
ACTA MATHEMATICA VIETNAMICA 43
Volume 35, Number 1, 2010, pp. 43–69

WEAKLY BOUNDED HEIGHT ON MODULAR CURVES

P. HABEGGER

Abstract. We study the intersection of a fixed plane algebraic curve C with
modular curves of varying level. The height of points in such intersections
cannot be bounded from above independently of the level when C is defined
over the field of algebraic numbers. But we find a certain class of curves C for
which the height is bounded logarithmically in the level. This bound is strong
enough to imply certain finiteness result. Such evidence leads to a conjecture
involving a logarithmic height bound unless C is of so-called special type. We
also discuss connections to recent progress on conjectures concerning unlikely
intersections.

1. Introduction

In this article we investigate points on a fixed plane algebraic curve whose
coordinates are j-invariants of two varying isogenous elliptic curves. To this end
we regard the affine line A1 over the field of complex numbers as the j-line. In
other words it parameterizes elliptic curves defined over C up-to isomorphism.
We identify all varieties with their set of complex points.

For an integer N ≥ 1 let ΦN ∈ Z[X,Y ] denote theNth modular transformation
polynomial and let Y0(N) ⊂ A2 be the variety it cuts out. Then Y0(N) is a
geometrically irreducible algebraic curve. Moreover, the coordinates of a point
on this curve are j-invariants of two elliptic curves which are related by a cyclic
isogeny of degree N . For more details we refer to Chapter 5 of [19].

Let C ⊂ A2 be an irreducible algebraic curve defined over C.
We call a complex number a singular j-invariant if it is the j-invariant of an

elliptic curve with complex multiplication. Singular j-invariants are algebraic
integers. For the moment we assume that C contains infinitely many points
(x, y) with x and y singular j-invariants. The André-Oort Conjecture predicts
that C is either Y0(N) for some integer N ≥ 1, or {j0} × A1, or A1 × {j0} for
some singular j-invariant j0. This conjecture holds unconditionally for curves in
A2 by a result of André [1].

The three types of curves

Y0(N) (N ≥ 1), {j0} × A1, A1 × {j0} (j0 a singular j-invariant)
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which arise above are called special curves. Together with

A2 and {(j0, j′0)} (j0 and j′0 singular j-invariants)

they are the class of special subvarieties of A2.
We will mainly be interested in the height of algebraic points in the intersection

of C with Y0(N) as N varies. For such investigations it makes sense to suppose
C is defined over Q, the algebraic closure of Q in C. For a definition of the height
we refer to Section 2.

After stating the main results we will motivate such questions by connecting
them to general conjectures on unlikely intersections.

Our first result is a height upper bound which holds for a certain class of
curves.

Theorem 1.1. Let C ⊂ A2 be an irreducible algebraic curve defined over Q.

Let X and Y denote the coordinate functions on A2 restricted to C. We assume

degX 6= deg Y . There exists a constant c(C) ≥ 0 such that if N ≥ 1 is an integer

and P ∈ (C ∩ Y0(N))(Q), then

(1.1) h(P ) ≤ c(C) log(1 +N).

The proof is quite short and based on the following idea: we interpret the
coordinates of P as j-invariants of elliptic curves. A theorem of Faltings implies
that both coordinates have nearly the same height. But coordinates of points on
curves with degX 6= deg Y must have substantially different height by a result
essentially going back to Néron and Siegel.

We believe that the condition degX 6= degY can be replaced by the assump-
tion that C is not a special curve, cf. Theorem 1.3 and the conjecture below.

Let C ⊂ A2 be an irreducible curve that is not special and defined over Q.
For any ε > 0, one can apply Cohen’s estimate [9] for the height of modular
transformation polynomials to obtain a height bound of the form c(C, ε)N1+ε

instead of the logarithmic estimate in (1.1). Here c(C, ε) ≥ 0 depends only on C
and ε but not on N .

Can the upper bound in (1.1) be replaced by non-decreasing function that is
o(logN) for large N? The answer is no by the following theorem.

Theorem 1.2. Let C ⊂ A2 be an irreducible algebraic curve defined over Q that

is not a special curve. There are constants c(C) > 0 and p0(C) such that if p is

a prime with p ≥ p0(C) then there exists a point P ∈ (C ∩ Y0(p))(Q) with

h(P ) ≥ c(C) log p.

The proof of Theorem 1.2 is more involved than the proof of Theorem 1.1. We
need a recent lower bound for linear forms in elliptic logarithms by David and
Hirata-Kohno [13]. A further ingredient is an equidistribution result for Hecke
orbits by Clozel and Ullmo [7]. Finally, the method involves an auxiliary point
whose existence is guaranteed by the André-Oort Conjecture. As mentioned
above, this conjecture is known in our situation.
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Let

(1.2) S ′ =
⋃

N≥1

Y0(N).

An immediate conclusion of the last theorem is that C(Q)∩S ′ is infinite and has
unbounded height.

By Northcott’s Theorem, a subset of C(Q) of bounded height and bounded
degree is finite. Because the height is not uniformly bounded on C(Q) ∩ S ′,
Northcott’s Theorem cannot be used to show that a subset of bounded degree is
finite. Nevertheless, in the corollary below we do obtain finiteness results in this
spirit. Instead of using Northcott’s Theorem we apply Masser and Wüstholz’s
isogeny estimates for elliptic curves [21].

Corollary 1.1. Let C be as in Theorem 1.1. For any real D the set

{P ∈ C(Q) ∩ S ′; [Q(P ) : Q] ≤ D}
is finite.

We give an example of a curve which does not satisfy the hypothesis of Theorem
1.1 but for which the conclusion, at least for prime level, holds. The proof
involves, among other things, Cohen’s estimate mentioned above.

Theorem 1.3. Let C ⊂ A2 be the curve defined by X − Y = 1. There exists an

absolute constant c such that if p is a prime and P ∈ (C ∩ Y0(p))(Q), then

h(P ) ≤ 6 log(p) + c.

Unfortunately, the proof cannot treat other curves such as X + Y = 1; cf. the
end of section 6.

A finiteness result analogous to Corollary 1.1 for the curve given by X − Y =
1 can also be proven on restricting the union (1.2) to prime level. But the
argument given in the proof of Theorem 1.3 shows [Q(P ) : Q] ≥ p directly
without appealing to isogeny estimates.

We now put the above results into broader context. Pink [25] stated a vast
generalization of the André-Oort Conjecture. His Conjecture 1.3 governs the
intersection of a subvariety Z of a mixed Shimura variety with the union of
all special subvarieties of codimension strictly greater than dimZ. Accordingly,
this intersection should not be Zariski dense unless Z is contained in a special
subvariety of positive codimension inside the ambient Shimura variety.

Our terminology of special subvarieties is consistent with the language of
Shimura varieties when considering A2 as a Shimura variety, cf. Proposition
2.1 [15]. Pink’s Conjecture makes no prediction on the intersection of C with
varying Y0(N) because the codimension of Y0(N) equals the dimension of C. On
the other hand, recent progress made on unlikely intersections of a fixed subvari-
ety of a semi-abelian variety with varying algebraic subgroups suggests studying
heights on intersections as in our situation.

More precisely, let us for the moment assume that C is an irreducible algebraic
curve contained in the algebraic torus Gn

m. We assume that this curve is not
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contained in the translate of a proper algebraic subgroup of Gn
m. Bombieri,

Masser, and Zannier [3] proved the following result: there exists B such that any
point of C contained in the union over all algebraic subgroups of codimension
at least 1 has height at most B. This is of course in contrast to the modular
situation where the height is unbounded. They then applied this height bound
and other tools to prove the following statement: only finitely many points on C
are contained in the union of all algebraic subgroups of codimension at least 2.

Following this general strategy of using a height bound to prove finiteness,
Maurin [22] was able to weaken the hypothesis on C. His theorem is the precise
analog of Pink’s Conjecture for curves defined over Q in the algebraic torus.

We return to the modular setting. In view of Pink’s Conjecture it seems natural
to study the intersection of our curve C ⊂ A2 with the union of all special curves
in A2 and not just the modular curves Y0(N). Bombieri, Masser, and Zannier [4]
noticed that singular j-invariants have unbounded height. Even earlier, Colmez
[10] proved this by supplying a height lower bound. Both statements imply that
the set of points on C having a coordinate that is a singular j-invariant has
unbounded height.

