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Abstract. In this paper we study some relationships between polyhedral convex sets (PCS) and generalized

polyhedral convex sets (GPCS). In particular, we clarify by a counterexample that the necessary and sufficient

conditions for the separation of a convex set and a PCS obtained by Kung Fu Ng and Wen Song in [Fenchel

duality in finite-dimensional setting and its applications, Nonlinear Anal. 55 (2003), 845–858; Theorem 3.1]

are no longer valid when considering GPCS instead of PCS. We also introduce and study the notions of

generalized polyhedral set-valued mappings and optimal value functions generated by generalized polyhedral

convex set-valued mappings along with their generalized differentiation calculus rules.
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1 Introduction

Polyhedral convex sets (PCS) and related concepts have been study broadly in the framework of convex

analysis in both finite dimensions and infinite dimensions. Among many important results involving polyhedral

convex sets, necessary and sufficient conditions for the separation property of a convex set and polyhedral

convex sets play a crucial role in developing generalized differentiation involving PCS with applications to

optimization. An important result was established by Kung Fu Ng and Wen Song (see [6, Theorem 3.86], [7,

Theorem 3.1]) providing necessary and sufficient conditions for separating a convex set and a polyhedral convex

set in locally convex topological vector spaces. This is a generalization of a well-known result obtained by
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Rockafellar in finite dimensions; see [8, Theorem 20.2]. The result by Ng and Song was then used in [3] to

obtain comprehensive generalized differentiation calculus for nonsmooth functions and set-valued mappings in

locally convex topological vector spaces.

Given the crucial role of PCS in convex analysis and applications, a new concept called generalized poly-

hedral convex sets (GPCS) have been introduced and studied recently in infinite dimensions; see [1, 5] and

the references therein. In a series of recent papers, Luan, Yen and others have established the mathemati-

cal foundation for GPCS in locally convex topological vector spaces and provide important applications in

many areas such as vector optimization, conic linear programming, numerical optimization, etc. These new

developments also shed new light on many known results involving PCS. In particular, we refer the reader to

the paper by Luan, Yao, and Yen [4] in which several constructions such as sum of sets, sum of functions,

directional derivative, infimal convolution, normal cone, subdifferential, conjugate function involving PCS and

GPCS were thoroughly investigated.

The remarkable role of PCS and generalized PCS raises an important question asking for the clarification

whether a certain result which holds for PCS also holds for GPCS or not. One of the main goals of this paper is

to answer the question. In particular, we provide a counterexample showing that the aforementioned separation

result by Ng and Song for PCS is no longer true for GPCS in general, and thus this counterexample somehow

discourages the possibility for full generalizations of the results in [3] to the case of GPCS. The second main

goal of this paper is to study polyhedral convex set-valued mappings (PCSM) and generalized polyhedral convex

set-valued mappings (GPCSM) and derive calculus rules of generalized differentiation in the case where one

mapping involved is a PCSM, while the other mapping is a GPCSM. We also study generalized differentiation

of optimal value functions generated by PCSM and GPCSM. When developing these generalized differentiation

calculus rules, we recover a number of important results obtained by Luan, Yao, and Yen [4] by new proofs.

This paper is organized as follows. In Section 3 we study some relationships between PCS and GPCS

in locally convex Hausdorff topological vector spaces. Section 4 is devoted to generalized differentiation for

PCSM and GPCSM. Generalized differentiation of optimal value functions generated by PCSM and GPCSM

is investigated in the final section.
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2 Relationships Between Polyhedral Convex Sets and Generalized

Polyhedral Convex Sets

Let X be a locally convex Hausdorff topological vector space over the reals with its topological dual

denoted by X∗. For simplicity of presentation, we assume that all spaces under consideration are locally

convex Hausdorff topological vector spaces. The cone generated by a nonempty subset Ω of X (resp., the

closure of Ω) is denoted by cone(Ω) (resp., Ω) . Thus, cone(Ω) = {tx | t ≥ 0, x ∈ Ω}. In what follows, let

R := (−∞,∞].

Definition 2.1. (a) A subset P of X is said to be a polyhedral convex set (PCS) or a convex polyhedron

if there exist x∗
1, . . . , x

∗
m ∈ X∗ and α1, . . . , αm ∈ R such that

P =
{
x ∈ X | ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}
.

(b) A subset Q of X is said to be a generalized polyhedral convex set (GPCS) or a generalized convex

polyhedron if there exist x∗
1, . . . , x

∗
m ∈ X∗, α1, . . . , αm ∈ R, and a closed affine subspace M of X such

that

Q =
{
x ∈ X | x ∈ M, ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}
.

It follows from the definitions that a GPCS can be represented as the intersection of a PCS and a closed

affine subspace.

Proposition 2.1. Let Q be a nonempty GPCS given by

Q =
{
x ∈ X | x ∈ M, ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}
,

where x∗
1, . . . , x

∗
m ∈ X∗, α1, . . . , αm ∈ R, and M is a closed affine subspace. Then Q is a PCS if and only if

codimM < ∞.

Proof. ⇐=: Let L := M − M and observe that L is the unique closed linear subspace parallel to M .

