle Op: (xo0) e with
a connection Ve = ed(—t/z). For ¢ € C, let ¢. : PL — P! be given by
¢c(t) :=t —c. We have a flat isomorphism ¢} L(—t/z) ~ L(—t/z) induced by the
correspondence ¢} (exp(t/z) e) «— exp(t/z) e of flat sections.

Let (V, V) be a meromorphic flat bundle on P!. When we are given a 1-chain C
for (V,V)® L(—t/z), it naturally induces a 1-chain ¢}C for ¢%(V,V)® L(—t/z).
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2.5. Flat family of 1-cycles. We recall how to use the duality (2.8) in construc-
tion of flat sections of meromorphic flat bundles obtained as the push-forward.
We restrict ourselves to the case of Fourier transform. We use the notation in
Subsection 2.2.1. The dual of L(t7) is denoted by L(—t7).

Let (V,V) be a meromorphic flat bundle on P}. Let H be the pole of V. For
simplicity, we assume oo € H. For each h € H, we take a frame vj, = (v ;) of V
around h.

Let U C C, be an open subset. Let I'; : [0,1] x U — P} x U (i = 1,...,N)
be C*°-embeddings such that (i) m2 o I'; are equal to the projection onto U (ii)
Fi_l(H) is the union of some connected components of ({0} U{1}) x U, i.e., 0,
{0} xU, {1} x U or ({0} U{1}) x U. The restrictions of I'; to [0,1] x {7} (7 € U)
are denoted by T’y .

Let s; (i = 1,...,N) be flat sections of l“i_l(Vv ® L(—t7)) on ([0,1] x U) \
r Z-_l(H ) such that s; are of rapid decay around Fi_l(H ). Namely, if h is contained
in the image of I';, for the expression s; = Zajfi_lvhJ around Fi_l(h), any
derivative of a; are 0 at I'; !(h). The restrictions of s; to [0,1] x {7} \ T'; *(H)
are denoted by s;,. We assume that P := ) s, ® I'; (7 € U) are 1-cycles
with rapid decay flat sections of (VV,V),_—1 (r)- According to the duality (2.8),

|7"2
P- gives an element of Four(V') .
Lemma 2.8. The family P, (7 € U) gives a flat section of Four(V)" on U.

Proof. It can be shown by a standard argument. We give only an indication.
We set V := V@ L(tT). The induced flat connection on V is denoted by V.
Let f be a flat section of Four(V);;. We have a section f of Q]PI pLp1 © V on

P} x U, which induces f. The restrictions of f to P} x {7} (7 € U) are denoted

by fr. We have only to show that the pairing < frs PT> is constant with respect

to 7. Let V(9;) denote the endomorphism of Qélxpl /PL ® V induced by V. Let
t T T

diml denote the differential of QED%XM /P1 V. By the flatness of f, there exists

a section g of V such that 6(87) [ =dy ,9- Then, we have

87—<f7—, PT> = <%(8T)fa PT> = <d‘7’r0197—7 PT> = 0.
Thus, we obtain Lemma 2.8. O

2.6. (K, k)-structure. Let K and k be subfields of C. For simplicity, we assume
that k is algebraically closed. Let V' be a C-vector space. Let Vi be a K-vector
space with an isomorphism Fj : Vk ®x C ~ V', and let V}, be a k-vector space
with an isomorphism Fj : V., ®, C ~ V. Such a tuple ((VK,FK),(Vk,Fk)) is
called a (K, k)-structure of V. This kind of structure has been studied in Hodge
theory. See [3], for example.

Let (V,V) be a meromorphic flat bundle on (A, O). Let Loc(V,V) be the
local system on A% associated to (V, V). Assume that we are given the following:
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e A connection (Vi, Vi) on k((z)) with an isomorphism

(ViV)16 = (Vi, Vi) @iz C((2)-

e A K-structure o~f Loc(V,V) compatible with the Stokes structure, i.e.,
the subbundles F2 (Vis) are defined over K for any small sector S C AJ.

Such a structure is called (K, k)-structure of (V, V).

Let 1(Gr(V,V)) be the space of the multi-valued flat sections of Gr(V,V),
which is naturally equipped with the induced K-structure. Let us recall that a
k-structure of w(Gr(V, V)) is also naturally induced, i.e., a (K,k)-structure is
induced on ¢ (Gr(V, V)). (Note that the coordinate z is fixed in this situation.)

Unramified elementary case. Let us consider the case that V' := V — da is reg-
ular singular for some a € z7'C[z7!]. Note a € z7'k[z7!] in this situation.
We take a splitting 7 : C/Z — C of the projection C — C/Z. We have
the uniquely determined lattice E C V such that (i) V' is logarithmic with re-
spect to E, (ii) the eigenvalues o of Res(V’) are contained in 7(C/Z). Note
that E@ is compatible with the k-structure of V‘é. In particular, the C-vector
space E|p has the induced k-structure. Let S denote the set of eigenvalues of
Res(V’). For any multivalued flat section f of (V,V), we have the expansion
f=exp(=a) > csd 502 (log 2)7 s4.j, where s, ; are holomorphic sections of
E, and the branch of log z is the natural one. Then, we obtain the isomorphism
Py Y(V,V) >~ Ejp given by ®v(f) = >_, sa0/0- It induces a k-structure on
Y(V, V). It is easy to see that the induced k-structure is independent of the choice
of 7. However, in general, it depends on the choice of a coordinate z in taking
a. If V is regular singular, it is standard that ®y depends only on the tangent
vector 9,)0.

For a ramified covering ¢ : (A¢, O) — (A, O) given by ¢(¢) = (P, we have a
naturally induced (K, k)-structure on ¢*(V, V). It is easy to see that the natural
isomorphism ¢ (¢*(V, V)) =~ ¢(V, V) preserves the induced (K, k)-structures.

General case. A k-structure of Gr(V, V)‘ 5 is induced by the isomorphism

Gr(V, V)‘ o=V, V)‘ 5- Take the pull back via an appropriate ramified covering
¢ (A O) — (A,0) given by ¢(¢) = (P such that ¢*(V,V) is unramified,
and apply the above procedure, then we obtain the k-structure of T/)(GT(V, V)) ~
¢(<p* Gr(V, V)) It is independent of the choice of p. If we have |ord¢al < p
for any a € Irr(V) € C((¢)/C[¢], then the induced k-structure depends only
on the tangent vector d,0. Note that we do not have the term 2% in a series
Zm/p >0 a2l if m < p.



126 TAKURO MOCHIZUKI

3. ELEMENTARY CASES AROUND 0

For a € u'C[u™"], let £ be a meromorphic flat line bundle Op1 (+{0,00}) e
with Ve = eda. Let R be a meromorphic flat bundle on (PL, {0, 00}) with regular
singularity. Let ¢ : P, — P} be given by q(u) = u?. We set V := ¢,(L ® R).

We construct some families of cycles with values in (V ® L(t/ z))v, where z
varies in a sector S around co € PL namely, flat sections of Sout(V)‘\g. (See
Subsection 2.5 for the relation between such families and flat sections.) The
essential idea is given in [3]. We indicate a concrete way to choose paths, which
seems useful for understanding of the Stokes structure of Four(V) at co. In the
following, co, denotes oo € PL.

3.1. Paths with nice some property. We give a preliminary for a construction
of cycles with values in meromorphic flat bundles. Let n and p be positive integers.
For k € R, let F' be the holomorphic function on C \ {0} given as follows:
n »
(3.1) F(v) = eV (U— + v—>
n p
Because F'(v) = e\ﬁ”“(—v_"—1 + vP~1), we have F'(v) = 0 if and only if
2m
V= ex s —1>:: n,p, m meEZ
p(g,™ 1) = lupm] (mez)
We set [n,p,m] := 2mmw /(n + p), for which [n,p,m] = exp(v/—1[n, p,m]).

Take 6 > 0. For each [n,p, m], we will take a continuous path I, : [0,1] — C
with the following property. Because a parametrization is not significant here,
we will not distinguish I';,, and its image.

e I',,, contains [n,p, m], the end points of I, are contained in {0, 00}, and
I',, is the union of some arcs and segments.

e The restriction Re Fjr,, has the unique maximum, which is attained at
[n,p,m].

e There exist € > 0 and 1 > 0 such that

Re F(v) < Re F([n,p,m]) —n(1+ v "| + |vP])

for any v € I'y, \ By, p,m) (€), where By, , 1(€) denotes an e-neighbourhood
of [n,p, m].

e I, is contained in {v # 0] 6,,(x) < arg(v) < O (k) +7/n + 8} for some
Om (k) € R.

We will explain how to choose I';,, in Subsection 3.1.2. A choice of the orien-
tation of I, will be indicated in Subsection 3.1.4.

3.1.1. Preliminary. For the polar coordinate v = re\/__w, we have

“n »
Re F(r,0) = 7‘7 cos(nf — k) + % cos(pb + k).
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If cos(pfM) + k) cos(nM) — k) < 0 for some OV, the function Re F(r,0(1) is
monotonous with respect to r.

Let us look at the critical points of the function Re F},_;. Because 9y Re F/(1,0) =
—sin(nf — k) —sin(pf + k), we have dg Re F(1,0) = 0 if and only if either one of
the following holds for some m, q € Z:

2mm
2 —k=—(pf+K)+2 —
(3:2) nt — r (pf + k) mm <= ntp [n,p,m]
(3.3) nd—k=p0+k+(2¢+1)mr <0 = 2r +(2q+1>”

n—p n—p
(The second case can happen only in the case n # p.)
At g = 2mm/(n + p) = [n,p, m], we have cos(nfy — k) = cos(pfy + ) due to
(3.2), and
9 Re F(1,600) = —pnRe F(1,6p).
Hence, Re F(1,6p) is maximal (resp. minimal) of the function Re Fj,_, if Re F'(1,6p) >
0 (resp. Re F(1,6y) < 0). We also have
r~™ P
Re F(r,6p) = <— + —> cos(pbp + k).
n p
If n # p, we have cos(—nb; + k) = — cos(pbr + k) at 1 = (264 (2¢+1)7) /(n—
p). Hence, we have cos(nf; — k)cos(pfy + k) < 0. Because 93 Re F(1,6,) =
pnRe F(1,601), Re F'(1,0;) is a maximal (resp. minimal) of the function Re Fj,_,
if Re F((1,01) < 0 (resp. Re F((1,601) > 0).

