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HODGE CLASSES ASSOCIATED TO 1-PARAMETER FAMILIES

OF CALABI-YAU 3-FOLDS

PEDRO LUIS DEL ANGEL?, STEFAN MÜLLER-STACH??, DUCO VAN STRATEN??

AND KANG ZUO??

Abstract. We use L2-Higgs cohomology to determine the Hodge numbers
of the parabolic cohomology H1(S̄, j∗V), where the local system V arises from
the third primitive cohomology of family of Calabi-Yau threefolds over a curve
S̄. The method gives a way to predict the presence of algebraic 2-cycles in the
total space of the family and is applied to some examples.

Introduction

We consider a smooth projective family of varieties f : X −→ S over a smooth
curve S. After a finite pull-back we may assume that the family has a semi-stable
completion f̄ : X̄ −→ S̄, giving rise to a diagram

X ↪→ X̄
f ↓ ↓ f̄
S

j
↪→ S̄

In such a situation the action of the local monodromy around each point of the
boundaryD := S̄\S on the local systems of k-cohomologies Rkf∗CX is unipotent.
These local systems carry a polarised variation of Hodge structures (VHS), where
the Hodge filtration arises from the truncation of the relative logarithmic deRham
complex

Ω•
X̄/S̄(log ∆)

where ∆ := f−1(D) is a reduced normal crossing divisor.

It is a very old idea that goes back to Poincaré to study cycles on X̄ by looking
at their slicing by the fibres of the map. IfD 6= ∅, then the Leray spectral sequence
shows that the space of cohomology classes of X that restrict to zero on fibres is
the cohomology on S of the local system of k-cohomologies

Ker(Hk+1(X) −→ H0(S,Rk+1f∗CX)) = H1(S,Rkf∗CX).
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It carries a canonical mixed Hodge structure and the subgroup

H1(S̄, j∗R
kf∗CX) = H1(S̄, Rkf̄∗CX̄) ⊂ H1(S,Rkf∗CX)

can be identified with the part of lowest weight k + 1. More generally, one
can consider (irreducible) local systems V that underly a weight k VHS. The
intersection homology group (also called the parabolic cohomology group)

H1(S, j∗V)

then carries a natural Hodge structure of weight k+ 1, a result due to S. Zucker,
[Z]. In that paper, Zucker defined a local L2-integrability condition for C∞-
sections of de Rham complex twisted by the local system V, using the Hodge
metric and the Poincaré metric near the boundary points. Using the fundamental
estimate of W. Schmid on the growth of the Hodge metric, he showed that a
local section of it is L2-integrable if and only if it lies in the monodromy weight
filtration in the certain given range. Using an L2-Poincaré lemma, he showed that
the subcomplex of L2-integrable forms can be used to compute the intersection
cohomology. In fact, using local information, one can define a certain complex
Ω•

(2)(V), whose hypercohomology computes the intersection homology:

H1
(2)(S,V) := H1(Ω•

(2)(V)) = H1(S, j∗V).

The complex carries a natural Hodge filtration and the associated spectral se-
quence

Hq(Grp
F Ω•

(2)(V)) ⇒ Hp+q
(2) (S,V)

degenerates at E1 and induces the pure Hodge structure on the limit.

In this paper we will focus attention to local systems that arise from non-
trivial pencils of Calabi-Yau 3-folds. So we have S̄ = P1 and f : X → S =
P1 \D a smooth family of Calabi-Yau 3-folds whose Kodaira-Spencer map is not
identically zero, hence

dimCH
1(Xs,Ω

2
Xs

) = dimCH
1(Xs,ΘXs

) = 1.

As a consequence, the local system V := R3f∗CX of (primitive) middle cohomol-
ogy is irreducible and has Hodge numbers (1, 1, 1, 1). The cohomology group

H := H1(S̄, j∗V) = H1
(2)(S,V)

carries a pure Hodge structure of weight 4:

H = H4,0 ⊕H3,1 ⊕H2,2 ⊕H1,3 ⊕H0,4.

In this paper, we will identify the Hodge numbers of H in terms of geometric
data of the family. We hope it will become clear to the reader how these ideas can
be used to obtain formulae in far more general situations. Of particular interest
is the Hodge space H2,2, as any cycle Z ∈ CH2(X̄) (homologous to zero on all
fibres of f) will give a class in it, as will be recalled in Section 4. On the other
hand, a class in H1(S̄, j∗V) also defines an extension of local systems, which is
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the same as the one obtained from an inhomogeneous Picard-Fuchs differential
equations of type

LΦZ = g

associated to the normal function ΦZ of the cycle Z. Finally, we describe some
examples that were recently considered in [W1] and [W2].