Since M has finite codimension, dimX/L = k for some positive integer k. Consider the quotient mapping

Φ: X → X/L. Choose a ∈ M and get [a] ∈ X/L with Φ(M) = [a]. Suppose that [b1], . . . , [bk] form a basis for

X/L. Then we have the representation

[a] =

k∑
i=1

βi[bi],

where β1, . . . , βk ∈ R. For each i ∈ {1, . . . , k}, we consider the linear mapping gi : X/L → R with gi
(∑k

i=1 µi[bi]
)
=
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µi. By [9, Lemma 1.20 and Theorem 1.21] (note that the same results and proofs are valid for linear mappings

defined on Rn), gi is continuous for all i ∈ {1, . . . , k}. Thus, the function u∗
i := gi ◦Φ is linear and continuous

for all i ∈ {1, . . . , k}. Hence, u∗
i ∈ X∗ and u∗

i ̸= 0 for all i ∈ {1, . . . , k}. We will now prove that

M =
{
x ∈ X | u∗

i (x) = βi, ∀i ∈ {1, . . . , k}
}
. (1)

For all x ∈ M , we have Φ(x) = Φ(a) = [a] =
∑k

i=1 βi[bi]. Then, u
∗
i (x) = gi(Φ(x)) = βi for all i ∈ {1, . . . , k}.

Therefore, M ⊂ {x ∈ X | u∗
i (x) = βi, ∀i ∈ {1, . . . , k}}. To prove the reverse inclusion, taking any x in the

right-hand side of (1), one has u∗
i (x) = βi for all i ∈ {1, . . . , k}. Thus, gi(Φ(x)) = βi for all i ∈ {1, . . . , k},

which means that

Φ(x) =

k∑
i=1

βi[bi] = Φ(a).

Thus, Φ(x− a) = [0]. Hence, x− a ∈ L. This implies that x ∈ M . We have thus proved that the equality (1)

is valid. Now, Q can be represented as

Q =
{
x ∈ X | ⟨u∗

i , x⟩ = βi for all i = 1, . . . , k, ⟨x∗
i , x⟩ ≤ αi for all i = 1, . . . ,m

}
.

Therefore, Q is a PCS.

=⇒: Suppose that Q is a PCS. Then there exist z∗1 , . . . , z
∗
p ∈ X∗ and γ1, . . . , γp ∈ R such that

Q =
{
x ∈ X | ⟨z∗i , x⟩ ≤ γi for all i = 1, . . . , p

}
.

Choosing x0 ∈ Q gives x0 ∈ M and ⟨z∗i , x0⟩ ≤ γi for all i = 1, . . . , p. Let ci := γi − ⟨z∗i , x0⟩ for i = 1, . . . , p.

Then ci ≥ 0 for all i = 1, . . . , p and we have

Q− x0 =
{
y ∈ X | ⟨z∗i , y⟩ ≤ ci

}
⊂ L := M − x0.

Let L1 :=
⋂p

i=1 ker z
∗
i . Then L1 ⊂ Q− x0 ⊂ L. It follows that

codimL ≤ codimL1 < ∞,

which completes the proof. □

The next corollary is a direct consequence of Proposition 3.1.

Corollary 2.1. A closed linear subspace M of X is a PCS if and only if M has finite codimension.

Next, we present an example of a GPCS that is not a PCS.

Example 2.1. Let X = ℓ2 and let

Q = {x = (xn) | x2k = 0 for all k ∈ N}.

Then Q is a GPCS. In fact, it is a closed linear subspace of X. Since codimQ = ∞, the set Q is not a PCS
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by Proposition 3.1.

Definition 2.2. Let Ω1 and Ω2 be a nonempty convex sets in X. We say that Ω1 and Ω2 can be separated by

a closed hyperplane that does not contain Ω2 if there exist x∗ ∈ X∗ and α ∈ R such that

⟨x∗, x⟩ ≤ α ≤ ⟨x∗, y⟩ whenever x ∈ Ω1, y ∈ Ω2,

and there exists ŷ ∈ Ω2 such that α < ⟨x∗, ŷ⟩.

In the setting of Definition 3.2, define

H = {x ∈ X∗ | ⟨x∗, x⟩ = α},

H+ = {x ∈ X∗ | ⟨x∗, x⟩ ≥ α},

H− = {x ∈ X∗ | ⟨x∗, x⟩ ≤ α}.
Since x∗ is obviously nonzero, H is a closed hyperplane. We have

Ω1 ⊂ H−, Ω2 ⊂ H+, Ω2 ̸⊂ H.

Definition 2.3. (See [6, Definition 2.168]) Let Ω be a convex subset of X.

(a) The intrinsic relative interior of Ω is the set

iri(Ω) := {x ∈ Ω | cone(Ω− x) is a linear subspace of X} .

(b) The quasi-relative interior of Ω is the set

qri(Ω) := {x ∈ Ω | cone(Ω− x) is a linear subspace of X} .

(c) We say that Ω is quasi-regular if qri(Ω) = iri(Ω).

In [4] and the references therein, several important results for PCS have been generalized for GPCS. We

present below a number of important results which hold for PCS but do not hold for GPCS. The first one is

a convex separation theorem involving a PCS and a convex set in X; see [6, Theorem 3.86].

Theorem 2.1. Let P be a nonempty PCS and let Ω be a nonempty convex set in X. Suppose that qri(Ω) ̸= ∅.

Then P and Ω can be separated by a closed hyperplane that does not contain Ω if and only if P ∩ qri(Ω) = ∅.

This result plays a crucial role in developing generalized differentiation for nonsmooth functions and set-

valued mappings in the case where some functions and mappings involved are generated by PCS.

The following example will show that the conclusion of Theorem 3.1 may not hold true when instead of P

one takes a subspace M of infinite codimension.
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Example 2.2. Let Ω0 = {x ∈ ℓ2 | x has finitely many nonzero coordinates},

y =

(
1,

1

2
,
1

4
,
1

8
, . . .

)
, z =

(
1,

1

2
,
1

3
, . . .

