JACOBI'S FORMULA FOR HESSE CUBIC CURVES

K. MATSUMOTO, T. TERASOMA AND S. YAMAZAKI

Abstract. In this paper, we give analogs of Jacobi's formula for Hesse cubic curves $C(\mu)$ on theta constants and unnormalized period integrals. We also give several expressions of the modular invariant μ of $C(\mu)$ in terms of theta constants, which are reformulations of [Bi] and [Kr].

1. INTRODUCTION

An elliptic curve of the Jacobi canonical form with a parameter $\kappa \in \mathbb{C} - \{0, \pm 1\}$ is defined as

$$
y^2 = (1 - x^2)(1 - \kappa^2 x^2).
$$

Its periods are given by

$$
\psi_A(\kappa) = \int_1^{1/\kappa} \frac{2dx}{\sqrt{(1-x^2)(1-\kappa^2x^2)}}, \quad \psi_B(\kappa) = \int_0^1 \frac{4dx}{\sqrt{(1-x^2)(1-\kappa^2x^2)}}.
$$

The ratio $\tau = 2\psi_A/\psi_B$ belongs to the upper half space H and ψ_B can be expressed by $2\pi F(\frac{1}{2})$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2}, 1; \kappa^2)$, where $F(\alpha, \beta, \gamma; x)$ is the hypergeometric function defined as

$$
F(\alpha, \beta, \gamma; x) = \sum_{n=0}^{\infty} \frac{(\alpha)_n (\beta)_n}{(\gamma)_n n!} x^n, \quad (\alpha)_n = \alpha(\alpha+1) \cdots (\alpha+n-1).
$$

On the other hand, the parameter κ can be expressed by

$$
\kappa = \frac{\vartheta^2_{\frac{1}{2},0}(\tau)}{\vartheta^2_{0,0}(\tau)},
$$

where $\vartheta_{a,b}(\tau)$ is the theta constant defined by

$$
\vartheta_{a,b}(\tau) = \sum_{n \in \mathbb{Z}} \exp[\pi i (n+a)^2 \tau + 2\pi i (n+a)b].
$$

Moreover, Jacobi's formula states that

$$
\vartheta_{0,0}^2(\tau) = \frac{1}{2\pi} \int_0^1 \frac{4dx}{\sqrt{(1-x^2)(1-\kappa^2 x^2)}} = \frac{\psi_B}{2\pi} = F\left(\frac{1}{2}, \frac{1}{2}, 1; \kappa^2\right).
$$

In this paper, we study two periods ψ_A and ψ_B of a Hesse cubic curve

$$
C(\mu) = \{ [t_0, t_1, t_2] \in \mathbb{P}^2 \mid t_0^3 + t_1^3 + t_2^3 - 3\mu t_0 t_1 t_2 = 0 \}
$$

Received August 3, 2009; in revised form October 27, 2009.

with a parameter $\mu \in \mathbb{C} - \{1, \omega, \omega^2\}$, where ω denotes $\exp(\frac{2\pi i}{3})$. They are expressed by the hypergeometric function and the beta function in Theorem 1:

$$
\psi_A(\mu) = (\omega - 1)B\left(\frac{1}{3}, \frac{1}{3}\right)F\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) + (1 - \omega^2)\mu B\left(\frac{2}{3}, \frac{2}{3}\right)F(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right),
$$

$$
\psi_B(\mu) = B\left(\frac{1}{3}, \frac{1}{3}\right)F(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) - \mu B\left(\frac{2}{3}, \frac{2}{3}\right)F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right).
$$

On the other hand, the modular parameter μ is a modular function of $\tau =$ $\psi_A(\mu)/\psi_B(\mu) \in \mathbb{H}$. The parameter μ is known to be expressed in terms of theta constants. For example, we have

$$
\mu = \sqrt{3}i \frac{\vartheta_{\frac{1}{2},\frac{1}{6}}^3(\tau)}{\vartheta_{\frac{1}{6},\frac{1}{2}}^3(\tau)} + 1,
$$

(see Proposition 3, or [Kr]). More strongly, we give relations between some theta constants and the period ψ_B when μ and τ are related as above. The main theorem (Theorem 2) states that

$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{6},\frac{1}{2}}(\tau)^{24} = 81 \cdot \psi_B^{12}(\mu) \cdot (\mu^3 - 1),
$$

\n
$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{2},\frac{1}{6}}(\tau)^{24} = \psi_B^{12}(\mu) \cdot (\mu^3 - 1)(\mu - 1)^8,
$$

\n
$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{6},\frac{1}{6}}(\tau)^{24} = \psi_B^{12}(\mu) \cdot (\mu^3 - 1)(\mu - \omega^2)^8,
$$

\n
$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{-1}{6},\frac{1}{6}}(\tau)^{24} = \psi_B^{12}(\mu) \cdot (\mu^3 - 1)(\mu - \omega)^8.
$$

These formulas are analogs of Jacobi's formula for Hesse cubic curves.

Our proof of Theorem 2 is based on the elementary function theory and the modular property of $\vartheta_{ab}(\tau)$ with respect to the monodromy group of $\tau =$ $\psi_A(\mu)/\psi_B(\mu)$. This idea is applied to the Picard curve version of Jacobi's formula studied in [MS]. Moreover, we have

$$
\vartheta_{\frac{1}{6},\frac{1}{6}}(\omega) = \frac{3^{5/24}}{2\pi} \exp(-\frac{\pi i}{72}) \Gamma(\frac{1}{3})^{3/2},
$$

$$
\vartheta_{\frac{-1}{6},\frac{1}{6}}(\omega) = \frac{3^{3/8}}{2\pi} \exp(-\frac{5\pi i}{72}) \Gamma(\frac{1}{3})^{3/2},
$$

as corollary of these formulas. These formulas are obtained also from the Chowla-Selberg formula in [SC] of the η -function $\eta(\tau) = \exp(-\frac{\pi i}{6}) \vartheta_{\frac{1}{6}\frac{1}{2}}(3\tau)$ (see also [FK]). These special values are used in [Ha], [MT] and [MS].

The period integrals of $C(\mu)$ and expressions of $\mu(\tau)$ by modular forms are classically studied (c.f. [Bi] and [Kr]). Analogous formulas for certain type of $\mathbb{Z}/N\mathbb{Z}$ -coverings of \mathbb{P}^1 (\mathbb{Z}/N -curves for short) is studied in [N], which is a generalization of Thomae's formula [Th] for hyper-elliptic curves. Another proofs of Thomae's formula for \mathbb{Z}/N -curves are discussed in the papers [EF] and [Ko]. Chan-Liu-Ng [CLN] show the equality

$$
\frac{\eta(\tau)^3}{\eta(3\tau)} = F\left(\frac{1}{3}, \frac{1}{3}, 1; -27\frac{\eta(3\tau)^{12}}{\eta(\tau)^{12}}\right),\,
$$

which also implies Theorem 2.