Let 6y and 6; be as above. We have 6y = 6; only if cos(pfy+ ) = 0 is satisfied.
More precisely, we have the following lemma on the degenerated cases.
Lemma 3.1. Let m be an integer. We have the following equivalence:
2mm 2¢g+1 2K
= i +
n—+p n—p n—7p

2
(3.4) (3¢ € Z) <= cos <pnT_7T + /{> =0

p

Proof. Assume the left hand side holds. Then, the following holds:
2mpm ( 1 >
+r=mr—\|q+ |7
n+p 2
It implies the right hand side. The converse can also be shown easily. O

We prepare a lemma to use in Subsection 3.1.2 (the case cos(pfy + k) > 0).
We remark that we have —nfy = —(2m + 1)w + pb for 2 = (2m + 1)7/(n + p),
and hence cos(pfy + k) cos(nfy — k) < 0.

Lemma 3.2. Assume cos(py+r) # 0 for 0y = [n,p,m]. We also assume n # p.
We take q € Z such that

2g — 1 2 2 1 2
gy w G DTH2E g Gat DT H 2

n—p n—p

=:04.
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There exist p; (i = 1,2) such that (1) 03 < 1 < Oy < p2 < b4, (ii) cos(pp; +
k) cos(np; — k) = 0.

Proof. If cos(pfs + k) cos(nfs — k) = 0 holds, 63 is of the form [n, p, m’] for some
m’ < m. Hence, we have 05 := (2m — 1)7/(n + p) > 03. If cos(pbs + k) = 0, we
may take @1 = 05. If cos(pfs + k) # 0, we can take the desired ; in the interval
105, 60[. We can take @9 with a similar consideration. O

3.1.2. Paths. We describe how to take a path I',,. Let 69 = [n,p,m]. We use
the notation in Subsection 2.4. For a,b € R, let |a, b] := {t eR ‘ a<t< b}. We
use the symbols ]a, b, [a,b] in similar meanings. In the following pictures, the
horizontal central line describes a part of the circle {r = 1}. The upper and lower
spaces correspond to {r > 1} and {r < 1}, respectively. A box in the upper space
indicates an arc on which cos(pf + ) < 0. A box in the lower space indicates an
arc on which cos(nf — ) < 0.

r>1

®1 ®3
©2 ©a

r=1

r<l1

For example, in the above picture, we have the following:
cos(pp1 + k) = cos(pps + k) = cos(nps — k) = cos(nps — k) =0
cos(pd + k) <0 (p1 <0 < p3) cos(nf — k) <0 (p2 <0< py)

The case cos(pfo+k) < 0. Let Iy, be the ray connecting 0 and oo through eV~Tbo,
o

[ 16 ]
L r ]

0

The case cos(pfy + k) > 0. We consider the following sets:

SJ(FI) :={0> 0 ‘ cos(pf+r) = O},Sf) :={0> 0 ‘ cos(nf—k) =0}, S, ::SJ(FI)USf)
sW.= {6 < 0| cos(pf+r) = 0},5(_2) :={0 < 6| cos(nb—k) =0},5_ =sWus?
We can take 64 > minS; and §_ < max S_ satisfying the following conditions:

e cos(pf+ k) cos(nf —k) # 0 on the intervals | min Sy, 64 ] and [f_, max S_].

e 0, —0_<m/n+o0.

e Re F(1,0) is monotonous on the intervals [#_, 6] and [f,0+]. (Recall
Lemma 3.2.)

Let z = +. At least one of cos(pf, + k) or cos(nf, — k) is negative. We set

Ao e Ray[0, eV~ 10=] (cos(nb, — k) < 0)
be Ray[eV~10 o] (cos(nby — k) > 0)

T
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Then, let I, be the union of Ay, Ag_ and the arc Arc(e\/__w* , e\/__19+). See the
following pictures.

ollo gl Lod 1o [ o |
] ] L

0_ 00 0.
| T |

The following elementary lemma describes when the degenerate case happens.

Lemma 3.3. If min SJ(FI) = min Sf), it is equal to (2m+1)7 /(n+p). Similarly,
if min S = min S(_2), it is equal to (2m — 1)w/(n + p). Such degeneration may
happen when cos (p(2q’ +)n/(n+p)+ /i) = 0 holds for some integer ¢ .

Proof. We indicate only an outline. We put 6; := min 84(_1) = min 84(_2). As in the
proof of Lemma 3.2, we can easily observe that 6; < (2m + 1)7/(n + p). Because
cos(pb1 + k) = cos(nby — k) = 0, we obtain ph; + k = £(nb; — k) + ¢r for some
integer £. By the argument in the proof of Lemma 3.2, we can show that 6; is not
of the form ((2¢ + 1)m + 2x) /(n — p). By a similar argument, we can show that
01 is not of the form 2¢r/(n + p). If 6; is of the form (2¢m + 2k) /(n — p), it is
casy to observe that cos(pf; + x) = 0 implies 0y is of the form (2¢' + 1)7/(n+p)
for some integer ¢’, similarly to Lemma 3.1. Hence, we can conclude that 6; =
2m+1)7/(n+p). a

The case cos(pfy+ k) = 0. We set ¢ := 0 — 0y. Because —nby = —2mm + pby, we
have cos(—nfy — ny + k) = cos(pby — ny + k), and hence

“n »
Re F(r,0) = TT cos(pby — ny + k) + % cos(pbo + pp + K).

If || is sufficiently small, cos(pfy — ny + k) and cos(pfy + py + k) have the
opposite signatures. Hence, if we take ¢ such that cos(pfy + py + k) > 0 (resp.
cos(pby + pp + k) < 0), Re F(r,00 + ¢) is increasing (resp. decreasing) with
respect to r.

We take A and B in a neighbourhood of e¥~1% such that (i) A € {r < 1} and

B e {r > 1}, (ii) the segment Seg[A, B] is a steepest descent for Re F at eV~10,
Then, let I';;, be the union of Seg[A, B], Ray(0, A) and Ray(B, c0).

B| g, 0ol) B
A A
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3.1.3. Perturbation. We fixa; € C (j=1,...,n—1). We set

—n n—1

- _ -1k v vP —jm—j
F(¢,v)=e <T+E>+j§::lajv =i

We fix a sufficiently small ¢y > 0. There exists g > 0 with the following property:

(A1): Recall that [n,p,m] is a solution of 9,F(v) = 0. If |{| < dg, the €o-
neighbourhood of [n, p,m| contains one solution of O F (¢,v) = 0, which
is denoted by v, (().

(A2): There exist a relatively compact subset U C C} and C; > 0 (1 = 1, 2)
such that

Re(CT'F(C,v)) < =Crl¢™ (Jo| 7" + [vl?)
for any ¢ with 0 < |{| < dp and ‘arg(()! < C9, and for any v € I';,, \ U.

We can use the path I',, to construct a family of cycles later. But, for the
estimate of the asymptotic behaviour of the pairings, we take a family of paths
T, Ac(61) x [0,1] — A¢(61) x C, satisfying (B1-3) below for some d; < do,
by slightly modifying I';,. The restriction fmICX[OJ} is denoted by fm,(- Since a
parametrization is not significant, we will not distinguish fm,g and its image.

(B1): fmg is the union of arcs and segments for each ¢ € A¢(d1), and

Vm(() € Fm,(- _

(B2): There exist a neighbourhood U of [n,p,m| such that we can apply
the result in Subsection 2.3 to the function F and the family of the paths
fm on A¢(51) X (7

(B3): There exist C; > 0 (i = 1,2) such that

Re(CTF(¢,v)) < =Cr ¢ ([o] ™ + [o]?) + Re(¢*F (¢, vm(©)))

for any ¢ with 0 < |¢| < 01 and |arg(¢)] < Cs, and for any v € fm7g \ U.
We modify T, as follows. Let 0y := [n,p, m].

The case cos(pfy + k) < 0. Let fm,C be the ray connecting 0 and oo through

[n, p, m]u vm (C)

|

The case cos(pby + k) > 0. Let 710(¢) := |[vm(¢)]. Take a small € > 0. The path
Iy, ¢ is the union of the following:

e The restriction of I'y, to {u | |arg(u) — 6o| > €}
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e The segments

Seg [e\/__l(eo_eo) ,710(¢) 6\/__1(90_60)] ,  Seg [e\/__1(90+50) (€) e\/—_1(90+50)] ‘

»T'10
e The arc Arc(r10(¢) eV=10=<0) 11(¢) e\/jl(‘gﬂ*‘fo)).

| vm(C)

[, p.m] |

The case cos(pfy + k) = 0. We perturb A and B as follows:
AQ) = A+ (vm(Q) = [n.p,m]),  B(CQ) = B+ (vm(C) = [n,p,m])
Then, fm,g is the union of the segments Seg[B((), o], Seg[B((), A(¢)] and Seg[A((), 0].

[, p, m»
( Vi (C)

3.1.4. Orientation. For each [n,p, m], we may choose an orientation of the path
I';, by the following rule. If I',, is a ray connecting 0 and oo, the orientation
is from 0 to oo. Otherwise, '), contains an arc or a segment around [n,p,m],
which can be parameterized by 6, and the orientation of I',, is given by the
parametrization.

Since I',,, are obtained as small perturbation of I';,, the orientations of T,, are
also induced.
I I

I b

3.2. Cycles of elementary meromorphic flat bundle.

3.2.1. Construction. We set a := au™" + Z?z_ll aju™ for some a,a; € C. We
assume a # 0. Let £ be a meromorphic flat line bundle Op:i (+{0, 00}) e with
Ve = eda. Let R be a meromorphic flat bundle on (PL,{0,00}) with regular
singularity. Let ¢ : P, — P} be given by q(u) = uP. We set V := ¢,(L ® R).