)
,

and M = {µz | µ ∈ R}. Clearly, y ∈ ℓ2 and z ∈ ℓ2. Put Ω = y +Ω0. Then, Ω is an affine subset of ℓ2. Hence,

Ω is convex and qri(Ω) = iri (Ω) = Ω. We have M ∩ Ω = ∅. Indeed, if M ∩ Ω ̸= ∅, then for some u ∈ Ω0, we

have y+u ∈ M . Thus, there is µ ∈ R and k̄ ∈ N such that
1

2k
=

µ

k + 1
for all k ≥ k̄, which is a contradiction.

As Ω = qri(Ω), it follows that M ∩ qri(Ω) = ∅.

Next, we will prove that there is no closed hyperplane which does not contain Ω and separates M and Ω.

Suppose on the contrary that there exists a closed hyperplane H ⊂ X such that H does not contain Ω and

separates M and Ω. Then there is x∗ ∈ ℓ2 \ {0} and α ∈ R such that H = {x ∈ ℓ2 | ⟨x∗, x⟩ = α}. Since H

separates Ω and M and H does not contain Ω, we have

sup
x∈M

⟨x∗, x⟩ ≤ α ≤ inf
x∈Ω

⟨x∗, x⟩ (2)

and there exists w ∈ Ω such that α < ⟨x∗, w⟩. As ⟨x∗, x⟩ ≤ α for all x ∈ M , one has ⟨x∗, µz⟩ ≤ α for all µ ∈ R.

Thus, ⟨x∗, z⟩ = 0. Then, the relation (2) is equivalent to

0 ≤ α ≤ inf
x∈Ω

⟨x∗, x⟩.

So, we have

0 ≤ α ≤ ⟨x∗, y⟩+ ⟨x∗, u⟩

for all u ∈ Ω0. This implies

−⟨x∗, y⟩ ≤ ⟨x∗, u⟩

for all u ∈ Ω0. Since Ω0 is dense in ℓ2, the latter property yields

−⟨x∗, y⟩ ≤ ⟨x∗, v⟩

for all v ∈ ℓ2. This means that x∗ = 0, which contradicts the choice of x∗. Hence, there is no closed hyperplane

not containing Ω which separates M and Ω.

Remark 2.1. In Example 3.2, the set Ω is not closed. However, the assertion of Theorem 3.1 may still be

false when a subspace M of infinite codimension plays the role of P and Ω is a closed set in X. Indeed, by [4,

Remark 2.12], there exists a locally convex topological vector space X with two closed linear subspaces L and

M such that L+M = X but L + M ̸= X. Taking any a ∈ X \ (L + M) and setting Ω = a + L, one sees

that Ω is a closed affine set. Hence, iri (Ω) = qri(Ω) = Ω. First, we will show that M ∩ Ω = ∅. Suppose
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on the contrary that there is some u ∈ M ∩ Ω. Then, u ∈ M and u = a + v for some v ∈ L. Therefore,

a = u− v ∈ L+M , which is a contradiction. Thus, M ∩Ω = ∅. Next, we will prove that M and Ω cannot be

separated by any hyperplane. Suppose on the contrary that there exist a nonzero linear functional x∗ ∈ X∗

and a real number α such that

sup
x∈M

⟨x∗, x⟩ ≤ α ≤ inf
y∈Ω

⟨x∗, y⟩. (3)

If there is some x̄ ∈ M such that ⟨x∗, x̄⟩ = β ̸= 0, then by taking t = (α + 1)/β, we have tx̄ ∈ M and

⟨x∗, tx̄⟩ = α + 1 > α, which contradicts the fact that sup
x∈M

⟨x∗, x⟩ ≤ α. Hence ⟨x∗, x⟩ = 0 for all x ∈ M .

Thus, (3) yields

0 ≤ ⟨x∗, a⟩+ inf
z∈L

⟨x∗, z⟩.

Since ⟨x∗, a⟩ is fixed, the latter implies that ⟨x∗, z⟩ = 0 for all z ∈ L. Therefore, we have shown that

⟨x∗, x + z⟩ = 0 for all x ∈ M and z ∈ L. Recalling that L+M = X, we can infer that ⟨x∗, u⟩ = 0 for all

u ∈ X. This contradicts the choice of x∗. We have thus proved that M ∩qri(Ω) = ∅ and that M and Ω cannot

be separated by any hyperplane.

3 Relationships Between Polyhedral Convex Sets and Generalized

Polyhedral Convex Sets

Let X be a locally convex Hausdorff topological vector space over the reals with its topological dual

denoted by X∗. For simplicity of presentation, we assume that all spaces under consideration are locally

convex Hausdorff topological vector spaces. The cone generated by a nonempty subset Ω of X (resp., the

closure of Ω) is denoted by cone(Ω) (resp., Ω) . Thus, cone(Ω) = {tx | t ≥ 0, x ∈ Ω}. In what follows, let

R := (−∞,∞].

Definition 3.1. (a) A subset P of X is said to be a polyhedral convex set (PCS) or a convex polyhedron

if there exist x∗
1, . . . , x

∗
m ∈ X∗ and α1, . . . , αm ∈ R such that

P =
{
x ∈ X | ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}
.

(b) A subset Q of X is said to be a generalized polyhedral convex set (GPCS) or a generalized convex

polyhedron if there exist x∗
1, . . . , x

∗
m ∈ X∗, α1, . . . , αm ∈ R, and a closed affine subspace M of X such
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that

Q =
{
x ∈ X | x ∈ M, ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}
.

It follows from the definitions that a GPCS can be represented as the intersection of a PCS and a closed

affine subspace.