2. Hesse cubic curves

A Hesse cubic curve $C(\mu)$ with a parameter $\mu \in \mathcal{M} = \mathbb{C} - \{1, \omega, \omega^2\}$ is defined as

$$
C(\mu) = \{ t = [t_0, t_1, t_2] \in \mathbb{P}^2 \mid F_{\mu}(t) = t_0^3 + t_1^3 + t_2^3 - 3\mu t_0 t_1 t_2 = 0 \},
$$

where ω denotes the third root $\exp(\frac{2\pi i}{3})$ of unity. Note that $C(\mu)$ is a smooth curve of genus 1 and its nine flex points are given by

(1)
$$
P_0 = [0, -1, 1], P_1 = [1, 0, -1], P_2 = [-1, 1, 0],
$$

\n $P_3 = [0, -\omega, \omega^2], P_4 = [1, 0, -\omega^2], P_5 = [-1, \omega, 0],$
\n $P_6 = [0, -\omega^2, \omega], P_7 = [1, 0, -\omega], P_8 = [-1, \omega^2, 0],$

for any $\mu \in \mathcal{M}$. Let $L_j = \{\ell_j = 0\}$ be the tangent line at the flex point P_j , where

$$
\ell_0 = \mu t_0 + t_1 + t_2, \qquad \ell_1 = t_0 + \mu t_1 + t_2, \qquad \ell_2 = t_0 + t_1 + \mu t_2, \n\ell_3 = \mu t_0 + \mu^2 t_1 + \mu t_2, \qquad \ell_4 = t_0 + \mu^2 t_1 + \mu^2 t_2 + \mu^2 t_2 + \mu^2 t_3 + \mu^2 t_4 + \mu^2 t_5
$$

(2)
$$
\ell_3 = \mu t_0 + \omega^2 t_1 + \omega t_2, \quad \ell_4 = t_0 + \omega^2 \mu t_1 + \omega t_2, \quad \ell_5 = t_0 + \omega^2 t_1 + \omega \mu t_2, \n\ell_6 = \mu t_0 + \omega t_1 + \omega^2 t_2, \quad \ell_7 = t_0 + \omega \mu t_1 + \omega^2 t_2, \quad \ell_8 = t_0 + \omega t_1 + \omega^2 \mu t_2;
$$

they depend on the parameter μ .

We consider the subgroup $C_3 \times C_3$ of translations on $C(\mu)$ generated by

(3)
$$
\rho_1 : [t_0, t_1, t_2] \mapsto [t_2, t_0, t_1], \quad \rho_2 : [t_0, t_1, t_2] \mapsto [t_0, \omega t_1, \omega^2 t_2].
$$

Via the map $C_3 \times C_3 \ni \rho_1^j$ $i_1 \rho_2^k \mapsto \rho_1^j$ ${}_{1}^{j}\rho_{2}^{k}(P_{0}) \in \{P_{0},\ldots,P_{8}\},$ we identify the set $\{P_0,\ldots,P_8\}$ with $C_3 \times C_3$. Then we have

(4)
$$
\rho_1^j \rho_2^k(P_0) = P_{3k+j} \quad (j,k = 0,1,2).
$$

The linear transformations

$$
(t'_0, t'_1, t'_2) \rightarrow (t_0, t_1, t_2) = (\omega t'_0, t'_1, t'_2),
$$

$$
(t'_0, t'_1, t'_2) \rightarrow (t_0, t_1, t_2) = \frac{1}{3}(t'_0, t'_1, t'_2) \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}
$$

induce the isomorphism from $C(\mu)$ to $C(\omega\mu)$ and that to $C(\frac{\mu+2}{\mu-1})$. The group $\mathcal N$ of linear fractional transformations generated by

(5)
$$
\nu_1 : \mu \mapsto \omega \mu, \quad \nu_2 : \mu \mapsto \frac{\mu+2}{\mu-1} = 1 + \frac{3}{\mu-1}
$$

is isomorphic to the alternating group A_4 . The product $\prod_{\nu \in \mathcal{N}} \nu(\mu)$ becomes

$$
\frac{\mu^3(\mu^3+2^2)^3}{(\mu^3-1)^3},
$$

which equals to 64 times the *j*-invariant of $C(\mu)$. Thus $C(\mu')$ is isomorphic to $C(\mu)$ if and only if there exists an element $\nu \in \mathcal{N}$ such that $\mu' = \nu(\mu)$.

3. PERIODS ψ_A and ψ_B

Let $f_{\mu}(x,y) = F_{\mu}(x,y,1)$ be the defining equation of the affine part of $C(\mu)$, where $x = \frac{t_0}{t_0}$ $\frac{t_0}{t_2}, y = \frac{t_1}{t_2}$ $\frac{t_1}{t_2}$. We fix a holomorphic 1-from φ on each $C(\mu)$ as

$$
\varphi = \frac{3dy}{\frac{\partial f_{\mu}(x,y)}{\partial x}} = \frac{dy}{x^2 - \mu y} = \frac{-3dx}{\frac{\partial f_{\mu}(x,y)}{\partial y}} = \frac{-dx}{y^2 - \mu x}.
$$

Note that

$$
\rho_1^*(\varphi)=\rho_2^*(\varphi)=\varphi
$$

for the isomorphisms ρ_1 and ρ_2 in (3).

In order to construct cycles A and B in $C(\mu)$, we consider a non-abelian covering $pr_y : C(\mu) \ni (x, y) \mapsto y \in \mathbb{P}^1$. Then the ramification points of pr_y are given by $\frac{\partial f_\mu}{\partial x}(x, y) = 0$. Their images η_1, \ldots, η_6 in \mathbb{P}^1 are

$$
\omega^k \sqrt[3]{2\mu^3 - 1 \pm 2\sqrt{\mu^3(\mu^3 - 1)}}, \quad (k = 0, 1, 2).
$$

Note that the y is a local coordinate of $C(\mu)$ except η_i . We give cycles in $C(\mu)$ as liftings of those in $\mathbb{P}^1 - \{\eta_1, \dots, \eta_6\}$ by pr_y . To specify the cycles A and B in $C(\mu)$, we choose μ as $\mu_0 = -\sqrt[3]{2}$. For μ_0 , we have

$$
\eta_j = i(-\omega^2)^j, \quad (j = 1, \dots, 6).
$$

For any $\mu \in \mathcal{M}$ and a path γ from μ_0 to μ in $\mathbb{P} - \{1, \omega, \omega^2, \infty\}$ we define the cycles A and B by the continuation according to γ . The homology classes of A and B depends only on the homotopy class of γ .

