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COUNTING CONICS IN COMPLETE INTERSECTIONS

LAURENT BONAVERO AND ANDREAS HÖRING

Abstract. We count the number of conics through two general points in
complete intersections when this number is finite and give an application in
terms of quasi-lines.

1. Introduction

Let X be a complex projective manifold of dimension n. A quasi-line l in X
is a smooth rational curve f : P1 ↪→ X such that f∗TX is the same as for a line
in Pn, i.e. is isomorphic to

OP1(2) ⊕OP1(1)⊕n−1.

Let X be a smooth projective variety containing a quasi-line l. Following
Ionescu and Voica [IV03], we denote by e(X, l) the number of quasi-lines which
are deformations of l and pass through two given general points of X. We denote
by e0(X, l) the number of quasi-lines which are deformations of l and pass through
a general point x of X with a given general tangent direction at x. Note that one
always has e0(X, l) ≤ e(X, l), but in general the inequality may be strict [IN03,
p.1066].

Theorem 1.1. Let X ⊂ Pn+r be a general smooth n-dimensional complete in-

tersection of multi-degree (d1, . . . , dr). Assume moreover that

d1 + · · · + dr =
n + 1

2
+ r.

Then

(1) the family of conics contained in X is a nonempty, smooth and irreducible

component of the Chow scheme C(X),
(2) a general conic C contained in X is a quasi-line of X and

e0(X,C) = e(X,C) =
1

2

r
∏

i=1

(di − 1)!di!.

The numerical assumption d1 + · · · + dr = (n + 1)/2 + r assures that if C is a
conic in X, then −KX ·C = n+1. This numerical condition is of course necessary
for a curve to be a quasi-line. Note that varieties appearing in our theorem are
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Fano varieties of dimension n and index (n + 1)/2; they are well known to be
the boundary Fano varieties with Picard number one being conic-connected (see
[IR07], Theorem 2.2).

Using a degeneration argument, one can strengthen parts of the statement.

Corollary 1.2. Let X ⊂ Pn+r be a smooth n-dimensional complete intersection

of multi-degree (d1, . . . , dr). If d1+ · · ·+dr = (n+1)/2+r, the variety X contains

a conic that is a quasi-line.

By a theorem of Ionescu [Ion05], we obtain an immediate application of the
theorem to formal geometry. Before stating it, let us recall that a subvariety Y
of a variety X is G3 in X if the ring K(X|Y ) of formal-rational functions of X
along Y is equal to K(X).

Corollary 1.3. Let X ⊂ Pn+r be a general smooth n-dimensional complete in-

tersection of multi-degree (d1, . . . , dr) such that d1 + · · · + dr = (n + 1)/2 + r.
Then any general conic C contained in X is G3 in X. In particular, if (X,C)
and (X ′, C ′) are two such pairs such that the formal completions X|C and X ′

|C′

are isomorphic as formal schemes, there exists an isomorphism from X to X ′

sending C to C ′.

When this note was almost finished, we learned from Laurent Manivel that

Arnaud Beauville had obtained the formula e(X, l) =
1

2

r
∏

i=1

(di − 1)!di! as a con-

sequence of his computation of the quantum cohomology algebra H∗(X, Q) of a
complete intersection [Bea95]. We provide here a completely elementary proof.
We end this note by mentioning a similar question where no elementary proof
seems to be known.

2. Proofs

We start by explaining the enumerative argument in the simplest case.

2.1. A well known example. Suppose that X = {s = 0} is a smooth cubic
threefold in P4. A general conic C in X is a quasi-line [BBI00, Thm.3.2]. The
basic idea of our proof is that counting conics in X through p and q can be
reduced to counting 2-planes π through p and q such that the restriction s|π is
a product of a polynomial of degree two and some residual polynomial. We will
explain how to do this in general below, in the case of the cubic threefold we can
use a geometric construction.