Let z = 77! be the coordinate of P! around co,. We would like to construct
a tuple of flat sections of Four(V)" on small sectors in A%. We take a ramified
covering ¢¢ : A; — A, given by z = ("*P. Let 7 : KC(O) — A¢ be the real
blow up. We consider a sector S in A around eV=19 e 7=1(0).
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We fix an (n + p)-th root BeV=I of o, where 8 > 0 and i € R. We take an
isomorphism ® : As x C, ~ A x C, given by

V= <£> ) ¢lpt eV,

n

We set (1 = {e_\/jlg. Then, we have

n—1

(3.5) au "+ Z Ozju_j + v = (3P p/ (n+p) pyp/ (ntp) " x oV 1(pn—n0)
z
j=1
-n D n—1 ' ' ‘ ' ' '
UT N Z aj pI=/ (0 Fp) = (p3) [ (np) eV —1p+i)ptv—=1(n—75)© ¢y
j=1

We obtain the paths I';,, and fm,C in C,, by applying the construction in Subsec-
tion 3.1.2, with

k= pu —nO, F = ¢V~ 1en—n0) (v™"/n+ 0P /p),

n

ﬁ = e\/—_l(pu—n@) <£ + vP

n p
n—1
+3 g pm ) =) ) T T8 (i~
7=1

By the correspondence ®, we obtain the families of paths I';;, 9 4(¢) and fm@,a(g )
in C,. They are equipped with the orientations by the rule in Subsection 3.1.4.
Let V0.0 : S — S x C,, denote the section corresponding to vy, : S — S x C,,.

If § is sufficiently small, there exists #; € R and § > 0 such that the paths
I'me.a(¢) and fm,@ﬁ(ﬁ) (¢ € 8) are contained in a region 7,, @ of the form
{6, <arg(u) <6, +n/n+6} in C;.

Let s be a flat section of (C®R)Y on Ty, 0 4. It induces a flat section exp(uf/z) s
of (£®R)V ®@L(—uP/z) on T, @, We obtain the families of cycles exp(uP/z) s®
fm,@ﬁ(ﬁ) for (£ ® R)v ® L(—uP/z). By the push-forward we obtain families
of cycles with values in VV ® L(—¢/z), which are denoted by A, o 4(s;¢). Let
Em,0,a(s) denote the induced flat section of Four(V)Y on S. (See Subsection 2.5
for the flat section induced by a family of cycles.)

Remark 3.4. Although fm@,a(C) will be useful for the estimate of pairings, we
can use I'y, @ q(C) for construction of =, g afs). O

3.2.2. Change of flat sections for variation of ©. Let s be a flat section of V'V on
Tm,0,q- Let us describe how the sections =,, g q(s) change for variation of ©. We
only state the formulas, which can be checked easily. We set g := pu —nOq and
0o = [n,p,m]. Let ¢ > 0 be sufficiently small, and we set ki = py — nOg £ ne.
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We use the symbol I',,,(k+) denote the path I, in Subsection 3.1 to indicate the
dependence on K.

First let us describe the case n # p. In the case cos(pfy + ko) = 0 and
sin(pfy + ko) = —1, we have

Em,@g—s,a(s) = _Em,@o-i-e,a(s)
See the following picture.
T (ky) (k)
Yyl o 1
0
Y

In the case cos(pbly + ko) = 0 and sin(pfy + ko) = 1, we have
Em,@o—@a(s) = Em@o-‘rﬁ,a(s)

1 Fm (H+) 4 F”” (H*)

I 4

In the case cos (p(2m+1)7r/(n+p)+ﬁo) = 0 and sin <p(2m+1)7r/(n+p)+mo> =
1, we have
Em—i-l,@o—E,a(S/) = Em+1,@o+6,a(3/)
Em,00—ca(8) = Em,00+e,a(8) + Emt1,00+6,a(s)
Here, s is the flat section on 7,41 @,,« Daturally obtained as the parallel trans-
form of s.

1 1 Ferl(l‘er) 1 F77L+1(,‘{7)

Fm(ﬁ:) ,—

>
| ~

P (k+) |

T

Y

In the case cos (p(2m+ 1)7T/(7”L—|—p)—|—/€0) = 0 and sin <p(2m+ 1)7T/(7”L—|—p)—|—/€0> =
—1, we have

Em,00—ea(8) = Em,0p+e.a(s)
Em+1,®o—e,a(3/) = Em+1,@o+e,a(3/) + Em,®o+e,a(3)

M—l Fm+1(/{+) Fm(l{i) - | Fm+1(l‘if)

Y 8-

“|= > 74 &

Y

Let us describe the case n = p. In the case cos(pfp+ro) = 0 and sin(nby+rg) =
—1, we have

Em@o—ﬁ,a(s) = _Em,90+6,a(8)
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In the case cos(py + ko) = 0 and sin(nby + ko) = 1, we have

Em,00-ca(5) = Em,00+c,a(s)
In the case kK = £7/2 modulo 27, and cos(nfy + k) > 0, we have

(m—l)) (m—l—l))

Em,@g—e,a(s) = Em,®o+e,a(3) + Em—1,®o+e,a(3 + Em+1,®o+e,a(3

Here, s\9) be the flat sections on 7},0,,a naturally obtained as the parallel transport
of s.

A A A Fm+1(l€+)
[ 1 Tl [
| S LT
Pmo1(k4)
A A Fm+l(l‘f7)
1)
_ ] T L
Trm-1(k-) Y

3.3. Estimate of pairings.

3.3.1. Preliminary. We continue to use the notation in Subsection 3.2. We give
a preparation for the estimate of the pairings between the cycles Z,, 0.q(s) and a
meromorphic section of V.

We will use the following standard estimates without mention:

¢~ 00
/ exp(—er ]C‘"\)TN dr < / exp(—er ]C‘”\) rNdr = O(exp(—e/\ﬁ_”\)>,
C C

C
/ exp(—er_1|C_"|) N dr = O(exp(—e/ |C_”|)> (C >0)
0
Here, N is any real number.

Let S = S[ro; 01, 62] be a small sector in Cj,. Let f be a holomorphic function
on S such that |f| = O(u™ (log u)?) for some M € R and j € Z>,. We set

h(u,¢) == wP /Ot au),  Hsg(C) = / exp(h(u,0)) f du.

Fm,@,uns

We also put a,,,6(¢) := h(ﬁm@,a(g), C).
Lemma 3.5. If S # Vp,.0,4(C), there exists € > 0 such that

(3.6) Hs (¢) = O exp (@me(¢) — el ™) ).
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If S 3 Um,e,4(C), we have the following estimate:

(3.7) Hss(¢) = exp(dmo(C)) <<%) mf) U=P,6,a(C)
+exp(dne() O (CMMH(lOg Oj)

Note that e a(C) ~ ¢ and 92h(Tme.q(C),0) % ~ /21 Hence, if f ~
uM (logu)’, we have

Hg £(¢) ~ exp(@mo(C)) (M2 (10g ¢)’.

For any N > 0, there exists M > 0 such that the following holds for any f with
1= O(lu™):

Hy £(0) = O(exp(@mo(0)) 1Y)

Proof. It S Z Vme.a(¢), there exists ¢ > 0 such that the following holds for
u=v¢elyeans:

Re h(u, ¢) < Retm,e(¢) — €' [¢]7" (Jo] ™" +[vf”)

Then, we obtain (3.6). If S 3 ¥, 9.4(¢), we obtain (3.7) by using Lemma 2.7 and

the condition for the family of paths I,,. The other claims immediately follow.
O

We give a related estimate for our later use (Section 5). Let §; € R (j = 1,2)
satisfy (i) Re(a e_"\/__wi) =0, (ii) f2—6, = 7/n, (iii) we have Re (o e‘”\/__w) >0
for 81 < 0 < 5. Let us consider the case fm,@a(( ) contains rays close to the half
lines ¢; := {arg(u) = 6;} (i = 1,2). (See the case cos(pfy + k) > 0 in Subsection
3.1.2)

0 Vm,©,a(C) l

Qi1(¢) % Q=(¢)

A

Y

For 3 € C with Re(3e ™V~101) < 0, we take ¢1(3) € R such that (i)
lp1(B) — 01| # 0 is sufficiently small, (ii) Re(ﬁe‘"m‘pl(ﬁ)) < 0. We set
r(¢) = |Qi({)]. Let I‘(Bl) be the union of the ray Ray|0, r(¢) eV~ 1*1(9] and
the arc Arc(r(¢) eV=1e1 () Q1(0)).

We set b := Su™" + Z;L:_ll Bju~? for some B; € C, and FE}) = F(ﬁl). There
exists € > 0 such that the following holds for any u € F(bl), if |¢| is sufficiently
small:

Re(b(u) + 7 /¢™7) < Re(@m0(C)) = clu™]
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Let 77 be a sector around ¢;. Let f be a holomorphic function on 77 such that
|f| = O(|u|™) for some M. Then, there exists € > 0 such that the following
holds:

B8 [ el /) fdu = 0(exp(Ene(@) ~ )

We have similar modifications and estimates for 3 € C satisfying Re(3eY~1%2) <
0.

3.3.2. Estimate of pairings. For simplicity, we assume that the monodromy of
R has a unique eigenvalue w. We set r := rank R. We take flat frames s,, =
(smﬂ- ‘z = 1,...,r) of (L ® R) on 7,04 We obtain flat sections Uy,; =
Em,0,a(5m,i) of Four(V)Y on S. We set Uy, := (Upni)-

Let E be the Deligne-Malgrange lattice of L ® R. Let w = (wy,...,w,) be a
frame of E on C,. Let T} ; denote the sections of Four(V) around oo, induced
by u* w;. The tuple

T:(Tw‘k‘:l,...,n—l—p, lzl,...,r)

gives a frame of Four(V') around oco,.
Let a be the eigenvalue of the residue Res(V) € End(E|p). We set

' - (Upmyis Thy)
DD T e @ (Q)) (o R

By taking a bijection p: {1,...,n+p} x{1,...,r} ~{1,...,(n+p)r}, we obtain
the matrix-valued function A := det (a“(m,i)7“(k7l)) on S.

Proposition 3.6. The entries of A are bounded up to log order. There exist a
non-zero complex number C' and a positive number 6 such that det(A) = C +

O(I¢l).

Proof. The following argument is essentially given in [3]. We fix a branch of log u
on 7, @,q for each m. For each m, i and [, let f(u) be the function determined by
<8m7i,wl> = exp(—a(u)) u® f(u). Then, f(u) is bounded up to log order around
u = 0, and of polynomial order around u = oo.