We define chains connecting flex points in (1). We define the chain λ_{01} from P₀ to P₁ in \mathbb{R}^2 as the lifting of the interval [-1, 0] in $C(\mu)$. We set

(6)
$$
B = (1 + \rho_1 + \rho_1^2)(\lambda_{01}).
$$

Since

$$
\partial(\lambda_{01}) = P_1 - P_0, \quad \partial(\rho_1(\lambda_{01})) = P_2 - P_1, \quad \partial(\rho_1^2(\lambda_{01})) = P_0 - P_2,
$$

B is a cycle. Note that it is the intersection of $C(\mu)$ and the real projective plane $\mathbb{P}^2(\mathbb{R})$.

We define the chain λ_{03} from P_0 to P_3 as the lifting of the segment from -1 to $-\omega^2$ in $C(\mu)$. (Figure 1.) We set

(7)
$$
A = (1 + \rho_2 + \rho_2^2)(\lambda_{03}).
$$

Since

$$
\partial(\lambda_{03}) = P_3 - P_0
$$
, $\partial(\rho_2(\lambda_{01})) = P_6 - P_3$, $\partial(\rho_2^2(\lambda_{01})) = P_0 - P_6$,

the chain A is a cycle.

Lemma 1. The intersection number $B \cdot A$ of cycles B and A is 1.

FIGURE 1. cycle A

Proof. Consider the projections $A|_y$ and $B|_y$ of cycles A and B under pr_y ; $A|_y$ is in Figure 1 and $B|_y$ is the real axis. They have two intersection points. The one is $y = -1$, which corresponds to P_0 . It is easy to see that the intersection number of B and A at this point is 1. The other $P|_y$ is the projection of $\rho_2(\lambda_{03})$ with real value. By following the continuation, the x-coordinate of $\rho_2(\lambda_{03})$ for real y does not belong to R. Thus the preimage of $P|y$ in A is different from that in B. in B .

We define periods ψ_A and ψ_B of $C(\mu)$ as

(8)
$$
\psi_A = \psi_A(\mu) = \int_A \varphi, \quad \psi_B = \psi_B(\mu) = \int_B \varphi.
$$

By Riemann's period relation, neither ψ_A nor ψ_B vanishes and

(9)
$$
\tau = \tau(\mu) = \frac{\psi_A(\mu)}{\psi_B(\mu)}
$$

belongs to the upper half space \mathbb{H} . For each $\mu \in \mathcal{M}$, the map

(10)
$$
\Psi_{\mu}: C(\mu) \ni P \mapsto \frac{1}{\psi_B} \int_{P_0}^P \varphi \in E_{\tau} = \mathbb{C}/(\mathbb{Z}\tau + \mathbb{Z})
$$

is an isomorphism. By (4) , (6) and (7) , we have

(11)
$$
\Psi_{\mu}(P_{3k+j}) \equiv \frac{k}{3}\tau + \frac{j}{3} \mod (\mathbb{Z}\tau + \mathbb{Z})
$$

for $j, k \in \mathbb{F}_3 = \{0, 1, 2\}.$

The hypergeometric function $F(\alpha, \beta, \gamma; x)$ is defined as

$$
F(\alpha, \beta, \gamma; x) = \sum_{n=0}^{\infty} \frac{(\alpha)_n (\beta)_n}{(\gamma)_n n!} x^n,
$$

where the variable z belongs to the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}, \gamma \neq 0\}$ $0, -1, -2, \ldots$, and $(\alpha)_n = \alpha(\alpha+1)\cdots(\alpha+n-1) = \Gamma(\alpha+n)/\Gamma(\alpha)$. This function admits the integral representation:

$$
F(\alpha, \beta, \gamma; z) = \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\gamma - \alpha)} \int_1^{\infty} t^{\beta - \gamma} (t - 1)^{\gamma - \alpha} (t - z)^{-\beta} \frac{dt}{t - 1}.
$$

Theorem 1. For $\mu \in D = \{z \in \mathbb{C} \mid |z| < 1\}$, we have

$$
\psi_A(\mu) = (\omega - 1)B\left(\frac{1}{3}, \frac{1}{3}\right)F\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) + (1 - \omega^2)\mu B\left(\frac{2}{3}, \frac{2}{3}\right)F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right),
$$

$$
\psi_B(\mu) = B\left(\frac{1}{3}, \frac{1}{3}\right)F\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) - \mu B\left(\frac{2}{3}, \frac{2}{3}\right)F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right).
$$

Proof. We show the second equality. It is enough to show it for μ in the open interval $(0, 1)$. Let $\tilde{C}(\mu)$ be the double cover of $C(\mu)$ defined by

$$
\jmath : \tilde{C}(\mu) \ni (u, v) \mapsto (x, y) = (-u - v, \frac{uv}{\mu}) \in C(\mu).
$$

Then $\tilde{C}(\mu)$ is given by

$$
v^3 = \mu^3 \frac{u^3 - 1}{u^3 - \mu^3}.
$$

Let $\tilde{\lambda}$ be the chain in $\tilde{C}(\mu)$ such that u varies from 1 to ∞ and v dependently varies from 0 to μ^3 . It is easy to see that the image $\chi(\tilde{\lambda})$ of $\tilde{\lambda}$ coincides with the chain $\rho_1(\lambda_{01})$ from P_1 to P_2 . Since the pull-back of φ under the map j is

$$
\jmath^{*}(\frac{dy}{x^{2}-\mu y}) = \frac{\mu^{2}(u-v)du}{(u^{3}-\mu^{3})v^{2}},
$$

we have

$$
\int_{B} \frac{dy}{x^2 - \mu y} = 3 \int_{\rho_1(\lambda_{01})} \frac{dy}{x^2 - \mu y} = 3 \int_{\tilde{\lambda}} \frac{\mu^2 (u - v) du}{(u^3 - \mu^3) v^2}.
$$

By the inequalities $u - 1 > 0$, $u - \mu > 0$, $0 < v < \mu$ on the chain $\tilde{\lambda}$, v can be expressed as

$$
v = \mu(u^3 - 1)^{\frac{1}{3}}(u^3 - \mu^3)^{-\frac{1}{3}},
$$

where the cubic roots take positive real values. Thus we have

$$
3\int_{\tilde{\lambda}} \frac{\mu^2 (u-v) du}{(u^3 - \mu^3) v^2}
$$

= $3 \int_{1}^{\infty} u (u^3 - 1)^{-\frac{2}{3}} (u^3 - \mu^3)^{-\frac{1}{3}} du - 3\mu \int_{1}^{\infty} (u^3 - 1)^{-\frac{1}{3}} (u^3 - \mu^3)^{-\frac{2}{3}} du.$

Put $u^3 = t$, then we see that the integrals can be expressed by the hypergeometric function. We can similarly show the first equality. \Box

4. Monodromy

We give relations between $(\psi_A(\nu_i(\mu)), \psi_B(\nu_i(\mu)))$ and $(\psi_A(\mu), \psi_B(\mu))$ for $i =$ 1, 2, where ν_1 and ν_2 are given in (5).