1. The L2-Higgs complex

Recall that a logarithmic Higgs bundle (E, θ) on S̄ consists of a holomorphic
vector bundle E, together with an OS̄-linear map

E
θ−→ E ⊗ Ω1

S̄(logD).

In the geometrical case, E is the sum of the Hodge bundles:

E = ⊕p+q=kE
p,q, Ep,q := Rqf̄∗(Ω

p
X̄/S̄

(log ∆))

and the Higgs field is obtained from cup-product with the Kodaira-Spencer class.
By Griffiths transversality, it has components

Ei,j θ−→ Ei−1,j+1 ⊗ Ω1
S̄(logD).

In the paper of Jost, Yang and the last named author [JYZ], the local L2-
condition of Zucker was adapted to the more general setting of logarithmic Higgs
bundles.

If (E, θ) is a logarithmic Higgs bundle on S̄ and p ∈ D := S̄ \ S is a boundary
point, then the residue of the Higgs-field θ at p

N = Np := Resp(θ) ∈ End(Ep)

is a nilpotent endomorphism and so determines a weight filtration W• on the fibre
Ep.

1

(Recall that any nilpotent endomorphism N of a vector space V determines
in a canonical way an increasing filtration on V , called the monodromy weight

filtration:

0 ⊂W−m ⊂W−m+1 ⊂ · · · ⊂W0 ⊂W1 ⊂ · · · ⊂Wm = V.

It is defined as follows: if Nm+1 = 0 but Nm 6= 0 we put

Wm−1 = Ker(Nm), W−m = Im(Nm).

Then inductively Wk is constructed in such a way that N(Wk) = Im(N)∩Wk−2 ⊂
Wk−2 and

Nk : GrW
k (V ) → GrW

−k(V )

are isomorphisms.)

1In terms of the local system V, the endomorphism Np can be identified with log Tp, the
logarithm of the local monodromy operator around the puncture p.
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These weight filtrations on Ep, p ∈ D can be used to define a certain complex
(Ω•

(2)(E), θ), called the L2-Higgs complex. It is determined by sub-sheaves

Ω0
(2)(E) ⊂ E, Ω1

(2)(E) ⊂ E ⊗ Ω1
S̄(logD)

which are defined near p ∈ D by

Ω0
(2)(E) := W0 + tE, Ω1

(2)(E) := (W−2 + tE) ⊗ Ω1
S̄(logD).

Here t is a local parameter near a boundary point p = {t = 0} ∈ D and the
weight filtration is defined by Np.

It can be shown [JYZ] that the hypercohomology of the L2− Higgs complex
(Ω•

(2)(E), θ) is isomorphic to the L2-cohomology

Hk
(2)(S,E) = Hk(Ω•

(2)(E), θ).

We now spell out the local structure of (Ω•
(2), θ) for the case of logarithmic

Higgs bundles of type (1, 1, 1, 1), so that

E = E3,0 ⊕ E2,1 ⊕E1,2 ⊕ E0,3

and each summand is a line bundle. At an ordinary point p ∈ S the L2-Higgs
complex of course coincides with the Higgs-bundle itself, so that we have

Ω0
(2) = E3,0 ⊕ E2,1 ⊕ E1,2 ⊕ E0,3, Ω1

(2) =
(
E3,0 ⊕ E2,1 ⊕ E1,2 ⊕ E0,3

)
⊗ Ω1

S̄ .

For the points p ∈ D one has to distinguish cases corresponding to the possible
Jordan-forms of the endomorphism N = Np.

There are two subcases that appear when m = 1, that is N2 = 0, but N 6= 0.

Point of type I. Here we have a single Jordan-block of the form

N =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 .

The monodromy weight filtration has the following form:

0 = W−1 ⊂W0 = Ker(N) ⊂W1 = V.

In this case in the sequence E3,0 N→E2,1 N→E1,2 N→E0,3 at the point p = {t = 0} the
middle map must be an isomorphism, since dim Ker(N) = 3. Hence the left and
right maps must both be zero. Therefore the L2-complex near p looks like:

Ω0
(2) = 0 ⊕ E3,0 ⊕ tE2,1 ⊕ E1,2 ⊕ E0,3

↓ θ ↓ ↓ ↓ ↓ ↓
Ω1

(2) =
(
tE3,0 ⊕ tE2,1 ⊕ tE1,2 ⊕ tE0,3 ⊕ 0 ) ⊗ Ω1

S̄
(logD)
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Point of type II. Here we have two Jordan-blocks

N =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 .