By using Lemma 3.5, we obtain the following estimate:

(3.9) (Uny, Tiy) = /~ exp(uP /2){(Sm.i, " w) puP~ du
Fm,(—),a(()

= /~ D exp(h(u, C))ua_kﬂ)_lf(u) du

Fm,(—),a (C)
27

N /
= p exp(am,0(¢)) <(W>l %ﬂ_k*p_lf(U)) B
+ exp(@m,6(¢)) O(C* " *P(log ¢)~)



STOKES STRUCTURE OF FOURIER TRANSFORM 137

Note that 8Zh(;m,®,a(<')v C) e

the first claim.

~ (" and U, .4(¢) ~ ¢. Thus, we obtain

To show the second claim, we have only to consider the case r = 1. We may

assume that (i) w is given by a section e of E, (ii) s,, are given by exp(a)u®e",

where eV is the dual frame of EV. Then, the above f is constantly 1. Hence, we
obtain the following for some & > 0:

(3.10)  det((Up, ) (k,mzl,...,n+p)

n—+p

- H( h” l/m®a(<) C))1/2§m79,a(oa+p_l

x det(pam,@,a@)—k [kom =1, n+p) x (1+0(¢7)

Then, the second claim follows. O

Corollary 3.7.

o The tuple of flat sections U :=J,, Uy, is a flat frame of Four(V )|S

o Let Four(V),) o denote the flat subbundle of Four(V )|S generated by U,
Then, the decomposition Sout(V)rfs = D Jour(V)y, s is a flat splitting of
the full Stokes filtration of Sout(V)rfs. In particular, U is compatible with
the full Stokes filtration. O

3.4. Regular singular case. Let (V,V) be a regular singular meromorphic flat
bundle, whose poles are contained in {0,00}. We take cycles for VV @ L(—t/z2),
and construct a flat frame of Four(V)" on small sectors of A%.

In a complex line C,, we take a path I'"* as follows. We come from oo to
—e along the ray, then we go around 0 along the circle {|z| = €} in the counter-
clockwise direction, then go back to oo from —e along the ray. We also fix a
branch of logv along '8, By v = 2z~ !t, we obtain a family of paths I'™8(2) in
(Ct.

~— ' /0N
— N

Let 7 : A,(0) — A, be the real blow up. Let ¢V~© be a point of 771(0). Let
S be a small sector around eV 1€, There exists a sector T1,0,0 which contains
{ze ‘ z € S}. Let s be any flat section of V'V on 77 ¢ 9. We have the induced flat
section of V'V along I'™8(z) for each 2z € S, which is also denoted by s. Then,
we obtain a family of cycles exp(t/z) s ® I"8(z) for VV @ L(—t/z), which gives
a flat section Z1 g (s) of Four(V)" on S. If we take a frame s = (s;) of V¥ on
T1,0,0, the induced sections U; := =1 0,0(s;) give a frame of Four(V )|S, which can
be shown easily by using a general theory in [4]. The estimate of the pairing is
remarked in [3], which we recall for our later use.
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For simplicity, we assume that V' has a unique eigenvalue. We take a frame
w = (w;) of the Deligne lattice E. Let T; be the section of Four(V') induced by
w; dt/t. Let o be the unique eigenvalue of Res(V) € End(E|p). We set

Q5 = 7<Uz;3j>

We obtain the matrix valued function A = (a; ;) on S.

Lemma 3.8. The entries of A are bounded up to log order. There exists a non-
zero complex number C such that det A = C + O(|z]).

Proof. For each i,j, we have the expansion (s;, w;) = u® > a;(2) (log z)!, where
a;(z) are polynomial of z. We obtain

(Ui, Tj) = 2° Z /Fmg exp(v) v® al(zv)(log(zv))l dv /v

. Then, the first claim is clear. As for the second claim, we have only to consider
the case rank V = 1, which can be shown easily by a direct calculation. U

4. ELEMENTARY CASES AROUND 00

4.1. Paths with some nice property. Let kK € R. Let n > p. We consider the
following holomorphic function on C3:

“n —p
4.1 Fo)=eV 1 (- -2
(1) )= e (L2 L
For the polar coordinate v = re¥ 1% we have

—n —p

Re F(r,0) = %COS(HG —K) — %cos(p@ — k).

Because F'(v) = em“(—v_"_l +v7P~1), we have F'(v) = 0 if and only if

v = exp <@> =: [n,p, m]

n—p
For each [n,p,m], we would like to take a continuous path I'j, satisfying the
following:

e T, contains [n,p, m], the end points of I', are contained in {0}, and T,
is the union of some arcs and segments.

e The restriction Re Fip, = has the unique maximum, which is attained at
[, p,m].

e There exist € > 0 and > 0 such that the following holds for any v €

IWm \ B[n,p,m](e)
Re F(v) <Re F([n,p,m]) —n(1+|v"|),

where By, ;, ) (€) denotes an e-neighbourhood of [n, p, m].
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4.1.1. Preliminary. Because dp Re F((1,0) = —sin(nf — k) + sin(pf — k), we have
JpRe F(1,0) =0

if and only if one of the following holds for some integers m, q € Z:

2
nd—Kk=ph —Kk+2mr <0 = mn
n—p
2 1 2
nd—k=-pf+r+(2¢+ 1) @H:M
n—+p

We also have 97 Re F/(1,0) = —n cos(nf — k) + p cos(pf — k).

For 6y = 2mm/(n — p), we have the following:

r—" o r7P
Re F(r,00) = <— — —> cos(nby — k)
n p

Re F(1,6y) = (% - %) cos(nby — k) = nip(?g Re F'(1,6))

Hence, we have Re F/(1,6p) < 0 (resp. Re F((1,6p) > 0) in the case cos(nfg—k) > 0
(resp. cos(nfy — k) < 0), and it is a maximal (resp. minimal) of the function
Re F(1,6).

For 6, = ((2¢ + 1)7 +2k) /(n + p), we have cos(pby — k) = — cos(nby — k), and
the following:

r—" 7P
Re F(r,0,) = <— + —) cos(nbfy — k)
n p
RFum—J41 (9—)—1¥Rﬂw)
c ,1—anOSTl1/€—np9€ , U1

Hence, we have Re F/(1,6,) > 0 (resp. Re F((1,6;) < 0) in the case cos(nf;—k) > 0
(resp. cos(nf; —k) < 0), and it is a maximal (minimal) of the function Re F'(1,0).

The following lemma is similar to Lemma 3.1.

Lemma 4.1. Let 0y = 2mmn/(n — p). We have cos(nfy — k) = 0 if and only if
00 = ((2¢ + 1)7 + 2k) /(n + p) for some integer g. O]

4.1.2. Paths. Let us describe how to choose paths I'y,. In the following pictures,
the horizontal central line describes a part of the circle {r = 1}. The upper and
lower spaces correspond to {r > 1} and {r < 1}, respectively. A box in the
upper space indicates an arc on which cos(pf — k) < 0. A box in the lower space
indicates an arc on which cos(nf — k) < 0.

r>1

91 93
92 94

r=1

r<l
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The case cos(nfy — k) < 0. Let rg > 0 be large such that r;"/n + r,"/p <<
Re F(1,6p). Let 611 be the minimum of the following set:

{9: ((2q+1)7r+2/<;)/(n+p)>90‘q€Z, cos(p@—/i)>0}

Note that it implies cos(nfi; — ) < 0. Then, I',, is the union of Ray (0, rge¥ ~1%),
Ray(O,roe\/__w“), and Arc(roe\/__wo, roe\/__w“). An orientation is given as in
the picture.

Y
Y

0o | 011

The case cos(nby — k) > 0. We take the integer ¢ such that

2 — 1)m +2 29+ 1) + 2
(2¢ — Dm + %<90<9+:(q+ )7+ 26

(4.2) 0_ =
n-+p n-+p

Since Re F|,—; is maximal at fp, the function is not maximal at 6. Hence, we
obtain cos(nf+ — k) < 0. For any ¢ > 0, we take ¢ such that

o < by < g, cos(npsr —k) <D0, cp+—cp_§%—|-5,

Then, let T',,, be the union of the rays Ray(0, e\/__l‘p*), Ray (0, e\/__l‘p+) and the
arc Arc (e\/__w*, e\/__lw). An orientation is given as in the picture.

- p— b 9,

R S e e i

Y

The case cos(pfy — k) = 0 and sin(pfy — k) = —1. This can be regarded as the
degenerated case 6y = 0_ in (4.2). We take 6, as in (4.2), for which we have
cos(nf; — k) < 0. We take ¢, such that (i) 6y < ¢4 < 0_, (ii) cos(npy — k) <0,
(iil) o+ —0p < w/n+3/2. We take a small segment Seg(A, B) which is a steepest
descent of Re F' at e¥V~1%. We put C = |B|eV~1¥+. Let Iy, be the union of
Ray (0, A), Seg(A, B), the arc Arc(B, () and Ray(0,C).

B C
A eV 160 L eV Tet

An orientation is given as in the picture. It is easy to check that Re F]Rray(0,)
is monotonously increasing with respect to r, and Re F] z,¢(p,c) is monotonously
decreasing with respect to 6. Hence, the above I'y, has the desired property.
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The case cos(pby — k) = 0 and sin(pfy — k) = 1. We take T',,, symmetrically to
the case cos(pfy — k) = 0 and sin(pfy — k) = —1, as in the following picture. An
orientation is given as in the picture.

¢

em”*J A

4.1.3. Complement. We give a complement in the case cos(nfy—r) < 0. We take
G € C, and consider the following function

—p
Gv)=pv " — em“%

on the region {|arg(v) —6011] < m/n}. Let 611 be as in the case cos(nfy — k) < 0
of Subsection 4.1.2. We can take ¢ € R such that (i) |p — 611] < 7/n, (ii)
Re(ﬁ e—nﬁcp) < 0, (iii) cos(pgp — /1) > 0. Let I be the union of the ray
Ray[O,roemﬂ and the arc Arc(roeﬁ(’“,roeﬁ@). If ro is sufficiently large,
there exists 7' > 0 such that the following holds for v € T":

ReG(v) < Re F([n,p,m]) — 7' (14 [v™"])

4.1.4. Perturbation. For some a; € C (j =1,...,n — 1), we set

~ -n —-p n-l
F = VIR v_o_v- e e
(Goim e (D) 4 Y gy
We fix ¢y > 0, which is sufficiently small. There exists dy > 0 with the following
property:
(A1): Recall that [n,p,m] is a solution of 0,F'(v) = 0. If (| < do, the €p-
neighbourhood of [n,p,m| contains one solution of 9, F({,v) = 0, which
is denoted by v, (C).