Lemma 2. The values of ψ_A and ψ_B at $\nu_1(\mu) = \omega \mu$ are given by

$$
\begin{pmatrix} \psi_A(\omega\mu) \\ \psi_B(\omega\mu) \end{pmatrix} = \omega^2 \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \psi_A(\mu) \\ \psi_B(\mu) \end{pmatrix},
$$

where μ is in the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}.$

Proof. We have

$$
\begin{pmatrix}\n\psi_A(\omega\mu) \\
\psi_B(\omega\mu)\n\end{pmatrix} = \begin{pmatrix}\n\omega - 1 & 1 - \omega^2 \\
1 & -1\n\end{pmatrix} \begin{pmatrix}\nB\left(\frac{1}{3}, \frac{1}{3}\right) F\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) \\
\omega\mu B\left(\frac{2}{3}, \frac{2}{3}\right) F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right)\n\end{pmatrix}
$$
\n
$$
= \begin{pmatrix}\n\omega - 1 & 1 - \omega^2 \\
1 & -1\n\end{pmatrix} \begin{pmatrix}\n1 & 0 \\
0 & \omega\n\end{pmatrix} \begin{pmatrix}\nB\left(\frac{1}{3}, \frac{1}{3}\right) F\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) \\
\mu B\left(\frac{2}{3}, \frac{2}{3}\right) F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right)\n\end{pmatrix}
$$
\n
$$
= \omega^2 \begin{pmatrix}\n-2 & -3 \\
1 & 1\n\end{pmatrix} \begin{pmatrix}\n\omega - 1 & 1 - \omega^2 \\
1 & -1\n\end{pmatrix} \begin{pmatrix}\nB\left(\frac{1}{3}, \frac{1}{3}\right) F\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}; \mu^3\right) \\
\mu B\left(\frac{2}{3}, \frac{2}{3}\right) F\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}; \mu^3\right)\n\end{pmatrix},
$$
\nwhich implies this lemma.

Put $\mu' = \nu_2(\mu) = 1 + \frac{3}{\mu - 1}$. By considering the map

$$
C(\mu) \ni (x, y) \mapsto (x', y') = \left(\frac{x + y + 1}{x + \omega^2 y + \omega}, \frac{x + \omega y + \omega^2}{x + \omega^2 y + \omega}\right) \in C(\mu'),
$$

we can obtain the following lemma.

Lemma 3. The values of ψ_A and ψ_B at $\nu_2(\mu) = 1 + \frac{3}{\mu - 1}$ are given by

$$
\frac{\begin{pmatrix} \psi_A(\nu_2(\mu)) \\ \psi_B(\nu_2(\mu)) \end{pmatrix} = 1 - \mu}{\sqrt{-3} \begin{pmatrix} -3 & -5 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \psi_A(\mu) \\ \psi_B(\mu) \end{pmatrix}},
$$

where μ is in a small neighborhood U of $1 - \sqrt{3}$ which is the fixed point of ν_2 in the unit disk D.

We put

(12)
$$
N_1 = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix}, \quad N_2 = \begin{pmatrix} -3 & -5 \\ 2 & 3 \end{pmatrix},
$$

They belong to $SL_2(\mathbb{Z})$ and satisfy $N_1^3 = -N_2^2 = I_2$.

Proposition 1. If μ follows an anti-clockwise path along a small circle around ω^j , then $\begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$ ψ_B is analytically continued to $M_{\omega^j} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$ ψ_B $\Big)$, where

$$
M_1 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \quad M_\omega = \begin{pmatrix} 7 & 12 \\ -3 & -5 \end{pmatrix}, \quad M_{\omega^2} = \begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix}.
$$

These matrices satisfy

$$
M_{\infty}^{-1} = M_1 M_{\omega} M_{\omega^2} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}
$$

and generate the principal congruence subgroup

$$
\Gamma(3) = \{ g \in SL_2(\mathbb{Z}) \mid g \equiv I_2 \bmod 3 \}.
$$

Proof. Proposition 12.2 in [Mu] together with our construction of cycles by the actions of ρ_1 and ρ_2 implies that M_{ω} belongs to $\Gamma(3)$.

We show the equality $M_{\omega} = (N_1^2 N_2)^3$. Let $\mu_1 = 1 - \sqrt{3}$, $\mu_2 = (\nu_1^2 \circ \nu_2)(\mu_1)$ and $\mu_3 = (\nu_1^2 \circ \nu_2)^2 (\mu_1)$, and let $\overline{\mu_1 \mu_2}$ be the segment from μ_1 to μ_2 . The composite γ_ω of the paths $\overline{\mu_1\mu_2}$, $(\nu_1^2 \circ \nu_2)(\overline{\mu_1\mu_2})$ and $(\nu_1^2 \circ \nu_2)^2(\overline{\mu_1\mu_2})$ turns around the point ω . By Lemmas 2 and 3, we have

$$
\begin{pmatrix} \psi'_A(\mu) \\ \psi'_B(\mu) \end{pmatrix} = c'(\mu) (N_1^2 N_2)^3 \begin{pmatrix} \psi_A(\mu) \\ \psi_B(\mu) \end{pmatrix},
$$

where ${}^t(\psi')$ $\mathcal{H}_A(\mu), \psi'_B(\mu)$ denotes the analytic continuation of ${}^t(\psi_A(\mu), \psi_B(\mu))$ along the path γ_ω and $c'(\mu)$ is a rational function of μ . Since $(\dot{N}_1^2 N_2)^3 \in \Gamma(3)$, we have $c'(\mu) = 1$ and $M_{\omega} = (N_1^2 N_2)^3$. It is easy to see that

 $M_{\omega} = N_1 M_1 N_1^{-1}, \quad M_{\omega^2} = N_1^2 M_1 N_1^{-2}.$

Thus we get the first part of the proposition.