The monodromy weight filtration now has the following form

0 = W−1 ⊂W0 = Ker(N) ⊂W1 = V.

In this case in the sequence E3,0 N→E2,1 N→E1,2 N→E0,3 at the point p = {t = 0}, the
middle map must be zero, since dim Ker(N) = 2 and the left and right maps are
dual to each other. Therefore the L2-subcomplex has the local form:

Ω0
(2) = 0 ⊕ tE3,0 ⊕ E2,1 ⊕ tE1,2 ⊕ E0,3

↓ θ ↓ ↓ ↓ ↓ ↓
Ω1

(2) =
(
tE3,0 ⊕ tE2,1 ⊕ tE1,2 ⊕ tE0,3 ⊕ 0 ) ⊗ Ω1

S̄
(logD).

Case m=2. Assume that N2 6= 0 and N3 = 0, so we may assume

N =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 .

At the point p the first and the last maps in the sequence

E3,0 N→E2,1 N→E1,2 N→E0,3

are dual to each other. If they are both isomorphisms, then N3 = 0 implies that

the middle map E2,1 N→E1,2 is the zero map. Hence we already have N2 = 0.
Therefore this case cannot happen.

Point of type III. Assume now that m = 3, so N3 6= 0, so this case corresponds
to points of maximal unipotent monodromy,

N =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

The monodromy weight filtration has the following form:

0 ⊂W−3 = W−2 = Ker(N) ⊂W−1 = W0 = Ker(N2) ⊂W1 = W2 = Ker(N3) ⊂ V.

Since N3 6= 0 and the Ep,q have rank one, the composition

E3,0 N→E2,1 N→E1,2 N→E0,3

at the point p = {t = 0} is an isomorphism. The L2-subcomplex takes the
following form
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Ω0
(2) = 0 ⊕ tE3,0 ⊕ tE2,1 ⊕ E1,2 ⊕ E0,3

↓ θ ↓ ↓ ↓ ↓ ↓
Ω1

(2) =
(
tE3,0 ⊕ tE2,1 ⊕ tE1,2 ⊕ E0,3 ⊕ 0 ) ⊗ Ω1

S̄
(logD).

2. Hodge Filtration

One of the main points of the constructions of the L2-Higgs complex is that
one obtains a more or less explicit description of the Hodge-decomposition on
H1(S, j∗V). The obvious Hodge filtration

F k ⊂ F k−1 ⊂ . . . ⊂ F 0, F p :=
⊕

i≥p

Ei,k−i

on E defines by intersection with the L2-subcomplex Ω•
(2)(E) a filtration and the

corresponding hypercohomology spectral sequence degenerates at E1.

It appears from description of the previous section, that the complex Ω•
(2)(E)

is in fact the direct sum of graded pieces

Ω•
(2)(E) = ⊕p+q=kΩ

•
(2)(E)p,q,

where

Ω0
(2)(E)p,q := Ω0

(2)(E) ∩ Ep,q

Ω1
(2)(E)p,q := Ω1

(2)(E) ∩ Ep−1,q+1 ⊗ Ω1
S̄(logD)

In the case of a logarithmic Higgs bundle of type (1, 1, 1, 1) considered before,
the F -graded pieces have the following form:

0 1
Gr4F Ω•

(2)(E) 0 −→ Ω1
(2)(E)3,0

Gr3F Ω•
(2)(E) Ω0

(2)(E)3,0 θ−→ Ω1
(2)(E)2,1

Gr2F Ω•
(2)(E) Ω0

(2)(E)2,1 θ−→ Ω1
(2)(E)1,2

Gr1F Ω•
(2)(E) Ω0

(2)(E)1,2 θ−→ Ω1
(2)(E)0,3

Gr0F Ω•
(2)(E) Ω0

(2)(E)0,3 θ−→ 0

From this we obtain the following expression for the Hodge spaces Hp,q of
H1

(2)(S,E):

Theorem 2.1.