Let us define

S = S ′ ∪
⋃

j0 singular
j-invariant

({j0} × A1) ∪ (A1 × {j0}).

This set is the union of all special subvarieties of A2 of codimension at least 1; it
contains all points whose coordinates are both singular j-invariants.

There are only finitely many singular j-invariants of bounded degree. So Corol-
lary 1.1 remains true with S ′ replaced by S, at least if we assume that C is not
special.

In view of Theorem 1.1 we can hope for a good height bound for P ∈ C(Q)∩S
in terms of the minimal special variety containing P . We will soon formulate
a Conjecture on Weakly Bounded Height for such points. But first we need to
introduce some notation.

For P ∈ A2 we define the Zariski closed set

S(P ) =
⋂

S⊂A2 special,
P∈S

S.

We claim that S(P ) is itself special. Indeed, say P = (x, y) and let us assume
S(P ) 6= A2. If x and y are both singular j-invariants, then S(P ) = {P}. If
precisely one among x and y is a singular j-invariant, say x, then S(P ) ⊂ {x}×A1.
We cannot have S(P ) ⊂ Y0(N) for some N ≥ 1, since otherwise y would be a
singular j-invariant too. Hence S(P ) cannot lie in any special subvariety of
codimension 1 other than {x}×A1. We get S(P ) = {x}×A1. Finally, if neither
x or y are singular j-invariants, then P is on Y0(N) for some N ≥ 1. Lemma 3.2
below implies that if P ∈ Y0(N) ∩ Y0(M) for an integer M , then N = M . We
conclude S(P ) = Y0(N).
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Our claim follows and we have showed that if S(P ) 6= A2, then
(1.3)

S(P ) =



















{P} : if x and y are singular j-invariants,

{x} × A1 : if x is a singular j-invariant and y is not,

A1 × {y} : if y is a singular j-invariant and x is not,

Y0(N) : if P ∈ Y0(N) and x,y are not singular j-invariants.

Of course, S(P ) is always defined over Q. But it needs not be defined over
the rationals. We let SQ(P ) ⊂ A2 denote the union of all conjugates over Q of
S(P ). It is the minimal variety defined over Q containing S(P ).

We fix the open immersion A2 → P1 ×P1 that maps (x, y) to ([x : 1], [y : 1]).
Let us consider the pull-backs of the ample generator of the Picard group of P1

by the two projections P1 × P1 → P1. Their tensor product is an ample line
bundle on P1 × P1. We use this line bundle to define the degree of a Zariski
closed set in P1 × P1. Let Z ⊂ A2 be Zariski closed, we let degZ denote the
degree of the Zariski closure of Z in P1 × P1.

For example, deg {x} ×A1 = 1. It follows from Theorem 3, page 55 of [19]
that degX ΦN = degY ΦN = Ψ(N) where Ψ(N) = N

∏

l(1+ l−1) and the product
runs over all primes l dividing N . So deg Y0(N) = 2Ψ(N). For P ∈ S we have
(1.4)

degSQ(P ) =



















[Q(x, y) : Q] : if x and y are singular j-invariants,

[Q(x) : Q] : if x is a singular j-invariant and y is not,

[Q(y) : Q] : if y is a singular j-invariant and x is not,

2Ψ(N) : if P ∈ Y0(N) and x,y are not singular j-invariants.

We now state our Conjecture on Weakly Bounded Height.

Conjecture. Let C ⊂ A2 be an irreducible algebraic curve defined over Q that

is not special. There exists a constant c(C) ≥ 0 such that if P ∈ C(Q) ∩ S, then

h(P ) ≤ c(C) log(1 + degSQ(P )).

Unfortunately, we are not able to prove this conjecture for the class of curves
appearing in Theorem 1.1. Below we will show it for these curves in a weaker
form. In fact it is the special curves {j0}×A1 and A1×{j0} we forgot in Theorem
1.1 which cause additional trouble. These problems disappear if we assume the
Generalized Riemann Hypothesis (GRH).

Corollary 1.2. Let C ⊂ A2 be as in Theorem 1.1 and let us also assume that C
is not special.

(i) There exists a constant c(C) ≥ 0 such that if P ∈ C(Q) ∩ S ′, then

h(P ) ≤ c(C) log(1 + degSQ(P )).

(ii) If the GRH holds for all odd, real Dirichlet L-functions, then the Conjec-

ture on Weakly Bounded Height holds for C.
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2. Preliminary remarks and notations

We begin by defining a height function needed throughout this article.
Let K be a number field, in other words a finite extension of Q. We let

M 0
K denote the set of non-trivial, non-archimedean absolute values on K whose

restriction to Q is the p-adic absolute value for some prime p. For v ∈ M 0
K we set

dv to be the degree of the completion of K with respect to v over the completion
of Q with respect to the restriction of v to Q.

We define the height of x ∈ K to be
(2.1)

h(x) =
1

[K : Q]





∑

σ:K→C

log max{1, |σ(x)|} +
∑

v∈M
0
K

dv log max{1, |x|v}



 ≥ 0,

here and throughout this article
∑

σ:K→C means taking the sum over the [K : Q]
different embeddings K → C. Our height does not change when replacing K by
another number field containing x. Hence it determines a well-defined function
h : Q → [0,∞). One may show that it is invariant under the action on Q of the
absolute Galois group of Q. A reference for heights is Chapter 1 of [2].

From the point of view of notation, it is sometimes useful to work with the
exponential height H(x) = exph(x) ≥ 1.

For (x, y) ∈ A2(Q) we define h(x, y) = max{h(x), h(y)}.
Some properties our height satisfies are H(xy) ≤ H(x)H(y), H(x+ y) ≤

2H(x)H(y) for x, y ∈ Q, H(x) = max{1, |x|} for integers x, and H(xn) = H(x)|n|

for x ∈ Q\{0} and n ∈ Z. We shall refer to these as elementary height properties.
The first three may be deduced directly from (2.1) and for the last one needs the
product formula

∑

σ:K→C log |σ(x)| +∑v∈M
0
K
dv log |x|v = 0 which holds for all

non-zero x ∈ K.
If K is an arbitrary number field, ∆K will denote its discriminant, hK its

class number, and OK its ring of algebraic integers. If K is quadratic we let

χK(·) =
(

∆K

·

)

denote the associated Dirichlet character where
(

·
·

)

is the Kro-

necker symbol.
For any elliptic curve E defined over Q we let hF (E) denote its absolute stable

Faltings height [16, 27]. We will use Deligne’s normalization [14]. Hence our
Faltings height equals the one given in Silverman’s article [27] minus a universal
constant.

3. Proof of Theorem 1.1 and Corollary 1.1

We begin by a simple lemma on elliptic curves.

Lemma 3.1. Let E be an elliptic curve defined over Q, let j be its j-invariant,

and let K be a number field containing j. There exist g2, g3 ∈ K such that

E is isomorphic to the elliptic curve defined by the Weierstrass equation Y 2 =
4X3 − g2X − g3 and such that

max{h(g2), h(g3)} ≤ c1(1 + h(j));
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here c1 is an absolute constant.

Proof. We note Y 2 = 4X3 − 4 defines an elliptic curve with j-invariant 0 and
Y 2 = 4X3 − 4X defines an elliptic curve with j-invariant 1728. In both cases
max{h(g2), h(g3)} = log 4 ≤ (log 4)(1 + h(j)). Hence it suffices to prove the
lemma if j 6= 0, 1728.

In this case we choose g2 = j/(12(j − 1728)) and g3 = −j/(63(j − 1728)). A
direct calculation shows that Y 2 = 4X3 − g2X − g3 defines an elliptic curve with
j-invariant equal to j. By the elementary height properties we see h(g2) ≤ h(j)+
h(12(j − 1728)) ≤ h(j) + h(12) + h(j − 1728) ≤ log(2934) + 2h(j) and h(g3) ≤
h(j) + h(63(j − 1728)) ≤ h(j) + h(63) + h(j − 1728) ≤ log(21036) + 2h(j). �

We will also need the following simple statement for elliptic curves without
complex multiplication. An isogeny between two elliptic curves is called cyclic if
it has cyclic kernel.

Lemma 3.2. Let E and E′ be elliptic curves defined over C and assume E has

endomorphism ring End(E) = Z. Let ϕ : E → E′ be a cyclic isogeny. Then ϕ
generates the group of homomorphisms Hom(E,E′).