It is a classical fact that the lines in X form an irreducible smooth family of
dimension two and that there are exactly six lines passing through a general point
of X [AK77, Prop.1.7]. Fix now two general points p and q in X, then the line
[pq] intersects X in a third point u. For every line l ⊂ X through u there exists
a unique plane πl containing l and [pq]. The intersection X ∩ πl is the union of l
and a residual conic C. Since l does not pass through p and q, the conic C passes
through p and q. Vice versa the linear span of a conic C ⊂ X passing through
p and q is a 2-plane πC containing the line [pq]. Since C does not pass through
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u, the residual line passes through u. Thus the conics through p and q are in
bijection with the lines through u, so e(X,C) = 6.

Suppose now that we are in the general situation of Theorem 1.1. We always
assume that X ⊂ Pn+r is a general smooth n-dimensional complete intersection
of multi-degree (d1, . . . , dr) with di ≥ 2 for all i and

d1 + . . . + dr =
n + 1

2
+ r.

Let l ⊂ X be a smooth rational curve contained in X. Then

−KX · l = (n + r + 1 − (d1 + . . . + dr)) deg(l) =
n + 1

2
deg(l)

therefore −KX · l = n + 1 if and only if l is a conic.

2.2. The main step. For any general points p and q of X, there exists a conic

contained in X passing through p and q.

Fix two distinct points in Pn+r, say p = [1 : 0 : . . . : 0] and q = [0 : 0 : . . . : 1].
Suppose that X is a general complete intersection with equations

(s1 = 0) ∩ (s2 = 0) ∩ . . . ∩ (sr = 0)

passing through p and q, where each si ∈ H0(Pn+r,OPn+r(di)) is general among
sections vanishing at p and q.

Suppose there is a conic C contained in X, passing through p and q and let
πC be the projective 2-plane generated by C. If sC denotes the equation defining
C in πC , there exists for each i = 1, . . . , r a s̃i ∈ H0(πC ,OπC

(di − 2)) (defining
the residual curve) such that

(si)|πC
= sC · s̃i.

Since X is general, it does not contain the 2-plane πC [DM98, Thm. 2.1]. There-
fore (si)|πC

and s̃i are not zero for at least one i.
Conversely, let π be a projective 2-plane containing p and q and assume there

exists a non-zero sC ∈ H0(π,Oπ(2)) vanishing at p and q and, for each i =
1, . . . , r, there exists a s̃i ∈ H0(π,Oπ(di − 2)) such that

(si)|π = sC · s̃i,

then the conic (sC = 0) is obviously contained in X.
Consider now the projective space of dimension n + r − 2 parametrizing the

projective 2-planes in Pn+r containing p and q. Fixing homogeneous coordinates
[a1 : . . . : an+r−1] on this space, let

π[a1:...:an+r−1] = {[x : za1 : . . . : zan+r−1 : y] | [x : z : y] ∈ P2}

be such a 2-plane. Then

(si)|π[a1:...:an+r−1]
(x, z, y) =

di
∑

k=0

k
∑

a=0

si
a,kx

ayk−azdi−k
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where si
a,k is a homogeneous polynomial of degree di − k in the variables a1, . . . ,

an+r−1. The equation of an irreducible conic in this plane that passes through p
and q is

sC = s2z
2 + s1xz + s′1yz + xy.

So for each i = 1, . . . , r, the equation (si)|π = sC · s̃i can be written explicitly

di
∑

k=0

k
∑

a=0

si
a,kx

ayk−azdi−k = (s2z
2 + s1xz + s′1yz + xy)×

di−2
∑

k=0

k
∑

a=0

s̃i
a,kx

ayk−azdi−2−k.

Thus we have to solve the equations

si
a,k = s2s̃

i
a,k + s1s̃

i
a−1,k−1 + s′1s̃

i
a,k−1 + s̃i

a−1,k−2

for any 0 ≤ k ≤ di and 0 ≤ a ≤ k.