Proposition 3.1. Let Q be a nonempty GPCS given by

Q =
{
x ∈ X | x ∈ M, ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}
,

where x∗
1, . . . , x

∗
m ∈ X∗, α1, . . . , αm ∈ R, and M is a closed affine subspace. Then Q is a PCS if and only if

codimM < ∞.

Proof. ⇐=: Let L := M − M and observe that L is the unique closed linear subspace parallel to M .

Since M has finite codimension, dimX/L = k for some positive integer k. Consider the quotient mapping

Φ: X → X/L. Choose a ∈ M and get [a] ∈ X/L with Φ(M) = [a]. Suppose that [b1], . . . , [bk] form a basis for

X/L. Then we have the representation

[a] =

k∑
i=1

βi[bi],

where β1, . . . , βk ∈ R. For each i ∈ {1, . . . , k}, we consider the linear mapping gi : X/L → R with gi
(∑k

i=1 µi[bi]
)
=

µi. By [9, Lemma 1.20 and Theorem 1.21] (note that the same results and proofs are valid for linear mappings

defined on Rn), gi is continuous for all i ∈ {1, . . . , k}. Thus, the function u∗
i := gi ◦Φ is linear and continuous

for all i ∈ {1, . . . , k}. Hence, u∗
i ∈ X∗ and u∗

i ̸= 0 for all i ∈ {1, . . . , k}. We will now prove that

M =
{
x ∈ X | u∗

i (x) = βi, ∀i ∈ {1, . . . , k}
}
. (1)

For all x ∈ M , we have Φ(x) = Φ(a) = [a] =
∑k

i=1 βi[bi]. Then, u
∗
i (x) = gi(Φ(x)) = βi for all i ∈ {1, . . . , k}.

Therefore, M ⊂ {x ∈ X | u∗
i (x) = βi, ∀i ∈ {1, . . . , k}}. To prove the reverse inclusion, taking any x in the

right-hand side of (1), one has u∗
i (x) = βi for all i ∈ {1, . . . , k}. Thus, gi(Φ(x)) = βi for all i ∈ {1, . . . , k},

which means that

Φ(x) =

k∑
i=1

βi[bi] = Φ(a).

Thus, Φ(x− a) = [0]. Hence, x− a ∈ L. This implies that x ∈ M . We have thus proved that the equality (1)

is valid. Now, Q can be represented as

Q =
{
x ∈ X | ⟨u∗

i , x⟩ = βi for all i = 1, . . . , k, ⟨x∗
i , x⟩ ≤ αi for all i = 1, . . . ,m

}
.

8



Therefore, Q is a PCS.

=⇒: Suppose that Q is a PCS. Then there exist z∗1 , . . . , z
∗
p ∈ X∗ and γ1, . . . , γp ∈ R such that

Q =
{
x ∈ X | ⟨z∗i , x⟩ ≤ γi for all i = 1, . . . , p

}
.

Choosing x0 ∈ Q gives x0 ∈ M and ⟨z∗i , x0⟩ ≤ γi for all i = 1, . . . , p. Let ci := γi − ⟨z∗i , x0⟩ for i = 1, . . . , p.

Then ci ≥ 0 for all i = 1, . . . , p and we have

Q− x0 =
{
y ∈ X | ⟨z∗i , y⟩ ≤ ci

}
⊂ L := M − x0.

Let L1 :=
⋂p

i=1 ker z
∗
i . Then L1 ⊂ Q− x0 ⊂ L. It follows that

codimL ≤ codimL1 < ∞,

which completes the proof. □

The next corollary is a direct consequence of Proposition 3.1.

Corollary 3.1. A closed linear subspace M of X is a PCS if and only if M has finite codimension.

Next, we present an example of a GPCS that is not a PCS.

Example 3.1. Let X = ℓ2 and let

Q = {x = (xn) | x2k = 0 for all k ∈ N}.

Then Q is a GPCS. In fact, it is a closed linear subspace of X. Since codimQ = ∞, the set Q is not a PCS

by Proposition 3.1.

Definition 3.2. Let Ω1 and Ω2 be a nonempty convex sets in X. We say that Ω1 and Ω2 can be separated by

a closed hyperplane that does not contain Ω2 if there exist x∗ ∈ X∗ and α ∈ R such that

⟨x∗, x⟩ ≤ α ≤ ⟨x∗, y⟩ whenever x ∈ Ω1, y ∈ Ω2,

and there exists ŷ ∈ Ω2 such that α < ⟨x∗, ŷ⟩.

In the setting of Definition 3.2, define

H = {x ∈ X∗ | ⟨x∗, x⟩ = α},

H+ = {x ∈ X∗ | ⟨x∗, x⟩ ≥ α},

H− = {x ∈ X∗ | ⟨x∗, x⟩ ≤ α}.
Since x∗ is obviously nonzero, H is a closed hyperplane. We have

Ω1 ⊂ H−, Ω2 ⊂ H+, Ω2 ̸⊂ H.

Definition 3.3. (See [6, Definition 2.168]) Let Ω be a convex subset of X.
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(a) The intrinsic relative interior of Ω is the set

iri(Ω) := {x ∈ Ω | cone(Ω− x) is a linear subspace of X} .

(b) The quasi-relative interior of Ω is the set

qri(Ω) := {x ∈ Ω | cone(Ω− x) is a linear subspace of X} .

(c) We say that Ω is quasi-regular if qri(Ω) = iri(Ω).

In [4] and the references therein, several important results for PCS have been generalized for GPCS. We

present below a number of important results which hold for PCS but do not hold for GPCS. The first one is

a convex separation theorem involving a PCS and a convex set in X; see [6, Theorem 3.86].