A fundamental domain of the quotient space $\mathbb{H}/\Gamma(3)$ and a system of generators of $\Gamma(3)$ are given in [FK] and [Kl]. These results imply that $\Gamma(3)$ is freely generated by M_1 , M_{∞} and $tM_{\omega^2}^{-1}$.

FIGURE 2. Fundamental domain for $\mathbb{H}/\Gamma(3)$

5. MODULAR FUNCTION μ IN TERMS OF THETA CONSTANTS.

The theta function with characteristic (a, b) is defined as

$$
\vartheta_{a,b}(z,\tau) = \sum_{n \in \mathbb{Z}} \exp[\pi i(n+a)^2 \tau + 2\pi i(n+a)(z+b)],
$$

where (z, τ) is a variable in $\mathbb{C} \times \mathbb{H}$, a, b are real parameters. This function satisfies

$$
\vartheta_{a,b}(z,\tau) = \exp(\pi i a^2 \tau + 2\pi i a(z+b)) \vartheta_{0,0}(z + a\tau + b, \tau),
$$

\n
$$
\vartheta_{a,b}(z+1,\tau) = \exp(2\pi i a) \vartheta_{a,b}(z,\tau),
$$

\n
$$
\vartheta_{a,b}(z+\tau,\tau) = \exp(-2\pi i b) \exp(-\pi i \tau - 2\pi i z) \vartheta_{a,b}(z,\tau),
$$

\n
$$
\vartheta_{a,b}(-z,\tau) = \vartheta_{-a,-b}(z,\tau),
$$

\n
$$
\vartheta_{a,b}(z+\tau+\tau+d,\tau) = \exp(2\pi i a q) \vartheta_{a,b}(z,\tau),
$$

\n
$$
\vartheta_{a,b}(z+\tau+\tau+d,\tau) = \exp(-\pi i c^2 \tau - 2\pi i c(z+b+d)) \vartheta_{a+c,b+d}(z,\tau),
$$

where $c, d \in \mathbb{R}$, $p, q \in \mathbb{Z}$. It is known that $\theta_{a,b}(z, \tau) = 0$ if and only if $z =$ $\frac{1+\tau}{2} - (a+p)\tau - (b+q)\tau$, where $p, q \in \mathbb{Z}$. Thus for

$$
(a,b) = \frac{1}{2}(1,1) - \frac{1}{3}(k,j), \ (a',b') = \frac{1}{2}(1,1) - \frac{1}{3}(k',j'), \quad j,k,j',k' \in \mathbb{F}_3,
$$

 $\partial_{a,b}^3(z,\tau)/\partial_{a',b'}^3(z,\tau)$ is a meromorphic function on E_{τ} and it has a zero of order 3 at $\frac{k\tau+j}{3}$ and a pole of order 3 at $\frac{k'\tau+j'}{3}$ $\frac{(-1)^{1}}{3}$. Since the pull-back of this function under the map Ψ_{μ} has the divisor $3P_{3k+j} - 3P_{3k'+j'}$, it is a constant multiple of the ratio $\ell_{3k+j}/\ell_{3k'+j'}$ of the linear forms in (2). More precisely, we have the following proposition.

Proposition 2. We have the equality

$$
(\ell_0: \ell_1: \dots: \ell_8) = ((-1)^j \omega^{-jk} \vartheta_0^3: (-1)^j \omega^{-jk} \vartheta_1^3: \dots: (-1)^j \omega^{-jk} \vartheta_8^3)
$$

 \mathbb{P}^8 , where $j, k \in \{0, 1, 2\}$ and

$$
\vartheta_{3k+j} = \Psi_{\mu}^*(\vartheta_{\frac{1}{2} - \frac{k}{3}, \frac{1}{2} - \frac{j}{3}}(z, \tau)).
$$

Proof. The value of the meromorphic function ℓ_1/ℓ_0 at $P_2 = [-1, 1, 0]$ is

$$
\ell_1/\ell_0(P_2) = \frac{t_0 + \lambda t_1 + t_2}{\lambda t_0 + t_1 + t_2}(P_2) = \frac{-1 + \lambda}{-\lambda + 1} = -1.
$$

On the other hand, the value of

$$
\Psi_{\mu}^*(\vartheta^3_{\frac{1}{2},\frac{1}{2}-\frac{1}{3}}(z,\tau)/\vartheta^3_{\frac{1}{2},\frac{1}{2}}(z,\tau))
$$

at P_2 is

 in

$$
\frac{\vartheta^3_{\frac{1}{2},\frac{1}{2}-\frac{1}{3}}(\frac{2}{3},\tau)}{\vartheta^3_{\frac{1}{2},\frac{1}{2}}(\frac{2}{3},\tau)}=\frac{\vartheta^3_{\frac{1}{2},\frac{1}{2}+\frac{1}{3}}(0,\tau)}{\vartheta^3_{\frac{1}{2},\frac{1}{2}+\frac{2}{3}}(0,\tau)}=\frac{\vartheta^3_{\frac{1}{2},\frac{1}{2}+\frac{1}{3}}(0,\tau)}{\vartheta^3_{-\frac{1}{2},-\frac{1}{2}-\frac{2}{3}}(0,\tau)}=\frac{\vartheta^3_{\frac{1}{2},\frac{1}{2}+\frac{1}{3}}(0,\tau)}{\vartheta^3_{\frac{1}{2}-1,\frac{1}{2}+\frac{1}{3}-2}(0,\tau)}=1.
$$

Thus we have

$$
\frac{\ell_1}{\ell_0} = -\frac{\vartheta_1^3}{\vartheta_0^3}
$$

.

Similarly we can calculate the rests.

The function $\vartheta_{ab}(\tau) = \theta_{ab}(0, \tau)$ of $\tau \in \mathbb{H}$ is called the theta constant. Statements in the rest of this section are classically known. We give their proves for the convenience of readers.