Let us first solve this system (whose unknown variables are s2, s1, s′1 defining
the conic and the s̃i

a,k’s defining the residual curve) for each i separately. Note

that X passes through p and q if and only if si
0,di

= si
di,di

= 0. Therefore writing

the di − 1 equations si
a,di

= s̃i
a−1,di−2 for 1 ≤ a ≤ di − 1 provides the s̃i

a−1,di−2’s.

Considering the equations corresponding to (a, k) = (0, di −1) and (di −1, di −
1) allows to find s2 and s1. Considering then the equations corresponding to
(a, k) = (1, di−1) and (0, di−2) gives s̃i

0,di−3 and s′1 (in particular this determines

the conic, if it exists !). Write down successively the equations for (a, k), a =
1, . . . , k − 1, k = di − 1, . . . , 2 to find all the s̃i

a,k’s (this determines the residual

curve (s̃i = 0) !).
Therefore, the r systems have a common solution if and only if the remaining

equations for each system are satisfied and the corresponding conic is the same for
each i. For each i, the remaining equations are “universal formulas” (meaning the
coefficients just depend on the equations defining X) corresponding to (a, k) =
(0, di − 3), . . . , (0, 0) and (a, k) = (di − 2, di − 2), . . . , (1, 1). This gives 2di −
4 equations of respective degrees 3, . . . , di and 2, 3, . . . , di − 1 in the variables
a1, . . . , an+r−1. The 3r − 3 equations saying that the conic is the same for each
i = 1, . . . , r are 2r − 2 equations of degree 1 and r − 1 equations of degree 2 in
the variables a1, . . . , an+r−1.

Altogether, using the relation d1 + · · · + dr = (n + 1)/2 + r, this gives exactly
n + r − 2 homogeneous equations in the variables a1, · · · , an+r−1. We therefore
get at least one solution. Moreover since X is general, the coefficients si

a,k ap-
pearing in the initial equations are general. Since they completely determine the
remaining n+r−2 homogeneous equations, these equations are general. Thus the
space of solutions is smooth and of the expected dimension, so there are exactly

1

2

r
∏

i=1

(di − 1)!di! solutions by Bezout’s theorem.

Let us briefly indicate how the same method gives the number of conics con-

tained in X, passing through p and tangent to the line (pq). With the above
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notations, we have si
di−1,di

= si
di,di

= 0 and we have to solve the r systems

di
∑

k=0

k
∑

a=0

si
a,kx

ayk−azdi−k = (s2z
2 + s1xz + s′1yz + y2) ×

di−2
∑

k=0

k
∑

a=0

s̃i
a,kx

ayk−azdi−2−k

which means
si
a,k = s2s̃

i
a,k + s1s̃

i
a−1,k−1 + s′1s̃

i
a,k−1 + s̃i

a,k−2

for any 0 ≤ k ≤ di and 0 ≤ a ≤ k. The remaining details are left to the reader.

2.3. The space of conics is irreducible. Let G(2, n+r) be the Grassmannian
of projective 2-planes contained in Pn+r and E be the tautological rank 3-bundle
on G(2, n + r). The Hilbert scheme of conics in Pn+r is the projectivisation1 of
S2E∗. Denote by ϕ : P(S2E∗) → G(2, n + r) the natural map. We have an exact
sequence on P(S2E∗) :

(∗) 0 →

r
⊕

i=1

ϕ∗Sdi−2E∗ ⊗OP(S2E∗)(−1) →

r
⊕

i=1

ϕ∗SdiE∗ → Q → 0

defining a vector bundle Q of rank n + 1+ 3r. Since X is a complete intersection
(s1 = 0)∩ (s2 = 0)∩ · · · ∩ (sr = 0), the si’s induce by restriction to 2-planes, pull-
back and projection onto Q a section of Q whose zero locus Z is precisely the set
of conics contained in X. Since E∗ is globally generated, the images of sections
(s1, . . . , sr) give a vector space V ⊆ H0(P(S2E∗),Q) that globally generates Q.
Applying Bertini’s theorem to this subspace we see that the zero locus of a general
section in V is smooth. Since X is supposed to be a general complete intersection,
Z is smooth and proving its irreducibility reduces to showing that h0(Z,OZ) = 1.
By the Koszul resolution of OZ , it is enough to show that for any 1 ≤ j ≤ rkQ

hj(P(S2E∗),∧jQ∗) = 0.