Theorem 3.1. Let P be a nonempty PCS and let Ω be a nonempty convex set in X. Suppose that qri(Ω) ̸= ∅.

Then P and Ω can be separated by a closed hyperplane that does not contain Ω if and only if P ∩ qri(Ω) = ∅.

This result plays a crucial role in developing generalized differentiation for nonsmooth functions and set-

valued mappings in the case where some functions and mappings involved are generated by PCS.

The following example will show that the conclusion of Theorem 3.1 may not hold true when instead of P

one takes a subspace M of infinite codimension.

Example 3.2. Let Ω0 = {x ∈ ℓ2 | x has finitely many nonzero coordinates},

y =

(
1,

1

2
,
1

4
,
1

8
, . . .

)
, z =

(
1,

1

2
,
1

3
, . . .

)
,

and M = {µz | µ ∈ R}. Clearly, y ∈ ℓ2 and z ∈ ℓ2. Put Ω = y +Ω0. Then, Ω is an affine subset of ℓ2. Hence,

Ω is convex and qri(Ω) = iri (Ω) = Ω. We have M ∩ Ω = ∅. Indeed, if M ∩ Ω ̸= ∅, then for some u ∈ Ω0, we

have y+u ∈ M . Thus, there is µ ∈ R and k̄ ∈ N such that
1

2k
=

µ

k + 1
for all k ≥ k̄, which is a contradiction.

As Ω = qri(Ω), it follows that M ∩ qri(Ω) = ∅.

Next, we will prove that there is no closed hyperplane which does not contain Ω and separates M and Ω.

Suppose on the contrary that there exists a closed hyperplane H ⊂ X such that H does not contain Ω and

separates M and Ω. Then there is x∗ ∈ ℓ2 \ {0} and α ∈ R such that H = {x ∈ ℓ2 | ⟨x∗, x⟩ = α}. Since H

separates Ω and M and H does not contain Ω, we have

sup
x∈M

⟨x∗, x⟩ ≤ α ≤ inf
x∈Ω

⟨x∗, x⟩ (2)

and there exists w ∈ Ω such that α < ⟨x∗, w⟩. As ⟨x∗, x⟩ ≤ α for all x ∈ M , one has ⟨x∗, µz⟩ ≤ α for all µ ∈ R.
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Thus, ⟨x∗, z⟩ = 0. Then, the relation (2) is equivalent to

0 ≤ α ≤ inf
x∈Ω

⟨x∗, x⟩.

So, we have

0 ≤ α ≤ ⟨x∗, y⟩+ ⟨x∗, u⟩

for all u ∈ Ω0. This implies

−⟨x∗, y⟩ ≤ ⟨x∗, u⟩

for all u ∈ Ω0. Since Ω0 is dense in ℓ2, the latter property yields

−⟨x∗, y⟩ ≤ ⟨x∗, v⟩

for all v ∈ ℓ2. This means that x∗ = 0, which contradicts the choice of x∗. Hence, there is no closed hyperplane

not containing Ω which separates M and Ω.

Remark 3.1. In Example 3.2, the set Ω is not closed. However, the assertion of Theorem 3.1 may still be

false when a subspace M of infinite codimension plays the role of P and Ω is a closed set in X. Indeed, by [4,

Remark 2.12], there exists a locally convex topological vector space X with two closed linear subspaces L and

M such that L+M = X but L + M ̸= X. Taking any a ∈ X \ (L + M) and setting Ω = a + L, one sees

that Ω is a closed affine set. Hence, iri (Ω) = qri(Ω) = Ω. First, we will show that M ∩ Ω = ∅. Suppose

on the contrary that there is some u ∈ M ∩ Ω. Then, u ∈ M and u = a + v for some v ∈ L. Therefore,

a = u− v ∈ L+M , which is a contradiction. Thus, M ∩Ω = ∅. Next, we will prove that M and Ω cannot be

separated by any hyperplane. Suppose on the contrary that there exist a nonzero linear functional x∗ ∈ X∗

and a real number α such that

sup
x∈M

⟨x∗, x⟩ ≤ α ≤ inf
y∈Ω

⟨x∗, y⟩. (3)

If there is some x̄ ∈ M such that ⟨x∗, x̄⟩ = β ̸= 0, then by taking t = (α + 1)/β, we have tx̄ ∈ M and

⟨x∗, tx̄⟩ = α + 1 > α, which contradicts the fact that sup
x∈M

⟨x∗, x⟩ ≤ α. Hence ⟨x∗, x⟩ = 0 for all x ∈ M .

Thus, (3) yields

0 ≤ ⟨x∗, a⟩+ inf
z∈L

⟨x∗, z⟩.

Since ⟨x∗, a⟩ is fixed, the latter implies that ⟨x∗, z⟩ = 0 for all z ∈ L. Therefore, we have shown that

⟨x∗, x + z⟩ = 0 for all x ∈ M and z ∈ L. Recalling that L+M = X, we can infer that ⟨x∗, u⟩ = 0 for all
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u ∈ X. This contradicts the choice of x∗. We have thus proved that M ∩qri(Ω) = ∅ and that M and Ω cannot

be separated by any hyperplane.

4 Generalized Differentiation for Convex Polyhedral Set-Valued

Mappings and Generalized Convex Polyhedral Set-Valued Map-

pings

The counterexample in Example 3.2 shows that analogues of the generalized differentiation results involving

PCS in [6] may not hold for GPCS. This section establishes some positive results.

Lemma 4.1. Let P be a polyhedral convex set and let M be a closed affine subspace in X. Then

N(x̄;P ∩M) = N(x̄;P ) +N(x̄;M) = N(x̄;P ) + L⊥ for all x̄ ∈ P ∩M,

where L is the linear subspace parallel to M .