(A2): There exist a relatively compact subset U C C} and C; > 0 (i = 1,2)
such that

Re(¢'F(Gv)) < =Cu[¢| ™ Jo ™
for any ¢ with 0 < |¢| < dp and ‘arg((ﬂ < C9, and for any v € I',,, \ U.

As in Subsection 3.1.3, we have a perturbation of paths I, for F such that
the following holds for some §; > O:

(B1): fmvC is the union of arcs and segments for each ¢ € A¢(61), and v, ()
is contained in I';, ¢.
(B2): There exists a neighbourhood U of [n,}N), m| such that we can apply

the result in Subsection 2.3 to the function /' and the family of the paths
Fm on A((él) x U.
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(B3): There exist C; > 0 (i = 1,2) such that
Re(C'F(¢,0)) < =Cr ¢ ™[l ™ + Re(C*F (¢ vm(0)) )

for any ¢ with 0 < |¢| < 01 and |arg(¢)] < Cs, and for any v € fmg \ U.

We omit the details for construction.

4.2. Some cycles and 1-chains for elementary meromorphic flat bundles.

4.2.1. Cycles. We set a = au™" + Z;L:_ll aju for some o, aj € C. We assume
a # 0. Let £ be a meromorphic flat line bundle Op: (*{0, oo}) e with Ve = eda.
Let R be a meromorphic flat bundle on (P, {0, c0}) with regular singularity. Let
q: P, — P} be given by q(u) = u™P. We set V := ¢,.(L® R).

Assume p < n. We would like to construct a tuple of flat sections of the
Fourier transform Four(V') on a small sector S C A}. We take a ramified covering
et Ae — A, given by z = ("7P. Let 7 : AC(O) — A¢ be the real blow up.
We consider a sector S of Af around eV =10 ¢ 7=1(0).

We fix an (n — p)-th root (—a)'/(»=P), We change the variable

_(PNYOTP) L 1nep)
V= (;) (T (—a) u.

We set (1 = Ce V1€, Let 3> 0 and u € R satisfy BeV~—1n = o (—a)~/(=p),
Then, we have

n—1

au+ 3 agud 4 W g/ mep) el ) ¢
z
j=1
—n —p n—1 ) '
eV =1(n—n®) ”T _ ”7 n Z B (P
j=1

We obtain the paths I',, in C,, by applying the procedure in Subsection 4.3 with
Ki=p—nO, F=¢/ 110 (v™"/n+ P /p).

We also take perturbation fm,C as in Subsection 4.1.4. For each { € S, we obtain
the corresponding paths (%) (¢) and (%) (¢) in C,. They are equipped with

m,0,a m,0,a
the orientations. We obtain the section v, 04 : § — S x C, corresponding

tov, :S — S xC,. We can take a sector T(?C(i)),a = S[ry,01,605] such that

m

Um.0,a(C) € 7% for any ¢ € S. If we have cos(nfy — k) > 0, where eV 100 =

m,0,a
[n, p,m], and if S is sufficiently small, we may assume the following: (i) 2 —6; <

w/n + § for a given small 6 > 0, (ii) the paths fi:f’(zla(() can be contained in
7 for any ¢ € S.

m,0,a
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Let s be a flat section of (£®R)v on T°%) Tt induces a flat section exp(t/z) s

m,0,a
of (L& R)v ® L(—uP/z) along the paths fffgva(g). Then, we obtain a family of
cycles exp(t/z) s ® fg,:%’a(@ for (L® R)v ® L(—uP/z). The induced flat section
of Four(V)Y on the sector S is denoted by Egs%’a(s). (See Subsection 2.5 for the

flat section induced by a family of cycles.)

Remark 4.2. We can describe the change of sections for variation of ©, as in
Subsection 3.2.2. However, we need to consider the contribution of the pole at
t = 0. See Subsection 4.4. O

4.2.2. Auziliary 1-chains. We introduce auxiliary 1-chains for our later use (Sec-
tion 5). We slightly change the setting. Let e¥V—1© € 771(0) c A,(0). Let S
be a small sector of A* around eV~ Let z = ¢t~1. We take z¢ € C, \ {0}
such that Re(azéle_ﬁ@) < 0 and Im(wéle_m@) =0. Let ¢ : C, — C, be
the ramified covering given by ¢(u) = uP. Let ujo (j = 1,...,p) be the inverse
image of p~!(zg).

Assume that we are given a finite subset Z C u~'Clu~?], which consists of

elements of the form b = Su™" + 2?2—11 Biu~" for B # 0. We do not assume

p < n. We would like to take a path P](j’g?b for each b € Z and j = 1,...,p,

connecting 0 and u; e in C,, such that the following holds for any u € P](o@o)b and

zeS:
(4.3) |eb(“)+ziluip| = O(exp(—C!z‘lfu_p[)>

In the case n < p, let P](Og)b be the ray Ray[0, u;e]. Let us consider the case n > p.
For the description uj e = ro eV=105 | we take ; such that (i) Re(f e~ V=In¢i) < 0,
(il) Re(eV=1Pvit0)y < 0 (iii) |p; — 0;] < m/2n + & for any given § > 0. Let

Pj,o(:))?b be the union of Ray (0,7 eV ~1%7) and Arc(rgeY~1%7, rge¥=1%). We can

take a sector Z/{J(’og) = S[2r; 9§1),9§2)] in C} such that (i) 77](»?@07)[, - U}g) for any

beZ, (i) Hj(.l) — 65.2) < 7/n.

Lemma 4.3. Let f be a holomorphic function on Z/I](:)(;) with |f| = O(Ju|™).

We have the following estimate for any b € T and for some C > 0:

(4.4) /P(oo) exp(z'u P + b(u)) f(u)du = O(exp(—C\z]‘1)>

Proof. 1t follows from (4.3). O

Let s be an element of (E ® R)v o which induces a flat section of (E ® R)v

|uj,e
along the path 77](.090)5. We obtain a family of 1-chains exp(u™271) s ® P](Og)b for
(L®R)' ® L(—uPz).
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4.3. Estimate of some pairings.

4.3.1. Preliminary. We continue to use the notation in Subsection 4.2. Let S =
S[ro; 01,02] be a small sector in Cj,. Let f be a holomorphic function on S such
that f:O(uM(log u)J) for some M € R and j € Z>¢. We set

h(u, ) == u P¢" P + a(u), Hgf(C) == /f -, exp(h(u, C)) f du.

We also put a(oo) 5(C) = h(N(OO) (€), C). The following lemma can be shown by

Vm,©,a
the arguments in the proof of Lemma 3.5.

Lemma 4.4. If S v, @ a((), there exists € > 0 such that

(4.5) H 1(¢) = O(exp(@S3(Q) — ¢ ™) ).
Assume S > Vr(nw@) .(C). We have the following estimate:

5.4(Q) = exp(an® (0)) (_agh(u,c)) d (=5 6.0 (C)
+ exp(9)(0)) O(CM+”+1(log Oj)

Note that Vpme,q(() ~ ¢ and 8Zh(5m,®,a(oa§)_l/2 ~ ("?*1 Hence, if f ~
M (logu)?, we have

Hs 7(¢) ~ exp (@ 4(¢)) T4 /2+ (log ¢},

For any N > 0, there exists M > 0 such that Hg r(¢) = O(exp( ({)) CN) for
any f with |f| = O(Ju[M). O

We give a related estimate for our later use (Section 5). Let §; € R (i = 1,2)
satisty (i) Re(ae™™V=1%) = 0, (ii) f—61 = 7/n, (iii) we have Re(a e ™V=1) > 0

for 61 < 6 < 62. Let us consider the case F£n(2) .(¢) contains rays close to the
half lines ¢; := {arg(u) = 60;} (i = 1,2). (See the cases cos(pfy — k) > 0 and

cos(pfp — k) = 0 in Subsection 4.1.2.)

Assume that 6 is not close to arg Vm@ (€). (See the case cos(nby — k) > 0,
or the case cos(nfp — k) = 0 and sm(nHO — k) = 1 in Subsection 4.1.) For
B € C satisfying Re(3 e‘”rel) < 0 we take p() € R such that (i) |p(5) —
01| # 0 is sufficiently small, (ii) Re(ﬂe_"\/_@( )) < 0. We set 7(¢) :== [Q1(¢)],
where @1(¢) is the corner of r) (¢) near the half line ¢;. (See the picture in

m,0,a

Subsection 3.3.1.) Let T’z be the union of the ray Ray|0, 7(¢) e¥~¥(9)] and the
arc Arc(r(() e\/__lﬂp(ﬁ), Ql(C)).
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We set b := fu™" + Z?;ll Bju~ for some 3; € C, and I'p := I'g. There exists
€ > 0 such that the following holds for any uw € ['y:

(4.6) Re(b(u) v u—p/gn—p) < Re(@)(¢)) — elu™|

Let 77 be a sector around ¢;. Let f be a holomorphic function on 77 such that
|f] = O(|u/™) for some M. Then, there exists € > 0 such that the following
holds, if |{] is sufficiently small:

(4.7) /TmF exp(b+u™P/C"P) fdu = O(exp(ﬁiﬁ%(() - e'|§_"|))

If 0, is close to arg 57(5%’ .(¢), we have a similar estimate by exchanging the roles
of 81 and 6.

4.3.2. Estimate. For simplicity, we assume that the monodromy of R has a unique
eigenvalue w. We set r := rank R. We take flat frames s, = (sm,i |z =1,... ,r)
of (L® R)Y on 7'7)20%) « We obtain flat sections U, ; := Eso(z) o(8m,i) of Four(V)V
on S. We set U, := (Upi). We put U :=J,, Uny,.

Let E be the Deligne-Malgrange lattice of L ® R. Let w = (w1,...,w,) be a
frame of E on C,. Let T} ; denote the sections of Four(V) around oo, induced
by u™ w.