Proof. Let ϕ̂ : E′ → E be the dual of ϕ. For ψ ∈ Hom(E,E′) we have ϕ̂ ◦ ψ ∈
End(E). This construction gives an injective homomorphism Hom(E,E′) →
End(E). It follows from our hypothesis that Hom(E,E′) has rank at most 1. But
it must be infinite cyclic because it contains ϕ. If ψ is a generator of Hom(E,E′),
then ϕ = λψ for some λ ∈ Z. We conclude that the kernel of multiplication by λ
is isomorphic to a quotient of the kernel of ϕ; thus itself cyclic. In characteristic
0 this is only possible if λ = ±1. �

To prove Theorem 1.1 we need to compare the Faltings height with the height
of the j-invariant. Silverman’s Proposition 2.1 implies

(3.1) h(jE) − c2 log(3 + h(jE)) ≤ 12hF (E) ≤ h(jE) + c2

if jE is the j-invariant of an elliptic curve E defined over Q; here c2 > 0 is an
absolute constant. In Silverman’s work the unstable minimal discriminant is the
unit ideal because when defining the stable Faltings height we assume that E has
semi-stable reduction everywhere.

We now prove Theorem 1.1.
Say d1 and d2 are the degrees of the first, respectively the second coordinate

function on C. A theorem of Néron [24] implies that there is a constant c3 > 0
depending on C but not on x or y such that

(3.2) |h(x)d2 − h(y)d1| ≤ c3(1 + h(x))1/2

for all (x, y) ∈ C(Q). The degrees d1 and d2 are not both zero, without loss of
generality we may assume d1 ≥ 1. In particular,

(3.3) h(y) ≤ h(x)d2 + c3(1 + h(x))1/2.
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We suppose (x, y) ∈ (C ∩ Y0(N))(Q) for some N ≥ 1. Let E1 and E2 be
elliptic curves with j-invariants x and y, respectively. There is a cyclic isogeny
of degree N between E1 and E2.

The behavior of the Faltings height under isogenies is well-studied. For example
by the original work of Faltings, Lemma 5 of [16], or by Corollary 2.1.4 of [26] we
have

|hF (E1) − hF (E2)| ≤
1

2
logN.

Combining this bound with (3.1) we get

|h(y) − h(x)| ≤ |h(x) − 12hF (E1)| + |h(y) − 12hF (E2)| + 12|hF (E1) − hF (E2)|
≤ 2c2 log(3 + h(x) + h(y)) + 6 logN

≤ c3 log(3 + h(x)) + 6 logN(3.4)

in the last inequality we used the fact that one can bound h(y) from above in
terms of h(x), this follows from (3.3).

Since d1 6= d2 we have h(x) ≤ h(x)|d2−d1| ≤ |h(x)d2−h(y)d1|+|h(y)−h(x)|d1,
hence

h(x) ≤ c4(1 + h(x))1/2 + 6d1 logN

from (3.2) and (3.4) with c4 > 0 independent of N and x. We conclude h(x) ≤
c5 log(1 + N) with c5 > 0 independent of N . We can find a similar bound for
h(y) using (3.3). �

We can now prove Corollary 1.1:
Since there are only finitely many singular j-invariants of bounded degree over

Q it suffices to show that

{(x, y) ∈ C(Q) ∩ S ′; neither x or y is a singular j-invariant(3.5)

and [Q(x, y) : Q] ≤ D}
is finite.

Let (x, y) be in this set, so it lies in Y0(N)(Q) for some N ≥ 1. Let E1 and
E2 be the corresponding elliptic curves; they do not have complex multiplication.
Moreover, there is a cyclic isogeny ϕ : E1 → E2 of degree N .

We now consider an isogeny ϕ′ : E1 → E2 of minimal degree N ′. By the
isogeny estimates of Masser-Wüstholz [21], we have N ′ ≤ c′(D)(1+h(x))4 where
c′(D) is a constant depending only on D. We remark that Lemma 3.1 applied to
E1 enables us to compare Masser and Wüstholz’s height of an elliptic curve with
h(x).

By Lemma 3.2 we know that ϕ generates Hom(E1, E2), so ϕ′ = λϕ. Since ϕ′

has minimal degree we must have λ = ±1. Hence N ′ = N and we obtain

(3.6) N ≤ c′(D)(1 + h(x))4.

Now Theorem 1.1 tells us that h(x) ≤ c log(1 + N) where c depends only on
the curve C but not on N . On inserting this bound into (3.6) we conclude that
N is bounded in terms of the curve C and the degree bound D.

Therefore, any point in (3.5) is contained in the intersection of C with a finite
union of Y0(N).
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We note that degX 6= deg Y implies C 6= Y0(N) for all N ≥ 1. Indeed, the
polynomial ΦN defining Y0(N) has equal degree in both variables. So, C∩Y0(N)
is finite for all N ≥ 1; the corollary follows. �

4. Height of elliptic curves with complex multiplication

Before we come to the proof of Theorem 1.2 we give some estimates on the
Faltings height of an elliptic curve with complex multiplication. These will be
used in the proof of Theorem 1.2 and Corollary 1.2. Some of these estimates are
implicitly contained in the work of Colmez [10].

Let E be an elliptic curve with complex multiplication. So End(E) is an order
in an imaginary quadratic number field L. For brevity we write O = OL,∆ = ∆L,
and χ = χL. We note |∆| ≥ 3. There exists a unique integer f ≥ 1 such that
End(E) = Z + fO. For a prime p dividing f , or p|f for brevity, we set

ef (p) =
1 − χ(p)

p− χ(p)

1 − p−n

1 − p−1

with n the maximal integer such that pn|f .
We attach the Dirichlet L-function L(χ, s) to the odd, real character χ. It is

entire and does not vanish at s = 1.
The first lemma expresses the Faltings height of E in terms of ∆ and f .

Lemma 4.1. We have

(4.1) 2hF (E) =
1

2
log(|∆|f2) +

L′(χ, 1)

L(χ, 1)
−





∑

p|f

ef (p) log p



− γ − log(2π)

where γ is Euler’s constant.

Proof. The main result of Nakkajima and Taguchi’s work on the Chowla-Selberg
formula [23] together with their Lemma 3 implies

(4.2) exp(2hF (E)) = |∆|1/2f





|∆|
∏

a=1

Γ

(

a

|∆|

)χ(a)




−#O×

2hL
∏

p|f

p−ef (p),

here Γ denotes the gamma function.
We use Proposition 10.3.5 of [8] and the fact that L(χ, 0) = |∆|1/2L(χ, 1)/π =

2hL/#O× (cf. Theorem 10.2.14 and Proposition 10.5.10 of [8]) to obtain

|∆|
∑

a=1

χ(a) log Γ

(

a

|∆|

)

=
2hL

#O×

(

−L
′(χ, 1)

L(χ, 1)
+ γ + log(2π)

)

.

The present lemma follows from inserting this into the logarithm of the right-
hand side of (4.2). �

If we fix the discriminant ∆ and let f vary we circumvent the problem of
controlling the logarithmic derivative of L(χ, s) in (4.1). The following estimate
will be useful in the proof of Theorem 1.2.
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Lemma 4.2. Let ∆ be fixed, for f ≥ 1 we have

hF (E) =
1

2
log f +O(log log(2 + f))

where the implied constant is independent of f but may depend on ∆.

Proof. By virtue of Lemma 4.1 and since L′(χ,1)
L(χ,1) is independent of f it suffices to

show

(4.3)
∑

p|f

ef (p) log p = O(log log f)

for large f .
The left-hand side is certainly never negative. Furthermore, using the definition

we estimate ef (p) ≤ 2
p+1

1
1−p−1 = 2

p−p−1 . A short calculation shows ef (p) ≤ 3/p.

We obtain
∑

p|f

ef (p) log p ≤ 3
∑

p|f
p≤log f

log p

p
+ 3

∑

p|f
p>log f

log p

p
.

The first sum on the right is at most O(log log f) by an equality on page 57,
Chapter 7 of [12]. It remains to find such a bound for the second sum. As the
function p 7→ log(p)/p decreases for large p, we have

∑

p|f
p>log f

log p

p
≤ log log f

log f

∑

p|f
p>log f

1.

The lemma follows since f has in total at most log f
log 2 distinct prime factors. �

Obtaining estimates that are uniform in |∆| involves studying the logarith-
mic derivative of L(χ, s) at s = 1. We have a double logarithmic bound when
assuming the GRH.