H4,0 = H0(S̄, E30 ⊗ Ω1
S̄
)

H3,1 = H0(S̄,Ω1
(2)(E)2,1/θ(Ω0

(2)(E)3,0))

H2,2 = H0(S̄,Ω1
(2)(E)1,2/θ(Ω0

(2)(E)2,1))

H1,3 = H0(S̄,Ω1
(2)(E)3,0/θ(Ω0

(2)(E)1,2))

H0,4 = H1(S̄, E03)
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Proof. From the local description of the L2- Higgs complex one sees

Ω1
(2)(E)3,0 = E3,0 ⊗ Ω1

S̄ , Ω0
(2)(E)0,3 = E0,3

which gives theH4,0 andH0,4-spaces. For the other three we remark that the map
θ is injective, so the two-term complex is quasi-isomorphic to the corresponding
cokernel (at spot one). �

3. Numerical consequences

We can use the above description of the L2-Higgs complex and its Hodge-
graded pieces to obtain explicit formulae for the Hodge numbers of

H := H1
(2)(S,E)

in terms of elementary geometric data. As before, E is a logarithmic Higgs-bundle
on a curve S̄ (of genus g(S̄)) of type (1, 1, 1, 1).

Using the local descriptions of the previous section, we can give a global de-
scription of the L2-Higgs complex.

Proposition 3.1. Let

OS̄(−I), OS̄(−II), OS̄(−III),
denote the ideal sheaves of the points of type I, II and III respectively. Then

the graded pieces of the terms of the L2-Higgs complex Ω•
(2)(E) are given by

Ω1
(2)(E)3,0 = E3,0 ⊗ Ω1

S̄

Ω0
(2)(E)3,0 = E3,0(−II − III) Ω1

(2)(E)2,1 = E2,1 ⊗ Ω1
S̄

Ω0
(2)(E)2,1 = E2,1(−I − III) Ω1

(2)(E)1,2 = E1,2 ⊗ Ω1
S̄

Ω0
(2)(E)1,2 = E1,2(−II) Ω1

(2)(E)0,3 = E0,3(III) ⊗ Ω1
S̄

Ω0
(2)(E)0,3 = E0,3

Proof. This can be read off immediately by looking at the positions of the t’s in
the local description of the L2-Higgs complex. �

We put
a := deg(E3,0), b := deg(E2,1),

so that by self-duality of the Higgs-bundle we have

deg(E0,3) = −a, deg(E1,2) = −b.
Let A,B,C be the numbers of singular points of type I, II, III described

above.

Theorem 3.2. The Hodge numbers of H := H1
(2)(S,V) are:

h4,0 = h0,4 = a− 1 + g(S̄),

h3,1 = h1,3 = B + C + b− a− 2 + 2g(S̄),

h2,2 = A+ C − 2b− 2 + 2g(S̄).
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In particular we have

dimC H = A+ 2B + 3C + 8(g(S̄) − 1).

Proof. We use the description of the Hodge spaces from the previous section. We
have H4,0 = H0(S̄, E3,0⊗Ω1

S̄
) and so by Riemann-Roch h4,0 = a+2g−2−g+1 =

a− 1 + g as H1(S̄, E3,0 ⊗ Ω1
S̄
) = 0 by positivity of E3,0 (g = g(S̄)).

Recall that the space H3,1 is represented as global sections of the cokernel of

the map Ω0
(2)(E)3,0 θ−→ Ω1

(2)(E)2,1, so we have to count the zeros of a bundle map

E3,0(−II − III) −→ E2,1 ⊗ Ω1
S̄.

Their number is given by the difference in degree of the bundles involved, so

h3,1 = degE2,1 ⊗ Ω1
S̄ − degE3,0(−II − III) = b+ 2g − 2 − a+B + C

Similarly, the space H2,2 is represented as global sections of the cokernel of the

map Ω0
(2)(E)2,1 θ−→ Ω1

(2)(E)1,2, so we have to count the zeros of a bundle map

E2,1(−I − III) −→ E1,2 ⊗ Ω1
S̄ .

and one obtains the dimension in a similar way. By duality, the other Hodge
numbers are determined. �

Corollary 3.3. In the special case dimCH ≤ 1 we have H = H2,2 and it follows

that

g(S̄) = 0, a = 1, b =
1

2
(A+C − 2 − dimCH).

Remark 3.4. The 3-fold iterated Kodaira-Spencer map θ gives rise to a homo-
morphism

θ(3) : (E3,0)⊗2 −→ S3Ω1
S̄(logD)

which is called the Griffiths-Yukawa coupling. The number of zeros of θ(3) counted
with multiplicity is therefore given by the formula

]{p ∈ P1 | θ(3)(p) = 0} = 3(N − 2 + 2g(S̄)) − 2a.

Here

N := A+B + C

denotes the total number of singularities.

Remark 3.5. For a non-trivial, irreducible local system V there is a simple
classical formula for the dimension

h1(V) := dimCH
1(P1, j∗V)

in terms of the ramification indices

R(p) := Rank(V) − dim(VI(p)),

where I(p) is the local monodromy around the point p.
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Proposition 3.6.

h1(V) =
∑

p∈D

R(p) + (2g(S̄) − 2)Rank(V).