Let o be the eigenvalue of the residue Res(V) € End(E|p). We consider the
following:

(Up,ir Tt
exp (@5 (€)) ¢ahn/2p

We take a bijection p: {1,...,n—p}x{1,...,r} ~{1,...,(n—p)r}. Forany p €
Z>, we also take a bijection p, : {p+1,...,p+n—p}x{1,...,r} ~{1,...,(n—
p)r}. Then, we obtain the matrix-valued function A, := det(a ) onS.

A(m,i),(k,l) =

M(mvi)vup(kvl)

Proposition 4.5. The entries of A, are bounded up to log order. There exist
a non-zero complex number C' and a positive number § such that det A, = C +

O(I¢l).

Proof. It can be shown by the argument in the proof of Proposition 3.6. O

4.4. Change of sections. We use the notation in Subsection 4.2. Let us give a
complement on the contributions of the regular singularity at 0 for this elementary
case.

Additional sections. We take the following paths. Note that cos(pd — k) < 0 for
any 6 satisfying

s

1 1 /3n
=— (=42 < —|—+2 =: .
p1(q) p(2+ qw+/£>< <p<2 n q7r+/£> pa(q)
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We put S := {9 = ((2j + 1)+ 2/4)/(71 +p) ‘j €7, cos(pd — k) > 0}. We put
012(q) == max{6 € S |0 < p1(q)}, 613(q) :==min{f € S|6 > pa(q)}.

We take r¢ such that 75" /n + ry?/p is sufficiently small. Then, let [';® be the
union of Ray (0, rge¥ ~1012(9)) Ray (0, roe¥~1013(@)) and Arc (roeﬁ‘)l?(q), roeﬁel?’(q)).
An orientation is given as in the picture.

Y

A

612(q) | || 013(9)
I S A RS
Y
As in Subsection 4.2, we obtain families of paths Ff;f%’ .(¢) in C,, corresponding

to I'g®. Let Uye,q be a simply connected region which contains I'; g ,(¢) for any
¢ € 8. Let s be a flat section of (L(a) ® Ra)v on Uy e,q. We obtain a family
of cycles of (L(a) ® Ra)v ® L(—t/z). The induced flat section of Sout(V)rfs is
denoted by E7g (s)-

We can easily give a frame of Sout(V)rfS by using Efﬁé’ . and =) We omit

—m,0,a’
the details.

Change of flat sections. We set kg := u — n®©g, k_ := p—n(BOy + €) and Ky =
1 —n(Og —€). Let eV~ = [n, p,m]. Let us describe the change of flat sections
for variation of ©.

Assume that cos(nfy — ko) = 0 and sin(nfy — kg) = —1. We take ¢ € Z such
that

1 /m 1 /37
—(—+2q7T+/£_><90<— — 4+ 2qr+K_ .
p \2 p\ 2

We have the following relation:

Em,@g—e,a(s) = _Em,@o-i-ﬁ,a(s) + Eg}éo-i-s,a(s)

Ef}?%o—e,a(s) + Em,@g—s,a,a(s) = Ef}?%o—l—e,a(s)

Here, the flat section s is extended appropriately. See the following pictures.

reg (. 1 Fm(ﬁf) g
Fq ( *) I_ao “““““““ |
IS ]
D% () "
L (K4) =90‘ [ ]
\_TJ %J L]
Y
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Assume that cos(nfy — k9) = 0 and sin(nfy — ko) = 1. We take ¢ € Z such
that

T 1 /3m
p1(q) == (5 +2gm + H+> <6 < ” (7 + 2gm + f<a+> =: p2(q)

1
p
Let 0 = 2m/nw/(n
relation:

— p) such that pi(q) < 6 < p2(q). We have the following

Emﬁo—aa(s) = Em7®0+5,a(3)

Em’,@g—s,a(s) = Em’,@o—i—e,a(s) + Em,@g—l—e,a(s)

Eg.60—ca(®) = Eg&oteals) T Emeoteals)

See the following pictures.

PG f froeo
| % || o
Al L] LA
‘f %m(n,)
D8 (rs f IR AGIS I, g L (k)
‘ 9(/) o 90 ‘ 4
Al il L

5. MEROMORPHIC FLAT BUNDLES ON P!

5.1. Construction of cycles. Let (V,V) be a meromorphic flat bundle on P}.
Let Sing(V') denote the set of the poles of (V,V). We will implicitly assume
oo € Sing(V) in the following. We would like to construct flat sections of Four(V)
on small sectors around oo € PL. Let z = 771 Let ¢ : Ae — A, be a ramified
covering given by z = £ such that ¢¥*Four(V) is unramified. Let 7 : Kg(O) —
A¢ be the real blow up at £ = 0. Let eV=10 ¢ 771(0), and let S be a small sector
around eV~1©, We will construct flat sections of Sout(V)‘\g.

If p is divisible by m, we have a factorization A¢ — A, — A such that
y = &% and z = y™. The point eV—10 naturally induces a point of the fiber
of the real blow up ﬁy(O) — A, over 0, which is also denoted by eV=19 The
sector § naturally induces a sector in Aj, if it is sufficiently small. It is also
denoted by S.

5.1.1. Meromorphic flat bundle on (P',{0,00}). Assume that (i) Sing(V,V) =
{0,003}, (ii) (V, V) is regular singular at co. Let ¢ : (P, {0,00}) — (P}, {0, 00})
be a ramified covering such that ¢*(V, V) is unramified at 0. Let Irr(¢*V) denote
the set of irregular values of ©*(V,V) at 0. The Galois group Gal(p) naturally
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acts on Irr(p*V). The quotient is denoted by Irr(V). Let a € U 'C[U7!] be a
representative of an element of Irr(V). We have a factorization of ¢,

1 $P1l,a 1 $2,a 1
P, P P}

u

such that (i) a is defined on PL, (ii) it is irreducible on P!, in the sense g*a # a
for any g € Gal(p2,4) \ {1}. Let R4 be a regular singular meromorphic flat bundle
on (P!, {0,00}) such that 90’{7Q(L(a) ® Ra) ~ Gra(gpiaV).

Let p be the ramification index of ¢3 4, and put n := —ord, (a). We consider a
factorization Ay — A¢ — A, with ( = ¢4/ (n+P) and we regard S as a sector in
Af. We use the notation in Subsection 3.2. Let s be a flat section of (L(a) ®Ra)v

on 7,,0,a- We have constructed the family of cycles
exp(u? /(") s @ Timoa(¢) (CES)

for (L(a) ® Ra)v ® L(—uP/z). We obtain a family of cycles ﬁg?&a(s;g) for
VY ® L(—t/z) on P} by the following procedure:

Step 1: Let g be the ramification index of ¢ 4. We obtain a family of cycles
for Gr_q(o*VVY) @ L(=U9 /{"*P) by (Lift) in Subsection 2.4.1.

Step 2: If a # 0, let ag denote the image of Irr(¢*V) — Irr(¢*V, —ng).
We obtain a family of cycles for Gr(__azq) (¢*VV) ® L(-=U9P /¢™P) by ap-
plying P1 in Subsection 2.4.2.

Step 3: If a # 0, we obtain a family of cycles for Gr((]_nq_l)(go*VV) ®
L(—U% /{"*P) by applying P1 and P3.

Step 4: We obtain a family of cycles for ¢*VV® L(—U9 /(" *P) by applying
P2.

Step 5: Applying (Descent), we obtain a family of cycles for VV ® L(—t/z).

It induces a flat section of Four(V)" on S, which is denoted by ESL?& a(8). (See
Subsection 2.5 for the flat section induced by a family of cycles.)

5.1.2. Cycles and auziliary 1-chains around oo. Assume (i) Sing(V, V) = {0, 00},
(ii) (V,V) is regular singular at 0. Let z = t~'. Let ¢ : (P, {0,00}) —
(PL,{0,00}) be a ramified covering such that ¢*(V,V) is unramified at 0. We
fix a representative a € U~'C[U™!] for each element of Irr(V). We have the
factorization of ¢

Pl Pl

such that (i) a is defined on P!, (ii) it is irreducible. Let RS’"’ be a regular
singular meromorphic flat bundle on (P}, {0, 00}) such that ¢} ,(L(a) ® Rl(loo)) ~
Gra(gp* V).

Let p be the ramification index of (9 4, and let n be the order of the pole of a.

Assume n > p. We consider a factorization Ag — A¢ — A, with ¢ = gn/(n=p)
and we regard S as a sector in AZ. We use the notation in Subsection 4.2. Let s
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be a flat section of (L(a) ® Rl(loo))v on Tﬁ,xé), « We have constructed the family of
cycles
exp(u /") s @R (0 (CES)
for (L(a) ® RE{’O))V ® L(—u"?/z). We obtain a family of cycles ﬁiﬁj}é’a(s; ¢) for
VV ® L(—t/z) on P} = PL by the following procedure:
Step 1: Let g be the ramification index of ¢ 4. We obtain a family of cycles
for Gr_q(o*VVY) @ L(=U9P/("P) by (Lift) in Subsection 2.4.1.
Step 2 (cos(nfy — k) > 0): Let ag denote the image of a by the map Irr(¢*V)
— Irr(¢*V, —ng). We obtain a family of cycles for Gr(__azq) (@*VV) ®
L(—=U%/¢""P) by applying P1. Then, we lift it to a family of cycles for
Gr(()_nq_l) (¢*VY) @ L(=U%/{""P) by applying P3.
Step 2 (cos(nby — k) < 0): We obtain a family of cycles for Gr(()_nq_l) (¢*VY)
QL(=U™/(""P) by applying P4.
Step 3: We obtain a family of cycles for o*VV ® L(—U? /("P) by applying
P2.
Step 4: Applying (Descent), we obtain a family of cycles for VYV ® L(—t/z).

It induces a flat section of Four(V)" on &, which is denoted by S) (s).

m,0,a

Let us give a complement on auxiliary chains. We take zg € C}. as in Sub-
section 4.2.2. For each (n,p) € Z2>0, let Z,, be the set of the elements b of
Irr(V) such that the ramification index of (g p is p, and —ord,(b) = n. We put
q:=p/p. Let p14: IP’%] — PL and P2p - PL — P! be the ramified covering given
by ¢1,4(U) = U? and @3 (u) = uP. We take paths 77](-703?5 (belppj=1,...,p),
and sectors Z/l;:)(;’)(nvp) (j=1,...,p) in C},
(j =1,...,p) denote the fiber 4,02_711,(3;@).