Proposition 3 (c.f. $[Kr]$). The parameter μ can be expressed as

$$
\mu - 1 = \sqrt{3}i \frac{\frac{\vartheta_{3}}{2}, \frac{1}{6}(\tau)}{\frac{\vartheta_{3}}{6}, \frac{1}{2}(\tau)},
$$
\n
$$
\mu - \omega = \sqrt{3}i \frac{\frac{\vartheta_{-1}}{6}, \frac{1}{6}(\tau)}{\frac{\vartheta_{3}}{6}, \frac{1}{2}(\tau)},
$$
\n
$$
\mu - \omega^2 = \sqrt{3}i \frac{\frac{\vartheta_{3}}{6}, \frac{1}{6}(\tau)}{\frac{\vartheta_{3}}{6}, \frac{1}{2}(\tau)},
$$
\n
$$
\mu^3 - 1 = -3\sqrt{3}i \frac{\frac{\vartheta_{3}}{6}, \frac{1}{6}(\tau)\vartheta_{\frac{-1}{6}, \frac{1}{6}}^{3}(\tau)\vartheta_{\frac{3}{6}, \frac{1}{6}}^{3}(\tau)}{\frac{\vartheta_{3}}{6}, \frac{1}{6}(\tau)}.
$$

Proof. The value of ℓ_1/ℓ_3 at P_0 is $-(\mu - 1)/(\omega - \omega^2)$. On the other hand, $\vartheta_1^3/\vartheta_3^3$ at P_0 is $-\vartheta_{\frac{1}{2},\frac{1}{6}}^3(\tau)/\vartheta_{\frac{1}{3},\frac{1}{2}}^3(\tau)$. Thus we have

$$
\mu - 1 = \sqrt{3}i \frac{\vartheta_{\frac{1}{2},\frac{1}{6}}^{3}(\tau)}{\vartheta_{\frac{1}{6},\frac{1}{2}}^{3}(\tau)}.
$$

In order to get the second equality, consider the values of ℓ_3/ℓ_5 and $\vartheta_3^3/\vartheta_5^3$ at P_0 . In order to get the third equality, consider the values of ℓ_3/ℓ_4 and θ_3^3/θ_4^3 at P_0 . By multiplying these three equalities, we have the last equality.

Corollary 1 (c.f. $[FK]$, p.193, Thm. 3.12). We have

$$
\vartheta_{\frac{1}{6}\frac{1}{6}}^{3}(\tau) = \vartheta_{\frac{1}{2}\frac{1}{6}}^{3}(\tau) - \omega \vartheta_{\frac{1}{6}\frac{1}{2}}^{3}(\tau),
$$

$$
\vartheta_{\frac{1}{6}\frac{-1}{6}}^{3}(\tau) = \vartheta_{\frac{1}{2}\frac{1}{6}}^{3}(\tau) + \omega^{2} \vartheta_{\frac{1}{6}\frac{1}{2}}^{3}(\tau).
$$

Proof. Eliminate μ from the equalities in Proposition 3.

Proposition 4 (c.f.[Kr]). The map $E_\tau \ni z \mapsto [h_0(z), h_1(z), h_2(z)] \in C(\mu)$ is the inverse of Ψ_{μ} , where

$$
\begin{pmatrix} h_0(z) \\ h_1(z) \\ h_2(z) \end{pmatrix} = \begin{pmatrix} \vartheta_{\frac{1}{2},\frac{1}{2}}(z,\tau)\vartheta_{\frac{1}{6},\frac{1}{2}}(z,\tau)\vartheta_{\frac{-1}{6},\frac{1}{2}}(z,\tau) \\ -\vartheta_{\frac{1}{2},\frac{1}{6}}(z,\tau)\vartheta_{\frac{1}{6},\frac{1}{6}}(z,\tau)\vartheta_{\frac{-1}{6},\frac{1}{6}}(z,\tau) \\ \vartheta_{\frac{1}{2},\frac{-1}{6}}(z,\tau)\vartheta_{\frac{1}{6},\frac{-1}{6}}(z,\tau)\vartheta_{\frac{-1}{6},\frac{-1}{6}}(z,\tau) \end{pmatrix}.
$$

Proof. By following the proof of Proposition 2, we can show that

$$
(\frac{t_0}{t_2}, \frac{t_1}{t_2}) = (\frac{\vartheta_0 \vartheta_3 \vartheta_6}{\vartheta_2 \vartheta_5 \vartheta_8}, -\frac{\vartheta_1 \vartheta_4 \vartheta_7}{\vartheta_2 \vartheta_5 \vartheta_8})
$$

as meromorphic functions on $C(\mu)$.

6. Analogs of Jacobi's formula for Hesse cubic curves

In this section, we prove the following formulas, which are analogs of Jacobi's formula for Hesse cubic curves.

Theorem 2. We have

$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau) = 81 \cdot \psi_B(\mu)^{12} \cdot (\mu^3 - 1),
$$

\n
$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{2},\frac{1}{6}}^{24}(\tau) = \psi_B(\mu)^{12} \cdot (\mu^3 - 1)(\mu - 1)^8,
$$

\n
$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{6},\frac{1}{6}}^{24}(\tau) = \psi_B(\mu)^{12} \cdot (\mu^3 - 1)(\mu - \omega^2)^8,
$$

\n
$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{-1}{6},\frac{1}{6}}^{24}(\tau) = \psi_B(\mu)^{12} \cdot (\mu^3 - 1)(\mu - \omega)^8,
$$

where we regard $\tau = \psi_A(\mu)/\psi_B(\mu)$ as a function of $\mu \in \mathcal{M} = \mathbb{P}^1 - \{1, \omega, \omega^2, \infty\}.$

In order to prove this theorem, we give some facts and lemmas. **Fact 1** ([Ig], p.176). For any $M = (m_{jk}) \in SL_2(\mathbb{Z})$, we have

$$
\vartheta_{M \cdot (a,b)} (M \cdot \tau)^8 = \varepsilon_{a,b} (M)^8 (m_{21} \tau + m_{22})^4 \vartheta_{a,b} (\tau)^8,
$$

where

$$
M \cdot \tau = \frac{m_{11}\tau + m_{12}}{m_{21}\tau + m_{22}}, \quad M \cdot (a, b) = (a, b)M^{-1} + \frac{1}{2}(m_{21}m_{22}, m_{11}m_{12}),
$$

\n
$$
\varepsilon_{a,b}(M) = \exp[-\pi i(a^2m_{12}m_{22} - 2abm_{12}m_{21} + b^2m_{21}m_{11})]
$$

\n
$$
\times \exp[\pi i(am_{22} - bm_{21})m_{11}m_{12}].
$$

For generators $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ of $SL_2(\mathbb{Z})$, we have $\vartheta_{a,b-a+\frac{1}{2}}(\tau+1)^8 = \exp[-\pi i a(a-1)]^8 \vartheta_{a,b}(\tau)^8,$ $\vartheta_{-b,a}(\frac{-1}{\pi})$ $(-\frac{1}{\tau})^8$ = exp[-2πiab]⁸τ⁴θ_{a,b}(τ)⁸.

Lemma 4. We have

$$
\lim_{\mu \to 1} \psi_B = \frac{2\pi}{\sqrt{3}} = B(1/3, 2/3),
$$

where μ goes to 1 in the unit disk D.