Proof. From topology one obtains

χ(j∗V) = χ(S) · Rank(V) +
∑

p∈D

dimVI(p) = (2 − 2g)Rank(V) −
∑

p∈D

R(p).

From the exact sequence

0 −→ j!V −→ j∗V −→ i∗j∗V −→ 0

(where i : D ↪→ S̄) one gets H2(j!V) = H2(j∗V) and from Poincaré duality one
gets

H2(j!V) = H2
c (S,V) = H0(S,V∗)∗

As H0(S,V∗) = 0 the result follows. �

4. Cycle classes

Recall that the space H1(S,V) is naturally identified with the space of exten-

sion classes

0 −→ V −→ V̂ −→ CS −→ 0

of local systems on S. The parabolic subspace H1(S̄, j∗V) ⊂ H1(S,V) consists
precisely of those extensions which split locally near each point p ∈ D, see e.g.
[S2]. If the local system is described as horizontal sections or solutions to a
homogeneous differential equation on S

LΦ = 0,

then extensions are described in terms of inhomogeneous equations of the form

LΨ = g,

where g ∈ MS is a meromorphic function on S. The local system of solutions to
the extended equation

L̂Φ = 0, L̂ = (g
d

dt
− g′)L

makes up the local system V̂. This leads to a description of the parabolic coho-
mology by an exact sequence of the form

0 −→ L(MS) −→ Mpara
S −→ H1(S̄, j∗V) −→ 0,

where Mpara is the set of meromorphic functions on S̄ that satisfy a parabolic

condition in the points p ∈ D. We refer to [S1] and [S2] for details of this
construction.

Consider as in the introduction a semi-stable morphism f̄ : X̄ → S̄ which
extends a smooth map f : X −→ S. We set ∆ = f̄−1(D), the inverse image
of D := S̄ \ S, a reduced simple normal crossing divisor. We consider algebraic
cycles Z ∈ CH2(X̄), whose classes restrict to zero on the fibres of f , i.e. are in
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the kernel of the restriction map H4(X̄) −→ H4(fibre). Such a cycle determines
a locally split extension

0 −→ V −→ V̂ −→ CS −→ 0

of local systems on S that we will describe now. Its fibre over t ∈ S is

0 −→ H3(Xt) −→ V̂t −→ C −→ 0

V̂t = ρ−1(C · [Zt]), ρ : H3(Xt \ |Zt|) −→ H4
|Zt|

(Xt)

where Xt := f−1(t) and Zt := Z ∩ Xt. The choice of a 3-form ω ∈ H0(S,E3,0)
determines the Picard-Fuchs differential operator L which describes the local
system V = R3f∗CX and has all periods

Φ :=

∫

γt

ω, γt ∈ H3(Xt).

as solutions. The cycle Z and the form ω determine a normal function in the
sense of Poincaré-Griffiths:

ΦZ(t) =

∫

Γt

ω,

where the 3-chain Γt has the property that ∂Γt = Zt. It satisfies an inhomoge-
neous Picard-Fuchs ODE of the form

LΦZ = g,

where the source function g is a meromorphic function on S̄ [dAMS].

There is a Higgs part to this story: each cycle Z ∈ CH2(X̄) will also determine
an element in the group H := H1

(2)(S,E), which in fact will lie in (2, 2) component

H2,2 of H. Let us indicate how to obtain directly a class in

H0(S̄, E1,2 ⊗ Ω1
S̄(logD)/θ(E2,1))

or rather its L2-version

H0(S̄,Ω1
(2)(E)1,2/θ(Ω0

(2)(E)2,1)).

From the class of Z in H4(X̄) we first obtain by restriction to X a class in
H2(X̄,Ω2

X̄
(log ∆)) which is mapped to a class in

H0(S̄, R2f̄∗Ω
2
X̄(log ∆))

by the edge-homomorphism H2(X̄,Ω2
X̄

(log ∆)) → H0(S̄, R2f∗Ω
2
X̄

(log ∆)) of the
Leray spectral sequence. The exact sequence

0 → f
∗
Ω1

S̄(logD) ⊗ Ω1
X̄/S̄(log ∆) → Ω2

X̄(log ∆) → Ω2
X̄/S̄(log ∆) → 0

gives by taking the direct image under f̄∗ a long exact sequence of sheaves on S̄:

. . . −→ E2,1 θ−→ Ω1
S̄(logD) ⊗ E1,2 −→ R2f̄∗Ω

2
X̄(log ∆)

−→ R2f̄∗Ω
2
X̄/S̄(log ∆) −→ . . .
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From this sequence we get
H0(E1,2 ⊗ Ω1

S̄
(logD)/E2,1) = Ker(H0(S̄, R2f̄∗Ω

2
X̄

(log ∆)) → H0(S̄, R2f̄∗Ω
2
X̄/S̄

(log ∆))).
As Z is assumed to be homologous to zero on the fibres, the class of Z is indeed
in the kernel and hence we obtain an element

δ(Z) ∈ H0(E1,2 ⊗ Ω1
S̄(logD)/θ(E2,1))

which is called Griffiths’ infinitesimal invariant of Z. However, we know a priori
that the class of Z is of type (2, 2), so that the element lies in the H2,2-subspace
of H1

(2)(S,R
3f∗CX). Hence we must have that

δ(Z) ∈ H0(S̄,Ω1
(2)(E)1,2/θ(Ω0

(2)(E)2,1)).

One can also understand H1
(2)(E, θ) in terms of extensions of Higgs-bundles. If

(E, θ) is the Higgs bundle associated to V, then there is a Higgs bundle (Ê, θ̂)

associated to V̂. It is obtained as sum of graded pieces for the Hodge filtration

of the Deligne extension of V̂. It sits in an exact sequence

0 → (E, θ) → (Ê, θ̂) → (OS̄ , 0) → 0,

where (OS̄ , 0) is the trivial Higgs bundle. This extension produces an extension
of L2-Higgs complexes

0 −→ Ω•
(2)(E) −→ Ω•

(2)(Ê) −→ Ω•
(2)(O) −→ 0

and the connecting homomorphism of hypercohomology gives an exact sequence

. . . −→ H0(S̄,O)
∂−→ H1

(2)(S,E) −→ H1
(2)(S, Ê)) −→ . . .

Clearly one has
∂(1) = δ(Z).

5. Examples

5.1. Mirror Quintic. The Dwork pencil is the following pencil of quintics in P4

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5ψx1x2x3x4x5 = 0

which plays a prominent role in mirror symmetry [C].

Apart from the degeneration into the union of 5 hyperplanes x1x2x3x4x5 = 0
occurring for ψ = ∞, the fibres aquire singularities over the fifth roots of unity
ψ5 = 1. In fact, these fibres have 125 nodes, which form a single orbit under a
group G ≈ (Z/5)3 that acts on the whole pencil by scaling the coordinates that
preserve each monomial of the equation.

The quotient by the pencil by G has a birational model as pencil of quintics
[M]:

(x1 + x2 + x3 + x4 + x5)
5 − (5ψ)5x1x2x3x4x5 = 0.

A crepant resolution of the general fibre is a Calabi-Yau 3-fold with Hodge num-
bers h1,2 = 1, h1,1 = 101, called the mirror quintic.
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The local system V = R3f∗C of this family is unipotent and has 6 singular
fibres; there is one point of type III over ψ = ∞ and the 5 points of type II over
the fifth unit roots. So we have N = 6, A = 5, B = 0, C = 1 and from the
dimension formula one finds h1(V) = 0. From our formulas we deduce a = 1 and

b = 2. It follows that Griffiths-Yukawa Coupling θ(3) has 10 zeros. It vanishes
twice at the fifth roots of unity.

After taking a further base change z 7→ z2, we obtain a family with A = 10,
B = 0, C = 1 and N = 11. By the dimension formula we have h1(V) = 5. As we
pull back a unipotent system, the Hodge bundles are obtained by base-change.
So we have a = 2, b = 4. Our formula gives h4,0 = h3,1 = h2,2 = 1.

The Yukawa-coupling θ(3) vanishes twice at each of the 10 points of type I.
Furthermore, θ(3) now has a triple zero at 0 due to the ramification, whereas at
∞ the ramification does not produce a zero, as the pull-back of a point of type III
remains of type III. So θ(3) has 23 zeros in total, in accordance with our formula.

Hence, H1(S̄, j∗V) is a remarkable Hodge structure of dimension 5, all whose
Hodge numbers are one. In particular there should be one interesting 2-cycle on
the total space. It was determined explicitly by Walcher, using matrix factoriza-
tions, [W1].