We take Ug € ¢ '(zg). Let S be a small sector in Cyj; such that Ug €

S. We have a splitting of the full Stokes filtration FS such that the induced

splitting of the Stokes filtration in the level gn can be extended to a splitting on

901_7;(0{7(7:%7 (mp))' The splitting induces the following isomorphism:

Voo x Y (00)\V
(51) ‘/‘ZB@ =¥ ‘/‘U@ - @ @ @(L(b) ® Rb )|uj,(—),(n,p)
(n7p) beI”L)p ]
Let sz be an element of V|;/®. It induces s;eop € (L(b) ® Rb)p()( : by the
7,9,(n,p
decomposition (5.1). We have the induced family of 1-chains exp(u™/z2) sj 0,6 ®

Pg(‘:)(:))?b for (L(b) ® Rb)v ® L(—u~P/z). We obtain a family of 1-chains I}:’g?b(sw@)
for VV @ L(—t/z) by the procedure applying (Lift), P1, P2 and (Descent).

as in Subsection 4.2.2. Let uj e (np)

5.1.3. Meromorphic flat bundle on P'. Let (V,V) be a meromorphic flat bundle
on P}. Let ¢, : P} — P} given by ¢.(t) =t — c. For each ¢ € Sing(V) \ {cc}, we
have a neighbourhood U, and a meromorphic flat bundle (V,, V.) on (P}, {0,00})
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which is regular singular at oo, such that ¢z (Ve,Ve)jy, =~ (V,V)p,.. We also
have a neighbourhood U,, of oo, and a meromorphic flat bundle (Vo, V) on
(P}, {0, 00}) which is regular singular at 0, such that (Vae, Voo) . ~ (V, V). -
We assume that U, N Uy = @ for distinct ¢, ¢’ € Sing(V).

Let A>) (s) be as in Subsection 5.1.2. If (] is sufficiently small, the support

m,0,a
of Agn (2) o(8) is contained in Us,. Hence, it induces a family of cycles for (V,V)¥®
L(—t/z), denoted by Ainé a(s).

Assume 0 € Sing(V) \ {oc}. Let s and Aﬁg)g .(s) be as in Subsection 5.1.1

for (Vo, Vo). If fm,@ﬁ(ﬁ) does not contain a ray of the form Ray[Q((), 0], the

(0)

support of ﬁm 6.q(8) is contained in Uy when [(| is sufficiently small. Hence, it

naturally gives a family of cycles ZSL?@J(S) for VV ® L(—t/z). Let us consider
the case that I'ye.q(¢) contains a ray of the form Ray[Q(C),00]. Let P(¢) :=
Ray[Q(() 00] N AUy Let zo be a point in C, such that (i) Re(zg ! _\/_9) <0,
Im (zg \ﬁ@) = 0, (ii) close to = 0. (See Subsection 4.2.2.) We connect
P(¢) to ze by a path 7 contained in {Re(t/z) < 0} \Ucesmg (V)\{oo} Ue- The

flat section s naturally induces an element s,  of V| vo" By the procedure in
Subsection 5.1.2, we obtain the 1-chains I(oeo)b(s|m®) Then, we cut Ray[Q((), o]
at P(¢), and add the 1-chains exp(t/z) s ® v and I(@)b(s‘x@) with appropriate
signatures, and we obtain a family of cycles Aiﬁ?@,a( ) of VV @ L(—t/z2).

For ¢ € Sing(V) \ {oo}, we take a ramified covering ¢ : Pf, — P} for (V,, V.)
as in Subsection 5.1.1. Let a € Irr(¢*V.). We take Rl(f) for (V,V.) as in
Subsection 5.1.1. Let s be a flat section of (L(a) ® REf’)V on T, 0,a- Applying

the above procedures, we obtain AY (s) for ¢* (V, V)YV ® L(—t/z). Applying

m@a

the translation in Subsection 2.4.3, we obtain a family of cycles Zg@’a(s) for
VY@ L(—t/2).

[1|

(c) (S)

—m,0,a

The induced flat sections of gout(V)‘ 's are denoted by =

5.2. Estimate of some pairings.

5.2.1. Preliminary. Let S be a sector in A%. Let R(z) € C;\ {0} such that
|R(2)| < C |z|"/(*P). Let T(z) be the segment connecting R(z) and 0.

Lemma 5.1. Let n'/p’ > n/p and N € R. We have the following estimate for
any C1 > 0:

(5.2) / exp(t/z — elt|™™/7) [t 7N dt = o(exp(_clyz\—n/wm))
T(z)
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Proof. Let ¢ = 2Y/"t? and v = tl/p/g. For any C5 > 0, there exists g > 0 such
that the following holds for any |(| < ro:

|t/2] = e[t TP < =Col¢| T fu] "
Then, it is easy to deduce (5.2). O

We set H := {6; < arg(t) < 65} for some 6; € R such that Re(t/z) < 0 for
any t € H and z € §. Let I' be a bounded path contained in H. Let f be a

holomorphic function around I'. Then, there exists C' > 0 such that the following
holds:

(5.3) /Fexp(t/z) fdt= O(exp(—C\z]‘1)>

5.2.2. Cycles around c. Let (V,V) be a meromorphic flat bundle on P'. We use
the notation in Subsection 5.1. Let 1 be a section of V on P}, which induces a
section T of Four(V'). Let ¢ € Sing(V) \ {oo}. We have the isomorphism:

o Vp=Vip= D eralll®or)
QEE(VC)

We have the corresponding decomposition ¢*—c(77)\6 = > ¢ .(n) For a €

0,0’
Irr(Ve, Vo), let nq be a section of Gra(V.) := ¢2.q«(L(a) @ Rﬁf)) on P! The
induced section of Four(Grq(Ve)) is denoted by Y,.. Let V,. be the Deligne-
Malgrange lattice of Grq(Vp).

Proposition 5.2. For any L > 0, there exists M > 0 with the following property:

o Assume ¢ ()54 — Na5 = 0 modulo tMYy .. Then, we have

<§£§?@7a(s), T> —exp(c/z) <Em,@7a(s), Ta7c> = exp(c/z + am,@(g)) O(\C\L)

Proof. 1t can be reduced to the case ¢ = 0. We can dominate the difference of
the integrals over I';, 0.4(¢) N Uy by using Lemma 3.5. We can deal with the
integrals over some additional paths appeared in the procedures (P2) and (P3)
by using Lemma 5.1 and (3.8), respectively. We can deal with the modification
in Subsection 5.1.3 by using Lemma 4.3 and (5.3). ]

Corollary 5.3. f;i?@ﬁ(s) is a flat section of ‘%Sc/z—am@ (Sout(V)‘\g).

I

Proof. Let f be any section of Four(V) on P!. From Proposition 3.6 and Propo-
sition 5.2, we obtain

(0 a(9), F) = exp(c/2 + Bmo(0)) O

for some Ny > 0. Then, the claim of the corollary follows from the characteriza-
tion (A) of the full Stokes filtration in Subsection 2.1.2. O
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5.2.3. Cycles around oo. Let n be a section of V on P}. Let g4 : P — PL
be as in Subsection 5 1.2. We denote it by gpg)z), if we regard it as a morphism
Pi, — P} by t = ™. Under the isomorphism Vi ~ 902 a*( (a) ® Rﬁf’o)) =
we have the decomposition 7z = Y 75 - Let a € Irr(Vo). Let (Vayo0, Waoo)

be the BDE-good lattice pair for Grg(Vy) := gpgojl( L(a) ® Rgoo)). The tensor
product Wy oo @ Op1 (INo0) is denoted by Wy oo(INoo). According to Proposition
4.5, there exists C' > 0 such that

(B o(9), F) = exp(@53(0)) O(1¢[),

where F' denotes a section of Four(Gra(Vio)) induced by a section of W, oo (N o)
on P!,

Proposition 5.4. Let M > N. Let nq be a section of Wy oo(Moo) on P{. The
induced section of gout(Gra(Voo)) is denoted by Yo oo. If Nss o — 1Ma = 0 modulo
Wa,o0(N00) |5, then we have

(5.4)  (E0La(9).7) = (EEY (5), Taee) + exp(@05(0)) O(1CI)

Proof. 1t follows from Proposition 4.5, the estimate in Subsection 4.1.3, the es-

timate (4.7), and Lemma 5.1. O
Corollary 5.5. ESTAJ ) is a flat section of FS ° () (Four(V )‘S)

m ©
Proof. 1t follows from Proposition 4.5 and Proposition 5.4. U

5.3. The Stokes structure for the Fourier transform.

5.3.1. Compatible frame. For each ¢ € Sing(V) and for each a € Trr(V,, V,), we
take a flat frame u(c)@ .= (um@ wi |i =1,... rank Rﬁf’) of (L(a) ® R(C))V

Tm,0,a- We obtain the flat sections Ugn)@ i = Egﬁ?aa(u(c) ) of Four(V )|S We

m,0,a,i
set Usn)@ a= (Ufﬁ?@,a,j)-

Theorem 5.6.

o The tuple of flat sections Ug := | J U,(n)@ o 05 a flat frame of Four(V )|S.

a,c,m

o Let Four(V)!, . s denote the flat subbundle of Four(V )\5 generated by
U(C) . Then, the decomposition

m,0,a
Sour(V |S = EB Sour(V camS

a,m,c

is a flat splitting of the full Stokes filtration of Four(V )‘S In particular,
Ug is compatible with the full Stokes filtration.
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Proof. The second claim follows from the first claim, Corollary 5.3, Corollary 5.5,
and the comparison of the ranks given by the explicit stationary phase formula
reviewed in Subsection 2.2.3.

Let us show the first claim. For a € Trr(V.,), let (vc(f), Wc(lc)) be the BDE-good
lattice pair for Gra(Ve) = ¢@2,q+(L(a) ® Rﬁf)) on C;. We take a tuple of algebraic
sections Onﬁf) (Ongj)) of Wc(f) dt/t, which induces a base of the C-vector space
Cok(Vc(lC) At Wéc dt/t). It induces a frame OTEIC) = (OTES;») of the lattice of
Four(Grq(V,)) induced by (vc(f), Wc(lc)) around oo,. (See Subsection 2.2.5.)