Lemma 4.3. Assume the GRH holds for all real, odd Dirichlet L-functions. Then

L′(χ, 1)

L(χ, 1)
= O(log log |∆|)

where the implied constant is absolute.

Proof. The proof is standard in analytic number theory. For a proof one can
consult Section 3.1 of [17]. �

Under the GRH and using the results from this section, one immediately verifies

hF (E) =
1

4
log |∆| +O(log log |∆|) for f = 1.

For general f ≥ 1, estimate (4.3) can be used to obtain

hF (E) =
1

4
log(|∆|f2) +O(log log(|∆|f2)).
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The discriminant of the order End(E), denoted here by Disc(End(E)), has abso-
lute value |∆|f2 ≥ 3. We obtain the asymptotic formula

hF (E) =
1

4
log |Disc(End(E))| +O(log log |Disc(End(E))|).

5. Unboundedness of height

In this section we prove Theorem 1.2.
Let H denote the complex upper half plane and let j : H → C be the elliptic

modular function. We need to work with an auxiliary point (j1, j2) ∈ A2(Q)
satisfying the following properties: j1 is a singular j-invariant. Hence j1 = j(τ)
for an imaginary quadratic τ in F , the usual (closed) fundamental domain for the
action of SL2(Z) on H given by fractional linear transformations. Furthermore,
we assume that j2 is algebraic but not a singular j-invariant. Since j1 is algebraic
we may fix a number field K containing both it and j2.

Throughout this section p denotes a prime. We will work with positive con-
stants c1, c2, . . . and δ ∈ (0, 1] that, if not stated otherwise, may depend on j1, j2,
and K but are independent of p. Moreover, the ci will not depend on δ either;
in the end we will choose δ to depend on some ci. Finally, we often need to work
with an embedding of a fixed, finite extension of K into C; we silently assume
that the ci and δ are independent of such an embedding.

We call p large enough if it is larger than some constant which may depend on
δ, j1, j2, and K.

The norm |β| of β ∈ GL2(Q) is the largest absolute value of any of its entry.
If ρ ∈ H, then βρ denotes the usual action of β on ρ.

Let us define p+ 1 square matrices

α0 =

[

p 0
0 1

]

, α1 =

[

1 0
0 p

]

, α2 =

[

1 1
0 p

]

, . . . , αp =

[

1 p− 1
0 p

]

.

5.1. A lower bound. We need a preliminary lemma on moving imaginary qua-
dratic elements of H into F .

Lemma 5.1. There are absolute constants c1 and c2 with the following properties:

if ρ ∈ H is imaginary quadratic then h(βρ) ≤ c1(1 + log |β| + h(ρ)) for any β ∈
SL2(Z). Moreover, there exists β ∈ SL2(Z) with βρ ∈ F and h(βρ) ≤ c2(1+h(ρ)).

Proof. The first statement is an easy consequence of elementary height properties.
Indeed, say

(5.1) β =

[

a b
c d

]

∈ SL2(Z).

Then

H(βρ) = H((aρ+ b)/(cρ + d))

≤ H(aρ+ b)H((cρ + d)−1)

= H(aρ+ b)H(cρ + d),
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giving

H(βρ) ≤ 4H(a)H(b)H(c)H(d)H(ρ)2 ≤ 4max{|a|, |b|, |c|, |d|}4H(ρ)2.

So H(βρ) ≤ 4|β|4H(ρ)2 and thus c1 = 4 becomes a valid choice.
For the second statement we write ρ = x+yi with x, y real algebraic and y > 0.

We note that x = (ρ+ρ)/2 and y = (ρ−ρ)/2 where ρ is the complex conjugate of
ρ. Hence H(x) ≤ H(ρ+ ρ)H(2) ≤ 4H(ρ)H(ρ) = 4H(ρ)2 and similarly H(y) ≤
4H(ρ)2. We also remark that |x| ≤ H(x) and y−1 ≤ H(y−1)2 = H(y)2 by
elementary height properties and because x is rational and y has degree at most
2.

Let im(·) be the imaginary part of a complex number. In the first step we
will show that there exists β ∈ SL2(Z) with im(βρ) > 1/2 such that H(βρ) is
suitably bounded, i.e. it is bounded from above by a fixed power of 2H(ρ). We

may certainly assume that y ≤ 1/2. We set Q = y−1/2 > 1. By a theorem
of Dirichlet there are integers c, d with 1 ≤ c < Q such that |cx + d| ≤ Q−1,
cf. page 1 of [6]. Without loss of generality we may assume that c and d are

coprime. By the previous paragraph we have |c| < Q = y−1/2 ≤ H(y) ≤ 4H(ρ)2

and |d| ≤ Q−1 + |cx| ≤ 1 + QH(x) ≤ 1 + 16H(ρ)4 ≤ 17H(ρ)4. Moreover, one
may find integers a, b such that ad − bc = 1 with max{|a|, |b|} bounded by an
absolute constant times max{|c|, |d|}. The matrix β defined as in (5.1) is in
SL2(Z) and has norm bounded by a fixed power of 2H(ρ). So H(βρ) is suitably
bounded by the first part of the lemma. Finally, im(βρ) = y/|cρ + d|2 and
|cρ+ d|2 = (cx+ d)2 + (cy)2 < Q−2 +Q2y2 = 2y. We arrive at im(βρ) > 1/2.

In the second step we will show that for any imaginary quadratic ρ ∈ H there
is β ∈ SL2(Z) such that βρ has real part in [−1/2, 1/2] and such that H(βρ) is
suitably bounded. It suffices to choose β with a = d = 1, c = 0, and b an integer
with |x+ b| ≤ 1/2. We note |β| ≤ max{1, |x| + 1/2} ≤ 1 + 4H(ρ)2 ≤ 5H(ρ)2. So
H(βρ) is suitably bounded by the first part of the lemma.

The third and last step consists in showing that if |x| ≤ 1/2 and y > 1/2 there
is β ∈ SL2(Z) such that βρ ∈ F and such that H(βρ) is suitably bounded. It
is not difficult to verify that the heights of ρ, −1/ρ, or ±1 − 1/ρ are suitably
bounded and that at least one lies in F .

The proof of the second part of the lemma follows from these three steps. �

We recall j1 = j(τ). We may factor

(5.2) Φp(j1, Y ) =

p
∏

k=0

(Y − j(αkτ)) ∈ K[Y ],

for a reference see §2, Chapter 5 of [19]. If σ : K → C is an embedding we
choose τσ ∈ F with j(τσ) = σ(j(τ)) = σ(j1). Let us extend σ to the number
field K(j(α0τ), . . . , j(αpτ)) and apply it in the usual manner to polynomials with
coefficients in this field. Since Φp has integer coefficients we obtain

(5.3) Φp(σ(j1), Y ) = σ(Φp(j1, Y )) =

p
∏

k=0

(Y − σ(j(αkτ))).



WEAKLY BOUNDED HEIGHT ON MODULAR CURVES 55

One the other hand, using σ(j1) = j(τσ) and (5.2) with τσ instead of τ yields

Φp(σ(j1), Y ) =

p
∏

k=0

(Y − j(αkτσ)).

Therefore, there exists a permutation of {0, . . . , p}, which we also denote with σ,
such that

σ(j(αkτ)) = j(ασ(k)τσ) for 0 ≤ k ≤ p.

We come to a first lower bound. It uses a recent lower bound for linear forms
in elliptic logarithms by David and Hirata-Kohno [13].

Lemma 5.2. We have j(αkτ) 6= j2 and

(5.4) log |σ(j(αkτ)) − σ(j2)| ≥ −c7 log p

for all 0 ≤ k ≤ p and all embeddings σ : K(j(α0τ), . . . , j(αpτ)) → C with c7 > 0
independent of p, k, and σ.

Proof. All constants c3, . . . , c6 in this proof are positive and independent of p, k,
and σ. Let 0 ≤ k ≤ p. We note that j(αkτ) is a singular j-invariant because αkτ
is imaginary quadratic. Since j2 is not a singular j-invariant we have j(αkτ) 6= j2.