Proof. The period ψ_B is given as

$$
\int_{-1}^{0} \frac{3dy}{x^2 - \mu y}.
$$

If μ belongs to the open interval $(0, 1)$ then x varies from 0 to -1 in the closed interval [−1, 0] as y varies from −1 to 0. When $\mu = 1$, the curve C°_{μ} $\int_{\mu}^{\infty} : x^3 + y^3 +$ $1 - 3\mu xy = 0$ reduces to the union of three lines

$$
x + y + 1 = 0
$$
, $\omega x + \omega^2 y + 1 = 0$, $\omega^2 x + \omega y + 1 = 0$.

Since the cycle B is in $C_{\mu}\cap \mathbb{P}^2(\mathbb{R})$, its limit chain as $\mu \to 1$ is in the line $x+y+1=$ 0. Thus we have

$$
\lim_{\mu \to 1} 3 \int_{-1}^{0} \frac{dy}{x^2 - \mu y} = \int_{-1}^{0} \frac{3dy}{(1+y)^2 - y}
$$

=
$$
\int_{-1}^{0} \frac{3dy}{1+y+y^2} = \left[2\sqrt{3}\arctan\left(\frac{2y+1}{\sqrt{3}}\right)\right]_{-1}^{0} = \frac{2\pi}{\sqrt{3}}.
$$

On the other hand, we have

$$
B(1/3, 2/3) = \frac{\Gamma(1/3)\Gamma(2/3)}{\Gamma(1)} = \frac{\pi}{\sin(\pi/3)} = \frac{2\pi}{\sqrt{3}}
$$

by the formula $\Gamma(\alpha)\Gamma(1-\alpha) = \pi/\sin(\pi\alpha)$.

Similarly we can show the following.

Lemma 5. We have

$$
\lim_{\mu \to 1} \frac{\psi_A(\mu)}{\psi_B(\mu)} = i\infty.
$$

Lemma 6.

$$
\vartheta_{\frac{1}{6},\frac{1}{2}}^4(3\tau) = \frac{i}{\sqrt{3}} \vartheta_{\frac{1}{6},\frac{1}{2}}(\tau) \vartheta_{\frac{1}{6},\frac{1}{6}}(\tau) \vartheta_{\frac{1}{2},\frac{1}{6}}(\tau) \vartheta_{\frac{-1}{6},\frac{1}{6}}(\tau).
$$

Proof. Use infinite product expressions of theta constants in §13 of [Mu]. \Box Lemma 7.

$$
\lim_{\mathrm{Im}(\tau)\rightarrow\infty}\frac{\vartheta_{\frac{1}{6},\frac{1}{2}}^{36}(\tau)}{\vartheta_{\frac{1}{6},\frac{1}{2}}^{12}(3\tau)}=1.
$$

Proof. Express $\vartheta_{\frac{1}{6},\frac{1}{2}}(\tau)$ and $\vartheta_{\frac{1}{6},\frac{1}{2}}(3\tau)$ by $q = \exp(\pi i \tau)$. We have only to note that $\exp(\pi i(3\tau)) = q^3$ and that $q \to 0$ as $\text{Im}(\tau) \to \infty$.

Remark 1. The function $\vartheta_{\frac{1}{6},\frac{1}{2}}(3\tau)^{24}$ is known to be Jacobi's Δ -function, which is a cusp form with respect to $SL_2(\mathbb{Z})$ and admits the infinite product expression:

$$
\Delta(\tau) = \exp(2\pi i \tau) \prod_{n=1}^{\infty} (1 - \exp(2\pi i n \tau))^{24}.
$$

Proof of Theorem 2. We show the equality

$$
3 \cdot (2\pi)^{12} \cdot \vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau(\mu)) = 81 \cdot \psi_B(\mu)^{12} \cdot (\mu^3 - 1).
$$

The rests can be easily obtained from this equality and Proposition 3. Consider the function $f(\mu) = \frac{\partial_{\frac{1}{6},\frac{1}{2}}^2(\tau(\mu))/\psi_B(\mu)^{12}$ on M. We claim that $f(\mu)$ is singlevalued and holomorphic on M. By the continuation of $\begin{pmatrix} \psi_A(\mu) \\ \psi_B(\mu) \end{pmatrix}$ $\psi_B(\mu)$ along a closed path, it is multiplied by an element $M = (m_{jk}) \in \Gamma(3)$ from the left. Then $\psi_B(\mu)^{12}$ is transformed into

$$
(m_{21}\psi_A(\mu) + m_{22}\psi_B(\mu))^{12}
$$

and $\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau)$ is transformed into

$$
\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(M\cdot \tau)=(m_{21}\tau+m_{22})^{12}\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau)
$$

by Fact 1. Note that $(\kappa(M)\varepsilon_{a,b}(M))^{24} = 1$ and the characteristic $(\frac{1}{6}, \frac{1}{2})$ $(\frac{1}{2})$ is invariant by the action of M by $M \in \Gamma(3)$. Since $\tau = \psi_A/\psi_B$, it turns out that $\frac{\partial^{24}_{13}}{\partial t^{2}}(\tau(\mu))/\psi_B(\mu)^{12}$ is invariant under this continuation. Thus $f(\mu)$ is singlevalued. We have pointed out that ψ_B never vanishes for any $\mu \in \mathcal{M}$. Hence this claim is shown.

Next we show that the meromorphic function $f(\mu)/(\mu^3-1)$ is a constant. Since $\vartheta_{\frac{1}{6},\frac{1}{2}}(\tau)$ never vanishes on $\mathbb{H}, f(\mu)/(\mu^3-1)$ is a non-zero holomorphic function on $\mathbb{P}^1 - \{1, \omega, \omega^2, \infty\}$. We study the behavior of $f(\mu)/(\mu^3 - 1)$ around the isolated singular points $1, \omega, \omega^2$ and ∞ .