5.2. Hypergeometric pencils. Note that the pencil of the mirror quintic of
the previous paragraph is the pull-back under the map z = (5ψ)−5 of the pencil

z(x1 + x2 + x3 + x4 + x5)
5 − x1x2x3x4x5 = 0

The local system L = R3f∗C of this family can be identified with the local system
of solutions to the hypergeometric operator

θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4), (θ = z∂/∂z)

which has three singular points z = 0, z = 5−5,∞. The monodromy around z = 0
of type III, around z = 5−5 of type I and around z = ∞ it is of order five. The
dimension formula gives

dimCH
1(S̄, j∗L) = 1 + 3 + 4 − 8 = 0.

When we pull-back over the map z −→ z2, we get a local system L̃ with

dimCH
1(S̄, j∗L̃) = 2 + 3 + 4 − 8 = 1

so there is a cycle. We will need an extension of our theory to the quasi-unipotent
case in order to see via L2-Higgs theory that this is indeed a (2, 2)-class. This
gives an explanation for the appearance of

√
z in the inhomogeneous term

LΦ =
c

(2πi)2
√
z, c ∈ Q

for the inhomogeneous Picard-Fuchs equation of the cycle in H2,2.

In total there are 14 such hypergeometric local systems that carry a variation of
Hodge structures [DM]: they all arise as mirror families of Calabi-Yau complete
intersections in weighted projective spaces. We consider pull-backs z 7→ ze of



HODGE CLASSES ASSOCIATED TO FAMILIES OF CALABI-YAU 3-FOLDS 19

order e, which have 1 point of type III, e points of type I and possibly a further
singularity at ∞.

Seven cases with semi-simple monodromy at infinity.

Operator Model e h1 h4,0 h3,1 h2,2

θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4) P4[5] 1 0 0 0 0
2 1 0 0 1
5 0 0 0 0
10 1 1 1 1

θ4 − 36z(6θ + 1)(3θ + 1)(3θ + 2)(6θ + 5) P(1, 1, 1, 1, 2)[6] 1 0 0 0 0
2 1 0 0 1
6 1 0 0 1

θ4 − 16z(8θ + 1)(8θ + 3)(8θ + 5)(8θ + 7) P(1, 1, 1, 1, 4)[8] 1 0 0 0 0
2 1 0 0 1
8 3

θ4 − 80z(10θ + 1)(10θ + 3)(10θ + 7)(10θ + 9) P(1, 1, 1, 2, 5)[10] 1 0 0 0 0
2 1 0 0 1
10 5

θ4 − 48z(6θ + 1)(4θ + 1)(4θ + 3)(6θ + 5) P(1, 1, 1, 1, 1, 1, 2)[3, 4] 1 0 0 0 0
2 1 0 0 1
4 1 0 0 1
6 3
12 7

θ4 − 144z(12θ + 1)(12θ + 5)(12θ + 7)(12θ + 11) P(1, 1, 1, 1, 2, 12)[2, 12] 1 0 0 0 0
2 1 0 0 1
12 7

θ4 − 12z(4θ + 1)(3θ + 1)(3θ + 2)(4θ + 3) P(1, 1, 1, 2, 2, 3)[4, 6] 1 0 0 0 0
2 1 0 0 1
3 0 0 0 0
4 1 0 0 1
12 7

Three cases with one Jordan-block at ∞:

Operator Model e h1 h4,0 h3,1 h2,2

θ4 − 16z(4θ + 1)(2θ + 1)2(4θ + 3) P5[2, 4] 1 0 0 0 0
2 0 0 0 0
4 0 0 0 0
8 4 1 1 0

θ4 − 12z(3θ + 1)(2θ + 1)2(3θ + 2) P6[2, 2, 3] 1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
6 2

θ4 − 48z(6θ + 1)(2θ + 1)2(6θ + 5) P5[2, 6] 1 0 0 0 0
2 0 0 0 0
6 2

For example, the pull-back of the P5[2, 4]-operator by z 7→ z4 has A = 5,
C = 1, so still h1 = 3 + 5 − 8 = 0, and thus it follows that a = 1, b = 2. Making
an additional quadratic pull-back z 7→ z2 gives a local system with a = 2, b = 4,
A = 9, B = 0, C = 1, so we get h4,0 = h3,1 = 1, h2,2 = 0!
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Three cases with two Jordan-blocks at infinity:

Operator Model e h1 h4,0 h3,1 h2,2

θ4 − 9z(3θ + 1)2(3θ + 2)2 P5[3, 3] 1 0 0 0 0
2 1 0 0 1
3 0 0 0 0
6 3 1 0 1

θ4 − 16z(4θ + 1)2(4θ + 3)2 P5(1, 1, 1, 1, 2, 2)[4, 4] 1 0 0 0 0
2 1 0 0 1
4 1 0 0 1
8 5 1 0 3

θ4 − 144z(6θ + 1)2(6θ + 5)2 P5[2, 6] 1 0 0 0 0
2 1 0 0 1
6 3

For example, the pull-back of the P5[3, 3]-operator by z 7→ z3 has A = 3,
B = 1, C = 1, so still h1 = 3 + 2 + 3 − 8 = 0, and thus it follows that a = 1,
b = 1. Making an additional quadratic pull-back z 7→ z2 gives a local system
with a = 2, b = 2, A = 6, B = 1, C = 1, so we get h4,0 = 1, h3,1 = 0, h2,2 = 1.