Proof. Fix any x̄ ∈ P ∩ M . Then x̄ ∈ P ∩ qri(M) = P ∩ M , so P ∩ qri(M) ̸= ∅. It is follows from [6,

Theorem 3.87] that

N(x̄;P ∩M) = N(x̄;P ) +N(x̄;M).

Since N(x̄;M) = L⊥, this completes the proof. □

Lemma 4.2. Let P1 and P2 be two convex polyhedra in X. Then

N(x̄;P1 ∩ P2) = N(x̄;P1) +N(x̄;P2) for all x̄ ∈ P1 ∩ P2.

Proof. This is obvious because if

P = {x ∈ X | ⟨x∗
i , x⟩ ≤ αi for all i = 1, . . . ,m} ,

then N(x̄;P ) = cone{x∗
i | i ∈ I(x̄)}, where I(x̄) := {i | i = 1, . . . ,m, ⟨x∗

i , x̄⟩ = αi}. □

Next, we present a new proof for the important result obtained by Luan, Yao, and Yen in [4, Theorem 4.10].

Theorem 4.1. Let P be a PCS and let Q be a GPCS. Then

N(x̄;P ∩Q) = N(x̄;P ) +N(x̄;Q) for all x̄ ∈ P ∩Q.

Proof. Fix a point x̄ ∈ P ∩Q. Since Q is a GPCS, we have the representation

Q = P1 ∩M,
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where P1 is a PCS and M is a closed affine subspace. Then by Lemma 4.1 and Lemma 4.2 we have

N(x̄;P ∩Q) = N(x̄; (P ∩ P1) ∩M) = N(x̄;P ∩ P1) +N(x̄;M)

= N(x̄;P ) +N(x̄;P1) +N(x̄;M) = N(x̄;P ) +N(x̄;P1 ∩M)

= N(x̄;P ) +N(x̄;Q).

This completes the proof. □

In what follows, let X and Y be locally convex Hausdorff topological vector spaces over the reals. For a

set-valued mapping F : X →→ Y , one defines the graph and the effective domain of F respectively by

gph(F ) :=
{
(x, y) ∈ X × Y | y ∈ F (x)

}
and

dom(F ) :=
{
x ∈ X | F (x) ̸= ∅

}
.

Definition 4.1. Let F : X →→ Y be a set-valued mapping.

(a) F is said to be convex if gph(F ) is a convex set in X × Y .

(b) F is said to be polyhedral convex if gph(F ) is a PCS in X × Y .

(c) F is said to be generalized polyhedral convex if gph(F ) is a GPCS in X × Y .

Definition 4.2. Let F : X →→ Y be a convex set-valued mapping and let (x̄, ȳ) ∈ gph(F ). The coderivative

of F at (x̄, ȳ) is the set-valued mapping D∗F (x̄, ȳ) : Y ∗ →→ X∗ with the values

D∗F (x̄, ȳ)(v∗) :=
{
u∗ ∈ X∗ ∣∣ (u∗,−v∗) ∈ N

(
(x̄, ȳ); gph(F )

)}
, v∗ ∈ Y ∗. (1)

Example 4.1. Given a subset Θ of X, define ∆Θ : X →→ Y by

∆Θ(x) :=


0 if x ∈ Θ,

∅ if x /∈ Θ.

Then gph(∆Θ) = Θ × {0}. Suppose that Θ is a convex set and x̄ ∈ Θ. We have N((x̄, 0); gph(∆Θ)) =

N(x̄; Θ)× Y and hence

D∗∆Θ(x̄, 0)(v
∗) = N(x̄; Θ) for all v∗ ∈ Y ∗. (2)

For any convex set-valued mappings F1, F2 : X →→ Y , it follows from the definition that their sum, which

is defined by setting (F1 + F2)(x) = F1(x) + F2(x) for all x ∈ X, is a convex set-valued mapping with

dom(F1 + F2) = dom(F1) ∩ dom(F2). Our first calculus result concerns representing the coderivative of
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F1 + F2 at a given point (x̄, ȳ) ∈ gph(F1 + F2). To formulate this result, consider the nonempty set

S(x̄, ȳ) :=
{
(ȳ1, ȳ2) ∈ Y × Y

∣∣ ȳ = ȳ1 + ȳ2, ȳi ∈ Fi(x̄), i = 1, 2
}
. (3)

The following theorem gives us the coderivative sum rule for polyhedral convex set-valued mappings and

generalized polyhedral convex set-valued mappings.

Theorem 4.2. Let F1 : X →→ Y be a polyhedral convex set-valued mapping and let F2 : X →→ Y be a generalized

polyhedral convex set-valued mapping. Then the equality

D∗(F1 + F2)(x̄, ȳ)(v
∗) = D∗F1(x̄, ȳ1)(v

∗) +D∗F2(x̄, ȳ2)(v
∗)

holds for every v∗ ∈ Y ∗ whenever (ȳ1, ȳ2) ∈ S(x̄, ȳ), where S is defined in (3).