If μ goes to 1, then ψ_B converges to $2\pi/\sqrt{3}$ and τ goes to $i\infty$ by Lemmas 4 and 5. The function $\frac{\partial^{24}_{1}}{\partial^{3}\frac{1}{2}}(\tau)/(\mu^3-1)$ is a constant multiple of $\frac{\partial^{36}_{1}}{\partial^{3}\frac{1}{2}}(\tau)/\frac{\partial^{12}_{12}}{\partial^{3}\frac{1}{2}}(3\tau)$ by the last equality of Proposition 3 and Lemma 6. Its limit as $\tau \to i\infty$ is 1 by Lemma 7. Thus we have

(13)
$$
\lim_{\mu \to 1} \frac{\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau(\mu))}{(\mu^3 - 1)\psi_B(\mu)^{12}} = \frac{27}{(2\pi)^{12}}.
$$

In order to study the behavior of $f(\mu)/(\mu^3 - 1)$ as $\mu \to \omega$, we use Lemma 2. We have

$$
\lim_{\mu \to \omega} \frac{\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau)}{\psi_B(\mu)^{12}(\mu^3 - 1)} = \lim_{\mu \to 1} \frac{\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(N_1 \cdot \tau)}{(\psi_A(\mu) + \psi_B(\mu))^{12}(\mu^3 - 1)}
$$
\n
$$
= \lim_{\text{Im}(\tau) \to \infty} \frac{(\psi_A(\mu)/\psi_B(\mu) + 1)^{12} \vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau)}{(\psi_A(\mu) + \psi_B(\mu))^{12}(\mu^3 - 1)} = \lim_{\text{Im}(\tau) \to \infty} \frac{\vartheta_{\frac{1}{6},\frac{1}{2}}^{24}(\tau)}{\psi_B(\mu)^{12}(\mu^3 - 1)},
$$

where $\tau = \psi_A(\mu)/\psi_B(\mu)$ and $N_1 = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$. Thus the behavior of $f(\mu)/(\mu^3-1)$ as $\mu \to \omega$ reduces to that as $\mu \to 1$, and we have $\lim_{\mu \to \omega} f(\mu)/(\mu^3-1)$ 1) \neq 0. Similarly, we have $\lim_{\mu \to \omega^2} f(\mu)/(\mu^3 - 1) \neq 0$.

Since the meromorphic function $f(\mu)/(\mu^3 - 1)$ is extended to a non-vanishing holomorphic function on $\mathbb{P}^1 - \{\infty\}$, it should be a constant. This constant has been evaluated in (13) .

The following is a direct corollary to Theorem 2. These statements can be obtained also by the Chowla-Selberg formula.

Corollary 2. The values of the above theta constants at ω are given by

$$
\begin{array}{rcl}\n\vartheta_{\frac{1}{6},\frac{1}{2}}(\omega) & = & \frac{3^{5/24}}{2\pi} \exp\left(\frac{5\pi\sqrt{-1}}{24}\right) \Gamma\left(\frac{1}{3}\right)^{3/2}, \\
\vartheta_{\frac{1}{2},\frac{1}{6}}(\omega) & = & \frac{3^{5/24}}{2\pi} \exp\left(-\frac{\pi\sqrt{-1}}{8}\right) \Gamma\left(\frac{1}{3}\right)^{3/2}, \\
\vartheta_{\frac{1}{6},\frac{1}{6}}(\omega) & = & \frac{3^{5/24}}{2\pi} \exp\left(-\frac{\pi\sqrt{-1}}{72}\right) \Gamma\left(\frac{1}{3}\right)^{3/2}, \\
\vartheta_{\frac{-1}{6},\frac{1}{6}}(\omega) & = & \frac{3^{3/8}}{2\pi} \exp\left(-\frac{5\pi\sqrt{-1}}{72}\right) \Gamma\left(\frac{1}{3}\right)^{3/2}.\n\end{array}
$$

Proof. Substitute $\mu = 0$ into Theorem 1, then $\tau = \psi_A/\psi_B = \omega - 1$. Use Theorem 2 and Fact 1 for T and select a suitable 144-th root of unity 2 and Fact 1 for T, and select a suitable 144-th root of unity.

.

Proposition 5.

$$
\vartheta_{\frac{1}{6},\frac{1}{2}}^{3}(\tau) = \frac{(1-\omega)i}{2\pi} \cdot \psi_B \cdot \vartheta_{\frac{1}{6},\frac{1}{2}}(3\tau).
$$

Proof. Use Proposition 3, Theorem 2 and Lemma 6.

REFERENCES

- [Bi] L. Bianchi, Über die Normalformen dritter und Fünfter Stufe des elliptishen Integrals erster Gattung, Math. Ann. 17 (1880), 234–262.
- [CLN] H. H. Chan, Z. Liu and S. T. Ng, Circular summation of theta functions in Ramanujan's lost notebook, J. Math. Anal. Appl. 316 (2006), 628–641.
- [EF] D. Ebin and H.M.Farcas, Thomae Formula for \mathbb{Z}_N curves, *Journal D'Analyse* (to appear).
- [FK] H. M. Farcas and I. Kra, Theta Constants, Riemann Surfaces and the Modular Group, Graduate Studies in Mathematics 37, AMS, 2001.
- [Ha] R. Hattori, On the Thomae formula of the refined form for triple coverings, 2009 (preprint).
- [He] L. Hesse, Ludwig Otto Hesse's gesammelte Werke, Chelsea Publishing Co., New York, 1972.
- [Ig] J. Igusa, Theta Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [Kl] F. Klein, Gesammelte mathematische Abhandlungen, Springer-Verlag, Berlin, 1973.
- [Ko] Y. Kopeliovich, Non vanishing Divisors for General cyclic covers and their Thomae formula, arXiv:0909.4965.
- [Kr] A. Krazer, Lehrbuch der Thetafunktionen, Chelsea Publishing Company, New York, 1970.
- [Mu] D. Mumford, Tata Lectures on Theta I, Progress in Mathematics 28, Birkhäuser, Boston-Basel-Stuttgart, 1983.
- [MS] K. Matsumoto and H. Shiga, A variant of Jacobi type formula for Picard curves, J. Math. Soc. Japan. (to appear).
- [MT] K. Matsumoto and T. Terasoma, Degenerations of triple coverings and Thomae's formula, (preprint).
- [N] A. Nakayashiki, On the Thomae formula for \mathbb{Z}_N/N curves, Publ. RIMS. 33 (6) (1997), 987–1015.
- [Oh] Y. Ohyama, Differential equations for modular forms of level three, Funkcial. Ekvac. 44 (2001), 377–389.
- [SC] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86–110.

[Th] J. Thomae, Beitrag zur Bestimmung die Classenmoduln Algebraischer Functionen, Crelle's J. 71 (1870), 201–222.

Department of Mathematics Hokkaido University Sapporo, 060-0810, Japan E-mail address: matsu@math.sci.hokudai.ac.jp

Graduate School of Mathematical Sciences THE UNIVERSITY OF TOKYO Komaba, Meguro, Tokyo, 153-8914, Japan E-mail address: terasoma@ms.u-tokyo.ac.jp

Kitami Computer Business Inc Nishi-3 Kita-3, Kitami, 090-0043, Japan