Using the exact sequence (∗), this easily reduces to showing that for any 1 ≤ j ≤
rkQ and any 0 ≤ k ≤ j,

Hk(P(S2E∗),∧k(⊕r
i=1ϕ

∗SdiE) ⊗ Sj−k((⊕r
i=1ϕ

∗Sdi−2E) ⊗OP(S2E∗)(1))) = 0.

Since the higher direct images with respect to ϕ vanish, it is sufficient to show
that for any 1 ≤ j ≤ rkQ and for any 0 ≤ k ≤ j, we have

Hk(G(2, n + r),∧k(⊕r
i=1S

diE) ⊗ Sj−k((⊕r
i=1S

di−2E) ⊗ S2E))) = 0.

This will follow from Bott’s theorem applied on G(2, n+r). Indeed, using Schur
functor notation, let SbE be an irreducible factor appearing in the decomposition
of ∧k(⊕r

i=1S
diE)⊗Sj−k((⊕r

i=1S
di−2E)⊗S2E) where b = (b1, b2, b3) is a triple of

integers b1 ≥ b2 ≥ b3 ≥ 0. By the Littlewood-Richardson rule, we get

(∗∗) b2 + b3 ≥ k − r and b3 ≥ k − (d1 + . . . + dr) − r = k − (n + 1)/2 − 2r.

On the other hand by Bott’s theorem, the whole cohomology of SbE vanishes
except maybe in the following cases :

1In this article we follow the convention that the projectivisation of a vector bundle E is the
variety of lines of E.
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(1) k = n + r − 2 and (b1, b2, b3) = (b1, 0, 0) with b1 ≥ n + r − 1,
(2) k = n + r − 2 and (b1, b2, b3) = (b1, 1, 0) with b1 ≥ n + r − 1,
(3) k = n + r − 2 and (b1, b2, b3) = (b1, 1, 1) with b1 ≥ n + r − 1,
(4) k = 2(n + r − 2) with b2 ≥ n + r and b3 = 0, 1, 2,
(5) k = 3(n + r − 2) with b3 ≥ n + r + 1.

The case n = 3 has been dealt with by Bădescu, Beltrametti and Ionescu
[BBI00], so we may assume n ≥ 5 since n is odd.

In the first three cases, we get k − r = n − 2 ≥ 3 > b2 + b3 = 0, 1, 2, which
is excluded by (∗∗). In case (4), since n ≥ 5, we get k − (n + 1)/2 − 2r =
3(n − 3)/2 > b3 = 0, 1, 2, which is again excluded by (∗∗). Case (5) is also
excluded since we are only interested in the situation where k ≤ rkQ = n+1+3r,
but 3(n + r − 2) > n + 1 + 3r when n ≥ 5.

We obtain the following corollary of the proof.

Corollary 2.1. Let X ⊂ Pn+r be a general smooth n-dimensional complete in-

tersection of multi-degree (d1, . . . , dr). Assume moreover that

d1 + · · · + dr ≤
n + 1

2
+ r

and n ≥ 5. Then the family of conics contained in X is a nonempty, smooth and

irreducible component of the Chow scheme C(X).

Let us also mention that Harris, Roth and Starr have shown the irreducibility of
the space of smooth rational curves of arbitrary degree e for general hypersurfaces
of low degree d [HRS04].