Let σ be as in the hypothesis. By Lemma 5.1 there is an imaginary quadratic
ρ ∈ F such that j(ρ) = j(ασ(k)τ) = σ(j(αkτ)) with h(ρ) ≤ c2(1 + h(ασ(k)τ)).
Moreover, by the first part of Lemma 5.1 we can estimate h(ασ(k)τ) from above
by c1(1 + log |ασ(k)| + h(τ)). Combining these estimates with |ασ(k)| = p and
using the fact that τ is fixed yields

(5.5) h(ρ) ≤ c3 log p.

We write σ(j2) = j(η) with η ∈ F . Here η depends on σ, but as j2 is fixed, there
are only finitely many possibilities for η. To prove the lemma we may assume
that |j(ρ)− j(η)| is small with respect to a constant depending on j2. Because η
and ρ are both in the fundamental domain we may assume that |ρ− η| is small,
after possibly replacing η by η±1 or −η−1 to deal with the usual boundary issues.
We may even suppose that

(5.6) |j(ρ) − j(η)| ≥ 1

2
|j′(η)||ρ− η|;

we note that j′(η) 6= 0 since η is not one of the three values i, exp(2πi/3), exp(2πi/6)
in F where j′ vanishes. Hence |j′(η)| is bounded from below by a positive constant
depending only on j2.

There is an elliptic curve defined over Q with period lattice basis {ω1, ω2} ⊂ C

such that η = ω2/ω1.
We consider the linear form ω1ρ−ω2 in elliptic logarithms. If it were to vanish

we would have ρ = η, hence σ(j(αkτ)) = j(ασ(k)τ) = j(ρ) = j(η) = σ(j2). But
this is impossible by the first part of the lemma.

The coefficient ρ is an imaginary quadratic number; in particular, its degree
is uniformly bounded. Moreover, |ω1| and |ω2| are bounded solely in terms of j2.
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The result of David and Hirata-Kohno gives

log |ω1ρ− ω2| ≥ −c4(1 + h(ρ)).

The estimate (5.5) implies log |ω1ρ− ω2| ≥ −c5 log p. After dividing by ω1 we
obtain log |ρ− η| ≥ −c6 log p. We recall (5.6) and conclude (5.4). �

5.2. Equidistribution of Hecke orbits. We continue to use notation intro-
duced in the previous subsection.

For z ∈ C let Bδ(z) denote the open ball in C centered at z of radius δ. We
define the open set

Nδ = j−1

(

⋃

σ:K→C

Bδ(σ(j2))

)

⊂ H,

and for an embedding σ : K → C introduce index sets

Iσ(p, δ) = {0 ≤ k ≤ p; ασ(k)τσ ∈ Nδ}.
The purpose of these index sets is to keep track of elements in the Hecke orbit of
τσ whose image under j is near some σ(j2).

Clearly, #Iσ(p, δ) ≤ p+1. But for small δ one should be able to expect a better
bound. The next lemma uses an equidistribution result of Clozel and Ullmo [7]
and tells us just this.

Lemma 5.3. If p is large enough then #Iσ(p, δ) ≤ c9δ
2p for all σ : K → C with

c9 > 0 independent of p and δ.

Proof. Let φ : H → {0, 1} be the characteristic function of Nδ and let φ̃ be a

continuous, real valued function on H with compact support such that |φ̃−φ| ≤ δ2

on H. By Clozel and Ullmo’s Théorème 2.1(c) [7] we have

1

p+ 1

p
∑

k=0

φ̃(ασ(k)τσ) → 3

π

∫

F
φ̃
dxdy

y2
as p→ ∞

where x, y are the real and imaginary part functions on H. The factor 3/π makes
sure that F has total measure 1. If p is large enough we have

1

p+ 1

p
∑

k=0

φ̃(ασ(k)τσ) ≤ 3

π

∫

F
φ̃
dxdy

y2
+ δ2.

The left-hand side above is at least 1
p+1#Iσ(p, δ)−δ2. The right-hand side can

be bounded using

3

π

∫

F
φ̃
dxdy

y2
≤ 3

π

∫

F
φ
dxdy

y2
+ δ2

3

π

∫

F

dxdy

y2
=

3

π

∫

F
φ
dxdy

y2
+ δ2.

The set
⋃

σ Bδ(σ(j2)) has measure at most [Q(j2) : Q]πδ2. Elementary calculus
gives

3

π

∫

F
φ
dxdy

y2
≤ c8δ

2

with c8 > 0 independent of p and δ.
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Thus for p large enough we obtain #Iσ(p, δ) ≤ (c8 + 3)δ2(p + 1) ≤ 2(c8 +
3)δ2p. �

The following lemma, whose proof rests on elementary methods, will be useful
later on.

Lemma 5.4. There exists ε(δ) ∈ (0, 1/2], which may depend on δ but not on p,
with the following property: if p is an arbitrary prime then

|σ(j(αkτ)) − σ(j2)| ≥ ε(δ)max{1, |σ(j(αkτ))|}
for all k ∈ {0, . . . , p}\Iσ(p, δ) and all σ : K(j(α0τ), . . . , j(αpτ)) → Q. Moreover,

log max{1, |σ(j(αkτ))|} ≤ c10 for all k ∈ Iσ(p, δ) and for all σ as before with

c10 > 0 independent of p, δ, σ, and k.

Proof. Let σ be as in the hypothesis. The continuous function

q : H\Nδ → [0,∞) given by ρ 7→ |j(ρ) − σ(j2)|
max{1, |j(ρ)|}

does not vanish by the definition of Nδ. Let us consider its restriction to F :
since F\(F ∩Nδ) is closed and since q|F (τ) → 1 as τ → +∞i we see that q|F is
uniformly bounded from below by some ε(δ) ∈ (0, 1/2]. The set H\Nδ and the
function q are invariant under the action of SL2(Z). The first part of the lemma
follows since ασ(k)τσ ∈ H\Nδ for k as in the hypothesis.

To prove the second part we shall assume k ∈ Iσ(p, δ). By definition there
exists an embedding σ′ : K → C such that |j(ασ(k)τσ) − σ′(j2)| < δ. Hence
|σ(j(αkτ))| = |j(ασ(k)τσ)| ≤ δ+ |σ′(j2)| ≤ 1+ |σ′(j2)| and the lemma follows. �

5.3. Combining the estimates. We continue to use the notation from the
previous two subsections. We combine the estimates obtained therein to get the
next lemma.

Lemma 5.5. We have Φp(j1, j2) 6= 0 and for p large enough
∑

σ:K→C

log |σ(Φp(j1, j2))|(5.7)

≥ −c13p(|log ε(δ)| + δ2 log p) +

p
∑

k=0

∑

σ:K→C

log max{1, |σ(j(αkτ))|}

with c13 > 0 independent of p and δ.

Proof. The non-vanishing of Φp(j1, j2) follows from the first part of Lemma 5.2
and (5.2).

Let σ : K → C be an embedding. We recall (5.3) and split the following sum
up:

log |σ(Φp(j1, j2))|(5.8)

=
∑

k/∈Iσ(p,δ)

log |σ(j(αkτ)) − σ(j2)| +
∑

k∈Iσ(p,δ)

log |σ(j(αkτ)) − σ(j2)|.

We proceed by estimating each of these two sums separately.
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For k /∈ Iσ(p, δ) we apply Lemma 5.4 to obtain

log |σ(j(αkτ)) − σ(j2)| ≥ log ε(δ) + log max{1, |σ(j(αkτ))|}
= −|log ε(δ)| + log max{1, |σ(j(αkτ))|}.

For k ∈ Iσ(p, δ) we apply Lemma 5.2 to obtain

log |σ(j(αkτ)) − σ(j2)| ≥ −c7 log p.

We insert these two estimates into (5.8) and use p+ 1 ≤ 2p to see

log |σ(Φp(j1, j2))|(5.9)

≥ −2p|log ε(δ)| − c7#Iσ(p, δ) log p+
∑

k 6∈Iσ(p,δ)

log max{1, |σ(j(αkτ))|}.

Next we may rewrite

∑

k 6∈Iσ(p,δ)

log max{1, |σ(j(αkτ))|} =

p
∑

k=0

log max{1, |σ(j(αkτ))|}+

−
∑

k∈Iσ(p,δ)

log max{1, |σ(j(αkτ))|}.

By the second assertion of Lemma 5.4 any term in the final sum is at most c10.
So,

∑

k 6∈Iσ(p,δ)

log max{1, |σ(j(αkτ))|} ≥
p
∑

k=0

log max{1, |σ(j(αkτ))|} − c10#Iσ(p, δ).