Proof. Let (ȳ1, ȳ2) ∈ S(x̄, ȳ) and v∗ ∈ Y ∗ be given arbitrarily. Fix any

u∗ ∈ D∗(F1 + F2)(x̄, ȳ)(v
∗). (4)

Then the inclusion (u∗,−v∗) ∈ N((x̄, ȳ); gph(F1 + F2)) is valid. Consider the convex sets

Ω1 :=
{
(x, y1, y2) ∈ X × Y × Y

∣∣ y1 ∈ F1(x)
}
,

Ω2 :=
{
(x, y1, y2) ∈ X × Y × Y

∣∣ y2 ∈ F2(x)
}

and deduce from the normal cone definition that

(u∗,−v∗,−v∗) ∈ N((x̄, ȳ1, ȳ2); Ω1 ∩ Ω2). (5)

Observe that Ω1 =
(
gphF1

)
×Y and thus it is a PCS in X ×Y ×Y by the assumption made on F1. Similarly,

Ω2 is a GPCS in X × Y × Y by the condition imposed on F2. Then we can employ Theorem 4.1 and get

(u∗,−v∗,−v∗) ∈ N((x̄, ȳ1, ȳ2); Ω1 ∩ Ω2) = N((x̄, ȳ1, ȳ2); Ω1) +N((x̄, ȳ1, ȳ2); Ω2).

Therefore, we obtain the relationships

(u∗,−v∗,−v∗) = (u∗
1,−v∗, 0) + (u∗

2, 0,−v∗),

where (u∗
i ,−v∗) ∈ N((x̄, ȳi); gphFi) for i = 1, 2. This implies by the coderivative definition that

u∗ = u∗
1 + u∗

2 ∈ D∗F1(x̄, ȳ1)(v
∗) +D∗F2(x̄, ȳ2)(v

∗).

So, we have proved that

D∗(F1 + F2)(x̄, ȳ)(v
∗) ⊂ D∗F1(x̄, ȳ1)(v

∗) +D∗F2(x̄, ȳ2)(v
∗).

To prove the reverse inclusion, take any u∗
1D

∗F1(x̄, ȳ1)(v
∗) and u∗

2 ∈ D∗F2(x̄, ȳ2)(v
∗). Then〈

(u∗
i ,−v∗), (x− x̄, yi − ȳi)

〉
≤ 0

for every x ∈ X and yi ∈ Fi(x) with i = 1, 2. It follows that〈
(u∗

1,−v∗, 0), (x− x̄, y1 − ȳ1, y2 − ȳ2)
〉
≤ 0
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and 〈
(u∗

1, 0,−v∗), (x− x̄, y1 − ȳ1, y2 − ȳ2)
〉
≤ 0.

Adding these inequalities side-by-side yields〈
(u∗,−v∗,−v∗), (x− x̄, y1 − ȳ1, y2 − ȳ2)

〉
≤ 0

for every x ∈ X and yi ∈ Fi(x) with i = 1, 2, where u∗ := u∗
1 + u∗

2. Hence one gets the inclusion (5), which

clearly implies that (u∗,−v∗) ∈ N((x̄, ȳ); gph(F1 + F2)). Hence (4) is valid, and thus we have verified the

claimed sum rule. □

Definition 4.3. Let f : X → R = (−∞,∞] be an extended-real-valued function. The epigraph of f is the set

epi(f) :=
{
(x, α) ∈ X × R | α ≥ f(x)

}
.

(a) We say that f is polyhedral convex if epi(f) is a PCS in X × R.

(b) We say that f is generalized polyhedral convex if epi(f) is a GPCS in X × R.

The effective domain of an extended-real-valued function f : X → R is the set

dom(f) :=
{
x ∈ X | f(x) < ∞

}
.

If f is convex, then the subdifferential ∂f(x̄) of f at x̄ ∈ dom(f) is defined by setting

∂f(x̄) =
{
x∗ ∈ X∗ | ⟨x∗, x− x̄⟩ ≤ f(x)− f(x̄) for all x ∈ X

}
=

{
x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, f(x̄)); epi(f))

}
.

Theorem 4.2 allows us to obtain the next subdifferential sum rule for polyhedral convex functions and gener-

alized polyhedral convex functions.

Corollary 4.1. Let f1, f2 : X → R be two extended-real-valued functions. Suppose that f1 is a polyhedral

convex function and f2 is a generalized polyhedral convex function. Then

∂(f1 + f2)(x̄) = ∂f1(x̄) + ∂f2(x̄) for every x̄ ∈ dom(f1) ∩ dom(f2).

Proof. Fix any x̄ ∈ dom(f1) ∩ dom(f2). Let Fi(x) := [fi(x),∞) for all x ∈ X and get gph(Fi) = epi(fi)

for i = 1, 2. Thus, F1 is a polyhedral convex set-valued mapping and F2 is a generalized polyhedral convex

set-valued mapping. In addition,

D∗Fi(x̄, fi(x̄))(1) = ∂fi(x̄) for i = 1, 2.

Let ȳ := f1(x̄)+f2(x̄). Then S(x̄, ȳ) = {
(
f1(x̄), f2(x̄)

)
}, where S(x̄, ȳ) is defined in (3). Applying Theorem 4.2
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gives

∂(f1 + f2)(x̄) = D∗(F1 + F2)(x̄, ȳ)(1) = D∗F1(x̄, f1(x̄))(1) +D∗F2(x̄, f2(x̄))(1)

= ∂f1(x̄) + ∂f2(x̄).

This completes the proof. □

Now we consider the composition of two mappings F : X →→ Y and G : Y →→ Z. It follows from the definition

that G ◦ F is convex provided that both F and G have this property. Given z̄ ∈ (G ◦ F )(x̄), we consider the

set

M(x̄, z̄) := F (x̄) ∩G−1(z̄). (6)

The following theorem establishes the coderivative chain rule for set-valued mappings.

Theorem 4.3. Let F : X →→ Y and G : Y →→ Z be set-valued mappings. Suppose that F is a polyhedral set-

valued mapping and G is a generalized polyhedral set-valued mapping or vice versa. Then for any (x̄, z̄) ∈

gph(G ◦ F ) and w∗ ∈ Z∗ we have the coderivative chain rule

D∗(G ◦ F )(x̄, z̄)(w∗) = D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)(w∗) (7)

whenever ȳ ∈ M(x̄, z̄).