2.4. Conics are quasi-lines. By the first step, there exists a conic C passing
through two general points. Such a conic is necessarily smooth: a line d contained
in X and passing through a general point satisfies

TX |d ' OP1(2) ⊕OP1(1)⊕
n−3

2 ⊕O
⊕n+1

2

P1 ,

so an easy dimension count shows that two general points are not connected by
a chain of two lines. Thus C is smooth and its deformations with a fixed point
cover a dense open subset in X. This implies that the normal bundle NC/X is
ample [Deb01, Prop.4.10] and since −KX ·C = n+1, the curve C is a quasi-line.

2.5. Proof of the Corollary 1.3. The irreducibility of the variety of conics
gives

e0(X, l) = e(X, l) =
1

2

r
∏

i=1

(di − 1)!di!.

The equality e0(X, l) = e(X, l) implies that general conics are G3 in X [Ion05,
Cor. 4.6], in particular [Ion05, Cor. 4.7, Cor.1.9] apply.
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3. A similar question

Using exactly the same method as developed in §2.3 , one can prove the fol-
lowing result, left to the reader.

Proposition 3.1. Let Xd ⊂ Pn+1 be a general smooth n-dimensional hypersur-

face of degree d. Then, for n ≥ 7 and d ≤ n+1, the family of conics contained in

Xd is a nonempty, smooth and irreducible component of dimension 3n − 2d + 1
of the Chow scheme C(Xd).

In the case of d = n + 1, there is a finite number of conics passing through a
general point of Xn+1. Let us denote by Nn+1 this number. It seems that there are
no known elementary method to compute this number. A general formula comes
from the calculation of some Gromov-Witten invariants using mirror symmetry
and an ordinary differential equation introduced by Givental. The following lines
were written while reading [JNS04] and [Jin05].

Proposition 3.2. (Coates, Givental - Jinzenji, Nakamura, Suzuki) Let Xn ⊂ Pn

be a general smooth hypersurface of degree n in Pn. Let Nn be the number of

conics passing through a general point of Xn. Then

Nn =
(2n)!

2n+1
−

(n!)2

2
.

Let us briefly explain where this result comes from. If a, b, c and d are four
integers, let 〈OaObOc〉d be the Gromov-Witten invariant counting the number
(possibly infinite) of rational curves of degree d contained in Xn and meeting
3 general subspaces of Pn, of respective codimension a, b and c. When a, b or
c are equal to 1, each such rational curve has to be counted d times since the
intersection of a degree d curve intersects a general hyperplane in d points. Since
a general line meets Xn in n points, we get that Nn = 〈O1O1On−1〉2/4n. In

[Jin05] are introduced some constants L̃n+1,n,d
m , called “structure constants of the

quantum cohomology ring of Xn”. They satisfy the following formula:

n−1
∑

m=0

L̃n+1,n,1
m wm = n

n−1
∏

j=1

(jw + (n − j))

and

n−2
∑

m=0

L̃n+1,n,2
m wm =

n−2
∑

j2=0

j2
∑

j1=0

j1
∑

j0=0

L̃n+1,n,1
j1

L̃n+1,n,1
j2+1 wj1−j0

(

1 + w

2

)j2−j1

.

It is also shown in [Jin05] that for every integer m, 0 ≤ m ≤ n − 2, we have

L̃n+1,n,2
m = 〈O1On−1−mOm+1〉2/n.
Then the proposition follows by evaluating the wn−2 coefficient in the second

formula above, the wn−1 coefficient in the first and putting w = 2.
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[BBI00] Lucian Bădescu, Mauro C. Beltrametti, and Paltin Ionescu, Almost-lines and quasi-
lines on projective manifolds. In Complex analysis and algebraic geometry, 1–27,
Walter de Gruyter, Berlin, 2000.

[Bea95] Arnaud Beauville, Quantum cohomology of complete intersections, Matematich-

eskaya Fizika, Analiz, Geometriya 2(1995), 384–398.
[Deb01] Olivier Debarre, Higher-dimensional algebraic geometry, Universitext. Springer-

Verlag, New York, 2001.
[DM98] Olivier Debarre and Laurent Manivel, Sur la variété des espaces linéaires contenus
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