We insert the previous inequality in (5.9) to obtain

log |σ(Φp(j1, j2))| ≥ −2p|log ε(δ)|−c11#Iσ(p, δ) log p+

p
∑

k=0

log max{1, |σ(j(αkτ))|}

with c11 > 0 independent of p and δ. By Lemma 5.3 we have #Iσ(p, δ) ≤ c9δ
2p

for p large enough, so

log |σ(Φp(j1, j2))| ≥ −2p|log ε(δ)| − c12δ
2p log p+

p
∑

k=0

log max{1, |σ(j(αkτ))|}

with c12 > 0 independent of p and δ.
We take the sum over all embeddings σ : K → C to conclude the proof. �

For an integer N ≥ 1 the complex number j(Nτ) is the j-invariant of an
elliptic curve EN . Then EN has complex multiplication, in other words j(Nτ) is
a singular j-invariant, since ΦN (j1, j(Nτ)) = 0. In the next lemma we rewrite the
lower bound given in the previous lemma in terms of the height of the algebraic
number j(pτ).

Let L ⊂ C be the imaginary quadratic number field generated by τ . For
brevity, we write ∆ = ∆L,O = OL, and χ = χL. For an integer f we write
Of = Z + fO. Now End(E1), being an order in O, is of the form Of for a
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unique integer f ≥ 1. There are coprime integers a, b, and c with a 6= 0 such
that aτ2 + bτ + c = 0. Lemma 7.5 [11] implies End(E1) = Z + aτZ. The same
lemma also implies End(Ep) = Z + paτZ provided p does not divide a. This
assumption will turn out to be harmless since τ is fixed. If it holds true, then
End(Ep) = Z + fpO = Ofp.

Lemma 5.6. For p large enough we have

∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c13p(|log ε(δ)| + δ2 log p) +
p

4
h(j(pτ))

with c13 from the previous lemma.

Proof. We consider the polynomial A =
∏

σ Φp(σ(j1), Y ) in one variable Y with
rational coefficients. Now A vanishes at j(pτ), hence it vanishes at σ(j(pτ))
for any embedding σ : K(j(pτ)) → C. Since j(pτ) is an algebraic integer, our
definition of the height (2.1) implies

[Q(j(pτ)) : Q]h(j(pτ)) ≤
∑

z∈C

A(z)=0

log max{1, |z|}.

By (5.3) the roots of A (counted with multiplicities) are in one-to-one correspon-
dence with the terms in the sum on the right of (5.7). We obtain
(5.10)
∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c13p(|log ε(δ)| + δ2 log p) + [Q(j(pτ)) : Q]h(j(pτ)).

We now bound [Q(j(pτ)) : Q] from below by using classical results from the
theory of complex multiplication. The paragraph before this lemma implies
End(Ep) = Ofp if p is large enough. By Theorems 7.24 and 11.1 of [11] we
have

(5.11) [L(j(τ)) : L] =
hLf

[O× : O×
f ]

∏

l|f

(

1 − χ(l)l−1
)

and

[L(j(pτ)) : L] =
hLfp

[O× : O×
fp]

∏

l|fp

(

1 − χ(l)l−1
)

,

the product runs over all primes l dividing f and fp, respectively. Certainly, f
is fixed by τ so we may assume that p does not divide f . If p ≥ 5 we obtain

[L(j(pτ)) : L]

[L(j(τ)) : L]
=

[O× : O×
f ]

[O× : O×
fp]
p
(

1 − χ(p)p−1
)

≥ p− 1

[O× : O×
fp]

≥ p− 1

3
≥ p

4

on using [O× : O×
fp] ≤ #O×/2 ≤ 3. We note [Q(j(pτ)) : Q] ≥ [L(j(pτ)) : L]

(actually, equality holds). The lemma follows from (5.10) and [L(j(pτ)) : L] ≥
p[L(j(τ)) : L]/4 ≥ p/4. �
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To get a lower bound for h(j(pτ)) in terms of p we shall work with the Faltings
height of the elliptic curve associated to j(pτ). We then apply the estimates of
section 4.

If jE ∈ Q is the j-invariant of an elliptic curve E, we remind the reader that
the second bound in (3.1) gives

(5.12) hF (E) ≤ 1

12
h(jE) + c14

for some absolute constant c14.
In the following lemma we make use of Lemma 4.2. It enables us to express

hF (Ep) in terms of hF (E1) and p.

Lemma 5.7. For p large enough we have

∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c15p(|log ε(δ)| + δ2 log p) +
6

5
p log p

with c15 > 0 independent of p and δ.

Proof. As we have seen above, End(E1) = Z + fO and End(Ep) = Z + fpO, at
least if p is large enough.

On applying Lemma 4.2 we get the lower bound

(5.13) hF (Ep) ≥
2

5
log p

for p large enough.
Lemma 5.6 combined with height comparison estimate (5.12) gives
∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c13p(|log ε(δ)| + δ2 log p) + 3phF (Ep) − 3pc14.

By (5.13) the height of Ep grows logarithmically in p, hence

∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c13p(|log ε(δ)| + δ2 log p) − 3pc14 +
6

5
p log p.

By construction |log ε(δ)| ≥ log 2 so −3pc14 is absorbed by the term to its left
after replacing c13 by a larger constant still independent of p and δ. �

The lemma below is now a simple consequence of the lemma above. Its proof
involves choosing an appropriate δ.

Lemma 5.8. For p large enough we have
∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ p log p.

Proof. By Lemma 5.7 we have

∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c15p(|log ε(δ)| + δ2 log p) +
6

5
p log p
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for p large enough. We recall that c15 > 0 is independent of δ. Hence we may fix
δ ∈ (0, 1] such that c15δ

2 < 1/10. We obtain
∑

σ:K→C

log |σ(Φp(j1, j2))| ≥ −c15p|log ε(δ)| +
11

10
p log p.

The proposition follows since ε(δ) is independent of p. �

5.4. An application to curves in A2. In this subsection we prove Theorem
1.2.

Let F ∈ Z[X,Y ] be an irreducible and non-constant polynomial. We assume
that it does not divide Φp for any prime p.

We keep much of the same notation as in the previous subsections with the
important difference that we need a stronger hypothesis on j1.

Let j1 be a singular j-invariant such that

(5.14) if j∗2 ∈ Q satisfies F (j1, j
∗
2) = 0 then j∗2 is not a singular j-invariant.

Finally, let j2 be algebraic with F (j1, j2) = 0 and let K be a number field con-
taining j1 and j2.

By hypothesis j2 cannot be a singular j-invariant.
Our convention on constants stays the same except that c16, . . . are now also

allowed to depend on F .
Let p be a prime. In this subsection we call p large enough if it is larger than

some constant which may depend on j1, j2,K, and F .
The polynomials F and Φp only have finitely many common zeros and these

are algebraic. Let x1, . . . , xn be the distinct algebraic numbers which appear as
a first coordinate of such a zero; here n = 0 is possible. Let R be the resultant
of F and Φp considered as polynomials with coefficients in Z[X], cf. Ch. IV, §6,
No. 6 of [5]. We remark that Φp is monic when considered as a polynomial in Y .
Then

R = λ

n
∏

i=1

(X − xi)
ai ∈ Z[X]

for integers ai ≥ 1 and an integer λ 6= 0. Moreover, there exist polynomials
U, V ∈ Z[X,Y ] with

(5.15) degY U < degY F and degY V < degY Φp such that UΦp + V F = R.

We may assume that U, V, and R have no common integral prime factor. Our
resultant is the determinant of a certain matrix with entries determined by the co-
efficients of Φp and F taken as a polynomial in one variable Y . A straightforward
degree estimate applied to this determinant shows
(5.16)
degR ≤ degX Φp degY F+degY Φp degX F = (p+1)(degX F+degY F ) ≤ 4p degF.

It is important to keep in mind that that U, V, and R mostly likely depend on
the prime p.

We recall that a polynomial in integer coefficients is called primitive if its
coefficients have no common prime divisor.
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Lemma 5.9. If p > degF , then R is primitive.

Proof. Let l be a prime. If A is any polynomial in integer coefficient we let A
denote its reduction modulo l.

We assume that p > degF and R = 0 and shall derive a contradiction.
The resultant equation (5.15) modulo l reads

U Φp + V F = 0.