One case with a maximal Jordan block at infinity:

Operator Model e h1 h4,0 h3,1 h2,2

θ4 − 16z(2θ + 1)4 P7[2, 2, 2, 2] 1 0 0 0 0
2 0 0 0 0
2k 2k − 2 k − 1 0 0

Pulling-back by z 7→ z2 produces a local system with A = 2, B = 0, C = 2, so
h1 = 0, hence a = 1, b = 1. A further pull-back by z 7→ zk, gives A = 2k,B =
0, C = 2, a = k, b = k and hence h4,0 = k − 1,h3,1 = h2,2 = 0; we never get any
(2, 2)-classes.

This gives some apriori explanation for which cases one expects the appearance
of

√
z in the inhomogeneous term

LΦ =
c

(2πi)2
√
z, c ∈ Q

for Picard-Fuchs equation of the cycle in H2,2, [W1],[W2].

5.3. A Grassmannian Example. In [AESZ] over 300 examples of differential
equations of Calabi-Yau type are collected. Conjecturally all of these have a
geometrical origin and underlie a variation of Hodge structures of type (1, 1, 1, 1).
After the 14 hypergeometric examples there are cases that arise from mirror
symmetry for complete intersections in a Grassmannian.

The canonical class of the six dimensional Grassmannian Z := Gr(2, 5) is 5H,
where H is the ample generator of H2(Z) which defines the Plücker-embedding of
Z in P10. Consequently, the complete intersection of Z with three hypersurfaces
of degree 1, 2, 2 is a smooth Calabi-Yau threefold with h1,1 = 1. In [BCKS]
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a mirror family was described. It is a pencil with 4 singular points 0, α, β,∞,
where

α :=
1

32
(5
√

5 − 11), β :=
1

32
(−5

√
5 − 11).

The Picard-Fuchs operator for this family was computed in [BCKS]:

θ4 − 4z(11θ2 + 11θ + 3)(2θ + 1)2 − 16x2(2θ + 1)2(2θ + 3)2, (θ = z∂/∂z).

which has a holomorphic solution

Φ(z) =

∞∑

n=0

Anz
n, An :=

(
2n

n

)2 n∑

k=0

(
n

k

)2(n+ k

k

)

(it is Nr.25 in the list [AESZ]). Around 0 we have maximal unipotent monodromy,
around the points α and β we have a single Jordan-block of size two. After a
base change x 7→ x2 we are in a unipotent situation also at ∞. The points α and
β each have two preimages of type A. The points ∞ is of type B (two Jordan
blocks). This implies immediately that 1 = h1(V) = h2,2(V) and the other Hodge
numbers are zero. The constants are A = 4, B = 1, C = 1, a = 1 and b = 1.

5.4. A remarkable Hadamard Product. The second order operator

θ2 − z(32θ2 + 32θ + 12) − 256(θ + 1)2

is Picard-Fuchs operator of a rational elliptic surface and defines a local system
L of rank two. It has a unique period that is holomorphic near 0 which has an
expansion φ(z) = 1 + 12z + 164z2 + . . .+

φ(z) =

∞∑

n=0

Anz
n, An :=

n∑

k=0

4n−k

(
2k

k

)2(2n− 2k

n− k

)
.

Its Hadamard square is the function

Φ(z) :=
∑

n=0

A2
nz

n

which satisfied the fourth order equation

LΦ = 0

where L is a rather complicated operator (Nr. 115 in the list [AESZ]).

The local system V of solutions of L is the multiplicative convolution of the
local system L with itself and defines a VHS of type (1, 1, 1, 1). It has only
three points of maximal unipotent monodromy, A = 0, B = 0, C = 3. One has
h1(V) = 3.3 − 8 = 1, and hence a = 1, b = 0(!), and h2,2 = 1. Furthermore, the
Griffiths-Yukawa coupling vanishes at a single point (3(3 − 2) − 2 = 1).
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