Let (V, W) be the BDE-good lattice pair for V' on C;. For each ¢ € Sing(V') \
{0}, we take a tuple of sections nEf’ = (nl(lcj)) of W® Qg (Sing(V')), such that

o (%Efj) — 7 =0 modulo (t — )W & Q! (Sing(V))

ajlc =

¢
77( j)|c =0 modulo (t — )W o Q! (Slng(V))l . (d #¢)

(c ) (c)

denote the section of Four(V) induced by n, ;.

for a sufficiently large N. Let T
The tuple (T(C)») is denoted by Tﬁf).

a,j
Let (V,WW) be the BDE-good lattice pair for V on P}. We have Wic, = W.
Let N7 be a sufficiently large number such that 0775”)- are sections of W(Nj00) ®
QL (Sing(V)).
Let = t~! be the coordinate around co € P}. For a € Irr(Vy), let
(V(Oo) W(OO)) be the BDE-good lattice pair for Grg(Va) := gpgojl( L(a )®R(°°))

C,. Let My > 0 be a large number. We take a tuple of sections ° ( ). ( 77;] ))

of z=M Wa,co dz/x, which induces a base of the C-vector space Cok (:17 My Vg 00) o 2ds
a;—M1W§°°) da:/x) It induces a tuple of sections OTEIOO) = (OTE:;-’)) of the lattice
of Four(Gra(Vas)) induced by (x—Mlvé"o),x—leéw)) around oo;.

If M, is sufficiently large, we can take a tuple of sections ng ) — (ngojo)) of

W(M;00) ® Qf, (Sing(V)) such that
nglo;)oo - 0771(10;\)00 =0 modulo W(Njoo) ® Qp: (Sing(V))

[co

ngo;g =0 modulo (t — )W o QL (Sing(V))js (¢ € Sing(V) \ {o0})

Let TES;) denote the section of Four(V) around oo, induced by 775:;). The tuple
(TES;)) is denoted by ‘rﬁf’o).

For simplicity, we assume that usg)@ . and Ong) (c € Sing(V')) are compatible
with the generalized eigen decomposition of the monodromy.
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For a fixed (¢, a, ), let us consider the following vector valued function on S:
V(d,m' d) = (exp(—c’/z —a ) < a, 0. Tgc;> ‘z =1,... ,rankREjl)>

According to Proposition 3.6, Lemma 3.8, Proposition 4.5, and the estimates in
Subsection 5.2, we have the following for some large L:

V(d,m/,d)| < [V(e,m,a)|[¢]" (,d) # (c,a)

Let E denote the lattice of Four(V) at oo, induced by (V(M;o0), W(M;00)).
Under the isomorphism of local Fourier transform, we have T( °) = OTSC) modulo

2L'E for some large L. Hence, the tuple ¥ = Ucesmg Ua T % gives a frame
of E around oco,. We take orderings of the tuples Ug and Y. Let det(Ug, Y)
be the determinant of the matrix valued function whose (i,j)-entries are the

pairings between the i-th member of Ug and the j-th member of X with respect
to the above orderings. It is well defined up to signatures. Similarly, we obtain

det(U (Qc?a, OTSC)>. Recall the following elementary lemma.

Lemma 5.7. Let A be an {-square matriz valued function on S divided into
blocks A; j, where A;j are ({; x £;)-matriz valued functions (€ =Y ¢;). Assume
that the entries of A;; are bounded up to log order, and the entries of A; ; (i # j)
are O(|z|°) for some § > 0. Then, det A = []det A;; + O(|z]%/?). O

Then, we obtain the following estimate for some & > 0, by Proposition 3.6,
Lemma 3.8, and Proposition 4.5 and the estimates in Subsection 5.2:

det(Ug, Y) =+ H H[exp(c/z)rankvdet(Ug?a, 0'1"9}] <1 + O(|z|5)>

c€Sing(V) @

In particular, it is non-zero. Hence, we obtain that Ug is a frame. O

5.3.2. The induced map on the associated graded bundles. For a € u='Clu~1], let
d (resp. a(®) denote an irregular value of 1*Four(woaL(a)) (resp. w*Sout(gpgﬁ)
L(a))). We use the symbols to denote the induced elements in the quotient of

C((€))/C((2)) by the Galois group Gal() of 1. Note the transitivity of the Gal(t))-

action on the sets of the irregular values of Q,Z)*Sout(gpga*L(a)) and zb*Sout(goéﬁ)

L(a)). Let us observe that the following isomorphisms are induced for a € Irr(V.,)
or a € Irr(V), from the above description of the Stokes structure:

(55) <I>£16) : GI‘C/Z+3<{§Uut(¢: Gra(%))) - Grc/z—i—ﬁ(gout(v))

(5.6) o) : Gry) (gour((;ra(v ))) — Grye) (Foux(V))

Here, the meaning of Gr is as in the last paragraph of Subsection 2.1.2.
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=(c)

m,0,a

:‘(C)

By taking the dual of the correspondence = (s) «— Eno.a

the map
@E‘C‘)S : @ Grf/‘z%m@ (w*gout(qbz Gra(V2)) |S) — @ Grf/‘z%m@ (¢*Four(V),s).

(s), we obtain

Lemma 5.8. @E% is well defined.

Proof. Let Eg,@,a(s) be obtained by other choices of splittings of Stokes filtrations
in Subsections 5.1.1-5.1.2 and other choice of paths in Subsection 5.1.3 connecting
P(¢) and xg. We can easily obtain the following estimate for any meromorphic
section f of Four(V') around oco,:

<§£§?@7a(s) - Ex?éa(s), f> = O(exp(c/z + Um0 — e|z|_6)), €,0>0

Then, the claim of the lemma follows from the characterization of the full Stokes
filtration (Subsection 2.1.2). O

(©)

m.0.q(5) are changed for variation of © as in

The paths for integration of A°

Subsections 3.2.2 and 4.4. By using <I>£l39 with an argument used in the proof of
Lemma 5.8, we obtain a flat morphism for any a € Irr(V,):

ol . Grc/z+a<30ut(¢ Grq(V, ))‘A*> — Gre/pqa(Four(V)ax)

It is naturally extended to the morphism (5.5) on A,. Similarly, we obtain (5.6)
for a € Irr(V, Vo).

We have the isomorphism Gr,q (qﬁ*_c(V)‘ 5) ~ Gro(V, 2l 5)> Where the meaning of
Gryis asin (2.2). It induces the isomorphism through the local Fourier transform:

(5.7) B Grepeya(Four(o; Gro(Va))
Similarly, we have

(58) L) Grgeo (Sour(Gra(Vao) )

|z/=3 - Grc/z-i—ﬁ (Sout(V)) |z/=3

= — Gryeo) (Four(V)) =

Proposition 5.9. We have ( o ))|/\: <I> for any ¢ € Sing(V).

0)

Proof. Let us argue the case of <I>E1 . The other cases can be argued in similar
ways. We give an argument to use the induced lattice of the Fourier transform.

We have the lattices OEEO) C Grg <$out(Gra(V0)))| and Eéo) C Grg(Four(V))
induced by the BDE-good lattice pairs for @celrr (Vo) Grc(Vo)‘ﬁ and Vjg. By
Lemma 2.6, <I>( )/\ and (IJ( ) preserve the lattices OEC(l ) and Ec(lo).

Let OTE() and Y, be as in the proof of Theorem 5.6. Note OTEI?) = quz 0

under the identification OEE(f\]z):O = E(l(\]z):o induced by (5.7). By the construction

0

_
=
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of (I>(O) and Proposition 5.2, @go) and cﬂO) induce the same linear map OEg\)z):o

—
E(?) Then, the claim of the proposition follows from Lemma 2.3 and Lemma

2.6. (]

Thus, the study of Gr,/, 5(Sour(V)) and Gry) (Sour(V)) are reduced to the
case that V is elementary.

5.3.3. Comparison of the induced (K, k)-structures. Let K and k be subfields of
C. We assume that they are algebraically closed, for simplicity. Let (V,V) be a
meromorphic flat bundle on P! such that (i) it is defined over k, (ii) the associated
local system Loc(V, V) on P!\ Sing(V) has a K-structure, compatible with the
Stokes structure. Then, Four(V) is also defined over k, which induces the k-
structure of Four(V)s. It is also obtained through the local Fourier transform.
We consider a K-structure of the flat bundle Oc, ¢, e with Ve = ed(t7) given
by exp(—tr) < 1. Then, the associated local system Loc(Four(V)) has the
induced K-structure. The construction of flat sections in Subsection 5.1 can be
done in a way compatible with the K-structure. Hence, the induced K-structure
of Four(V') is compatible with the Stokes structure, according to the description
in Theorem 5.6.

Corollary 5.10. The isomorphisms (5.5) and (5.6) preserve the K -structures of
the associated local systems and the k-structures of the completion at z = 0.

Proof. Let us consider the case ¢ = 0. The other cases can be shown similarly.

By the description of the Stokes structure, the isomorphism (@go))| Ax Dreserves
the induced K-structures. Hence, (5.7) preserves the K-structure. Since Propo-

sition 5.9 implies that (@go))lzfzﬁ preserves the k-structure, (5.7) preserves the
k-structure. U

We obtain the (K, k)-structure of ¢ (Gr Four(V)) with respect to the coordinate

z as in Subsection 2.6. For any c € Sing(V) \ {oo} and a € Irr(V,), we have the
isomorphism

(59) ¢(Grc/z+agout(¢: Gra(‘/c))) w(Grc/z—l—ﬁ S'Ollt(V))

induced by <I>( °) Similarly, for any a € Irr(V), we obtain

(5.10) Y (Gryoo) Four(Gra(Vao))) = 1 (Gryie) Four(V)).

Corollary 5.11. The isomorphisms (5.9) and (5.10) preserve the (K, k)-structures.

O

By taking the determinant, we obtain the isomorphism
(5.11)  det(Four(V)) =~
® det (Sout(Gra(Voo))) ® ® det (Sout((bz Gra(VC)))

aclrr(Voo) ceSin@?)\{)oo}
aclrr(Ve
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It induces an isomorphism between the one-dimensional vector spaces of their
multi-valued flat sections. According to Corollary 5.11, it preserves their (K, k)-
structures.
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