We begin by remarking that F 6= 0 because F is irreducible in Z[X,Y ] and
non-constant. The leading term of Φp taken as a polynomial with coefficients in

Z[X] is Y p+1, thus Φp 6= 0 and even degY Φp = degY Φp = p + 1. If V = 0 then

we would have U = 0, but this is impossible because l cannot be a common factor
of U, V, and R. Hence V 6= 0.

Let us assume l 6= p for the moment. By a result of Igusa [18] the polynomial
Φp is absolutely irreducible. Hence it must divide V or F . The former situation

is impossible since V 6= 0 and degY V ≤ degY V < degY Φp = degY Φp, here we

used (5.15). The latter situation cannot hold either since F 6= 0 and degY F ≤
degF < p < degY Φp.

Therefore, we must have l = p. In this case Φp is no longer irreducible since

Kronecker’s congruence relation, §2 Chapter 5 of [19], implies Φp = (Xp−Y )(X−
Y p). But both factors Xp − Y and X − Y p are (absolutely) irreducible. Because
degX(Xp − Y ) = p > degF ≥ degX F and degY (X − Y p) = p > degF ≥ degY F
we deduce that Xp −Y and X −Y p both divide the non-zero V . This conclusion
implies degY V ≥ degY Φp and so degY V ≥ degY Φp. By (5.15) we have arrived
at a contradiction. �

If U(j1, j2) is non-zero we can use the product formula to obtain a lower bound
for |R|, the largest absolute value of all coefficients of R.

Lemma 5.10. If U(j1, j2) 6= 0, then

log |R| ≥ −c16p+
1

[K : Q]

∑

σ:K→C

log |σ(Φp(j1, j2))|,

with c16 > 0 independent of p.

Proof. If v ∈ M 0
K then |j1|v ≤ 1 because j1 is an algebraic integer, being a singu-

lar j-invariant. Since U has integer coefficients and by the ultrametric triangle
inequality we deduce |U(j1, j2)|v ≤ max{1, |j2|v}degY U . By (5.15) the degree
degY U is at most degY F , so

(5.17) |U(j1, j2)|v ≤ max{1, |j2|v}degY F .

By (5.15) and because of F (j1, j2) = 0 we get

(5.18)
∏

σ:K→C

|σ(R(j1))| =
∏

σ:K→C

|σ(U(j1, j2))||σ(Φp(j1, j2))|.
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Since U(j1, j2) 6= 0 we have the product formula:

1 =
∏

σ:K→C

|σ(U(j1, j2))|
∏

v∈M
0
K

|U(j1, j2)|dv
v .

We estimate the product over M 0
K from above by using (5.17) to obtain

1 ≤
∏

σ:K→C

|σ(U(j1, j2))|
∏

v∈M
0
K

max{1, |j2|v}dv degY F .

Multiplying both sides with
∏

σ |σ(Φp(j1, j2))| and applying (5.18) gives

(5.19)
∏

σ:K→C

|σ(Φp(j1, j2))| ≤
∏

σ:K→C

|σ(R(j1))|
∏

v∈M 0
K

max{1, |j2|v}dv degY F .

The triangle inequality implies

|σ(R(j1))| = |R(σ(j1))| ≤ (1 + degR)|R|max{1, |σ(j1)|}deg R

for any σ : K → C. We recall (5.16) to deduce

|σ(R(j1))| ≤ 8p deg(F )|R|max{1, |σ(j1)|}4p deg F .

Inserting this into (5.19) and taking the [K : Q]th root gives
∏

σ:K→C

|σ(Φp(j1, j2))|1/[K:Q] ≤

8p deg(F )|R|
∏

σ:K→C

max{1, |σ(j1)|}
4p deg F
[K:Q]

∏

v∈M
0
K

max{1, |j2|v}
dv degY F

[K:Q] .

because there are precisely [K : Q] embeddings σ. Using the definition of the
height given in section 2 we obtain

∏

σ:K→C

|σ(Φp(j1, j2))|1/[K:Q] ≤ 8p deg(F )|R|H(j1)
4p deg FH(j2)

degY F .

The lemma follows from an elementary calculation. �

Lemma 5.11. For p large enough there exists a common zero (x, y) of Φp and

F such that

h(x, y) ≥ c18 log p,

with c18 > 0 independent of p.

Proof. Let us assume for the moment that U(j1, j2) 6= 0. We apply logarithm to
the estimate in Lemma 5.10 and use the lower bound for

∑

σ log |σ(Φp(j1, j2))|
from Lemma 5.8 to deduce

(5.20) log |R| ≥ −c16p+
1

[K : Q]
p log p ≥ c17p log p

for p large enough and with c17 > 0 independent of p.
We may certainly assume that p > degF . Lemma 5.9 implies that R is primi-

tive. If R were a constant, in other words if Φp and F had no common zeros, we
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would have R = ±1. By (5.20) this is impossible for p large enough. So Φp and
F will eventually have common zeros as p increases.

But we get more information. Indeed, the polynomial R factors over Z[X] into
±Rr1

1 · · ·Rrg
g where Ri ∈ Z[X] are irreducible and ri ≥ 1. Since R is primitive,

the Ri are non-constant. By the previous paragraph we may assume g ≥ 1.
Let m(·) denote the (logarithmic) Mahler measure of a polynomial with com-

plex coefficients. After rearranging the R′
is we may suppose m(R1)/degR1 ≥

m(Ri)/degRi for 1 ≤ i ≤ g. The Mahler measure is additive, so

m(R) =

g
∑

i=1

rim(Ri) ≤
(

g
∑

i=1

ri degRi

)

m(R1)

degR1
= degR

m(R1)

degR1
.

By Lemma 1.6.7 of [2] we can bound log |R| ≤ degR log 2+m(R). We use (5.16)
to bound degR and deduce

log |R| ≤ degR

(

log 2 +
m(R1)

degR1

)

≤ 4p degF

(

log 2 +
m(R1)

degR1

)

.

We combine this inequality with the lower bound (5.20) and cancel p. Fortu-
nately, the lower bound for log |R| also contains a factor log p; we get

m(R1)

degR1
≥ c18 log p

for p large enough.
By Gauss’s Lemma, R1 is primitive. Since R1 is non-constant it has a root x.

Proposition 1.6.6 of [2] and degR1 = [Q(x) : Q] imply the equality in

h(x) =
m(R1)

degR1
≥ c18 log p.

Because R(x) = 0 and by properties of the resultant mentioned earlier, there
exists an algebraic y such that (x, y) is a common zero of Φp and F . Certainly,
h(x, y) ≥ h(x) and so the lemma holds in the case U(j1, j2) 6= 0.

But what if U(j1, j2) = 0? This looks troubling since U was constructed
using Φp and will most likely depend on p. However, if U(j1, j2) = 0 for some
p, then (5.15) implies R(j1) = 0. By properties of the resultant, j1 is the first
coordinate of a common zero of F and Φp. In other words, there exists j∗2 such that
Φp(j1, j

∗
2 ) = F (j1, j

∗
2) = 0. Now j∗2 must be a singular j-invariant, a contradiction

in view of our hypothesis on j1 given in (5.14). So, U(j1, j2) cannot vanish for
any p. �

5.5. Proof of Theorem 1.2. Let C be the curve from the hypothesis. After
interchanging coordinates we may assume that C is not a vertical line. So its
projection onto the first factor of A2 contains all but finitely many points. Let
C1, . . . , Cr be the conjugates over Q of C. None of the Ci is a special curve by
hypothesis.

The André-Oort Conjecture is known unconditionally for curves in A2 by a
result of André [1]. Therefore, the set of points in C1(Q) ∪ · · · ∪ Cr(Q) whose
coordinates are both singular j-invariants, is finite. Among the infinitely many
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singular j-invariants we can choose one, say j1, that does not appear as the first
coordinate of a point in this set. We may even choose j1 such that it is contained
in the projection of C onto the first factor of A2. So (j1, j2) ∈ C(Q) for some
algebraic j2.

The curve C1 ∪ · · · ∪Cr is defined and irreducible over Q. Hence it is the zero
set of a single non-constant and irreducible polynomial F ∈ Z[X,Y ]. Certainly,
F does not divide any Φp. Our choice of j1 satisfies the condition (5.14) with
respect to this polynomial.

We apply Lemma 5.11 to F and the auxiliary point (j1, j2). As a consequence
there is c > 0 such that for p large enough we may find a common zero of Φp

and F with height at least c log p. By construction, some conjugate of this zero
lies in C(Q). It remains a zero of Φp. Our theorem follows because the height is
invariant under conjugation. �

The values j1 = j((
√
−7 + 1)/2) = −3375 and j2 = −3375 − 1 determine an

admissible auxiliary point for the polynomial F = X − Y − 1. Indeed, j1 is a
singular j-invariant and j2 is not on the well-known list of rational singular j-
invariants. SoK = Q is possible here. By going through the proofs of this section
and optimizing the estimates for this special case, one can show the following:
if C is the curve defined by F then for all large enough primes p there is P ∈
(C ∩ Y0(p))(Q) with h(P ) ≥ 3 log p − c log log p, here c is an absolute constant.
It follows that the constant 6 in Theorem 1.3 cannot be replaced by anything
strictly less than 3.

6. The curve X − Y = 1 and proof of Theorem 1.3

Let p be a prime and let us define

R = −Φp(X,X − 1) ∈ Z[X].

The following simple observation is crucial for obtaining the height bound in
Theorem 1.3: by Kronecker’s congruence relation the reduction of Φp modulo p
is (Xp − Y )(X − Y p), so the reduction of R modulo p is

(Xp −X + 1)(Xp −X − 1).

The factors Xp −X+1 and Xp −X− 1 are Artin-Schreier polynomials and they
are irreducible over Fp. We will see in a moment that R is monic of degree 2p.
There are now two possibilities for R: it is either irreducible in Z[X] or factors
into two irreducible polynomials in Z[X] of degree p.

We now show thatR is monic of degree 2p. If p is odd the Kronecker congruence
relation and Theorem 3(iii), Chapter 5 of [19], imply that Φp(X,X) ∈ Z[X] has
degree 2p and leading coefficients −1; there is a misprint in the statement of
Theorem 3(iii): the proof gives leading coefficient ±1. Since the explicit form
of Φ2 is known, one directly checks that Φ2(X,X) has degree 4 and leading
coefficient −1. If Φp =

∑

i,j aijX
iY j we must have

∑

i+j=2p aij = −1. We

recall that Φp is monic of degree p+ 1 as a polynomial with coefficients in Z[X].
The same holds true when considered as a polynomial with coefficients in Z[Y ].
From this we can quickly deduce that degR ≤ 2p. Moreover, if aij 6= 0 with
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i + j = 2p, then i = j = p. Thus app = −1. This is the leading coefficient of
Φp(X,X − 1) = −R, so R is monic of degree 2p.

Any x with (x, x − 1) ∈ Y0(p) satisfies R(x) = 0, so it is algebraic. If R is
irreducible over Z, then by Proposition 1.6.6 [2] we have h(x) = m(R)/degR =
m(R)/(2p). In the other case R = AB factors with A,B ∈ Z[X] irreducible
of degree p. Say A(x) = 0, then h(x) = m(A)/degA = m(A)/p = m(R)/p −
m(B)/p ≤ m(R)/p since the Mahler measure is additive and non-negative. In
any case we have

(6.1) h(x) ≤ m(R)

p
and [Q(x) : Q] ≥ p.

This degree lower bound justifies the comment made in the introduction after the
statement of the current theorem.

We continue by bounding m(R) from above. If the aij are as above, then

R =
∑

0≤i,j≤p+1
0≤k≤j

±aij

(

j

k

)

Xi+k =

2p
∑

d=0







∑

0≤i,j≤p+1
i+k=d

±aij

(

j

k

)






Xd.

Elementary estimates give

|R| ≤ max
0≤d≤2p

∑

0≤i,j≤p+1
i+k=d

|aij |
(

j

k

)

≤ |Φp| max
0≤d≤2p

∑

0≤i,j≤p+1
i+k=d

(

j

k

)

≤ |Φp|
p+1
∑

j=0

2j ≤ |Φp|2p+2.

We apply Lemma 1.6.7 of [2] to get m(R) ≤ 1
2 log(2p + 1) + log |R|. With the

estimate above we conclude

(6.2) m(R) ≤ log |Φp| + c1p,

here and below c1, c2, and c3 denote positive absolute constants.
Cohen’s estimate [9] for the modular transformation polynomials provides

log |Φp| ≤ 6p log p + c2p. Combining this with (6.1) and (6.2) leads to h(x) ≤
6 log p+ c3.

Finally, the theorem follows because h(x, y) = max{h(x), h(y)} and h(y) =
h(x− 1) ≤ log 2 + h(x) by elementary height properties. �

What happens for the curve X+Y = 1? The reduction of Φp(X, 1−X) modulo
p is

(Xp +X − 1)2

by Kronecker’s congruence relation. In characteristic p > 2 the factor Xp +X−1
has a root at 1/2. Worse still, there is ζ ∈ Fp2 with ζp−1 = −1. One easily
verifies, that 1/2, 1/2 + ζ, . . . , 1/2 + (p − 1)ζ are roots of Xp + X − 1. This
polynomial factors over Fp into one linear term and (p− 1)/2 quadratic terms.
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7. Proof of Corollary 1.2

Let C be as in the hypothesis. We begin by showing part (i).
Let P ∈ C(Q) ∩ S ′. If one coordinate is a singular j-invariant, then so is the

other by the definition of S ′. By the André-Oort Conjecture and after discarding
finitely many points we may assume that neither coordinate of P is a singular
j-invariant.

So SQ(P ) = Y0(N) for some N ≥ 1; hence deg SQ(P ) = 2Ψ(N) with Ψ(N) the
arithmetic function mentioned in the introduction. Theorem 1.1 implies h(P ) ≤
c log(1 + N) with c independent of N . Now Ψ(N) ≥ N easily implies this part
of the corollary.

We now turn to part (ii). Let P ∈ C(Q)∩S. By the first part, we may assume
P 6∈ S ′. We are in one of the first three cases of (1.3).

Let us assume S(P ) = {P} or S(P ) = {x} × A1. The first coordinate x of P
is a singular j-invariant and (1.4) tells us

deg SQ(P ) ≥ [Q(x) : Q].

Let E be the elliptic curve with j-invariant x and let L denote its field of
complex multiplication. We note |∆L| ≥ 3. Let f be the unique positive integer
with End(E) = Z + fO where O = OL. We shall assume, as we may, that
|∆L|f2 is large enough. By applying (5.11) with j(τ) replaced by x we see [L(x) :
L] ≥ hLf(

∏

l|f 1 − l−1)/3; here we used [O× : (Z + fO)×] ≤ #O×/2 ≤ 3. The

expression f
∏

l|f (1 − l−1) is Euler’s quotient function evaluated at f and so at

least c1f
1/2 with c1 > 0 absolute. We conclude degSQ(P ) = [Q(x) : Q] ≥ [L(x) :

L] ≥ c1hLf
1/2/3.

For any ε > 0, the Theorem of Brauer-Siegel implies hL ≥ c2|∆L|1/2−ε, here
c2 > 0 depends only on ε. Picking ε = 1/4 and using the conclusion of previous
paragraph gives

(7.1) log(1 + degSQ(P )) ≥ c3 log(|∆L|f2)

with c3 > 0 absolute.
Recall that we are assuming the GRH. By Lemmas 4.1 and 4.3 we can estimate

hF (E) ≤ c4 log(|∆L|f2) with c4 > 0 absolute. The height h(x) can be bounded
above in terms of the Faltings height hF (E) by (3.1). We conclude h(x) ≤
c5 log(|∆L|f2) with c5 > 0 absolute. The lower bound (7.1) implies

(7.2) h(x) ≤ c6 log(1 + degSQ(P ))

with c6 > 0 absolute.
The two heights h(x) and h(y) are not unrelated. If d1 and d2 are the degrees of

the first, respectively second coordinate function on C we have |h(x)d2−h(y)d1| ≤
c7(1 + h(x))1/2 by (3.2) with c7 > 0 independent of x and y. If d1 6= 0 we can
bound h(y) linearly from above in h(x). The current case follows from (7.2).

It remains to show that d1 cannot vanish. Indeed, if d1 = 0 we would have
C = {x} × A1. But x is singular j-invariant. Then C would be a special curve
in contradiction to our hypothesis.
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The final case S(P ) = A1 × {y} with y a singular j-invariant can be handled
in a similar manner.
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especially in connection with the former’s Master Thesis [20] on the André-Oort
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[6] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University

Press, 1957.
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2, Master Thesis ETH Zurich, 2009.
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