Proof. Picking u∗ ∈ D∗(G ◦ F )(x̄, z̄)(w∗) and ȳ ∈ M(x̄, z̄) gives us the inclusion

(u∗,−w∗) ∈ N((x̄, z̄); gph(G ◦ F )),

which means that

⟨u∗, x− x̄⟩ − ⟨w∗, z − z̄⟩ ≤ 0 for all (x, z) ∈ gph(G ◦ F ). (8)

Define two convex subsets of X × Y × Z by

Ω1 := (gphF )× Z and Ω2 := X × (gphG).

We can directly deduce from (8) and the definitions that

(u∗, 0,−w∗) ∈ N((x̄, ȳ, z̄); Ω1 ∩ Ω2). (9)

Applying Theorem 4.1 together with the conditions made on F1 and F2 tells us that

(u∗, 0,−w∗) ∈ N((x̄, ȳ, z̄); Ω1 ∩ Ω2) = N((x̄, ȳ, z̄); Ω1) +N((x̄, ȳ, z̄); Ω2), (10)

and thus there exists a vector v∗ ∈ Y ∗ such that we have the representation

(u∗, 0,−w∗) = (u∗,−v∗, 0) + (0, v∗,−w∗) (11)

with (u∗,−v∗) ∈ N((x̄, ȳ); gphF ) and (v∗,−w∗) ∈ N((ȳ, z̄); gphG). This shows by the coderivative definition
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in (1) that

u∗ ∈ D∗F (x̄, ȳ)(v∗) and v∗ ∈ D∗G(ȳ, z̄)(w∗), (12)

and so we get the inclusion “⊂” in (7). The reverse inclusion can be proved as follows. Given any u∗ ∈

D∗F (x̄, ȳ) ◦ D∗G(ȳ, z̄)(w∗), one can find some v∗ ∈ Y ∗ such that (12) holds. Then (11) is fulfilled and,

moreover, one has (u∗,−v∗, 0) ∈ N((x̄, ȳ, z̄); Ω1) and (0, v∗,−w∗) ∈ N((x̄, ȳ, z̄); Ω2). Since the inclusion

N((x̄, ȳ, z̄); Ω1) +N((x̄, ȳ, z̄); Ω2) ⊂ N((x̄, ȳ, z̄); Ω1 ∩ Ω2)

is valid whenever F and G are merely convex set-valued mappings, one gets (9), which implies (8). Hence,

u∗ ∈ D∗(G ◦ F )(x̄, z̄)(w∗). The proof is complete. □

The next rule for computing subdifferentials of the composition of a polyhedral convex function and an

affine mapping is a corollary of the preceding theorem.

Corollary 4.2. Let B : X → Y be an affine mapping given by

B(x) := A(x) + b for x ∈ X,

where A : X → Y is a continuous linear mapping and b ∈ Y . If f : Y → R is a polyhedral convex function,

then

∂(f ◦B)(x̄) = A∗(∂f(ȳ)) for all x̄ ∈ dom(f ◦B), (13)

where ȳ := B(x̄).

Proof. Let F (x) := {B(x)} for x ∈ X and let G(y) := [f(y),∞) for y ∈ Y . Then

(G ◦ F )(x) = [(f ◦B)(x),∞) for all x ∈ X. (14)

By our assumptions, F : X ⇒ Y is a generalized polyhedral set-valued mapping and G : Y ⇒ R is a

polyhedral set-valued mapping. Applying the coderivative chain rule from Theorem 4.3, we can get the

desired result. Indeed, take any x̄ ∈ dom(f ◦ B) and put ȳ = B(x̄), z̄ = f(ȳ). Then (x̄, z̄) ∈ gph(G ◦ F ) and

ȳ ∈ M(x̄, z̄) = F (x̄) ∩G−1(z̄). Therefore, by (7) we have

D∗(G ◦ F )(x̄, z̄)(−1) = D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)(−1)

= D∗F (x̄, ȳ)
(
∂f(ȳ)

))
= A∗(∂f(ȳ)),

which together with (14) implies the equality in (13). □

Let F : X →→ Y be a set-valued mapping and let Θ ⊂ Y be a given set. The preimage or inverse image of
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Θ under the mapping F is defined by

F−1(Θ) =
{
x ∈ X

∣∣ F (x) ∩Θ ̸= ∅
}
.

The theorem below gives us a formula to compute the normal cone to F−1(Θ) at a point of interest via

the normal cone to Θ and the coderivative of F at certain points.

Theorem 4.4. Let F : X →→ Y be a set-valued mapping and let Θ ⊂ Y . Suppose that F is a polyhedral convex

set-valued mapping and Θ is a GPCS, or F is a generalized polyhedral convex set-valued mapping and Θ is a

PCS. Then for any x̄ ∈ F−1(Θ) and ȳ ∈ F (x̄) ∩Θ we have the representation

N(x̄;F−1(Θ)) = D∗F (x̄, ȳ)
(
N(ȳ; Θ)

)
. (15)

Proof. Similarly as in Example 4.1, consider the indicator mappings ∆Θ : Y →→ Y and ∆F−1(Θ) : X →→ Y .

We see that

∆F−1(Θ)(x) = (∆Θ ◦ F )(x) for all x ∈ X. (16)

Then the representation (15) can be obtained by using Example 4.1 and Theorem 4.3 with G := ∆Θ. Indeed,

given any x̄ ∈ F−1(Θ) and ȳ ∈ F (x̄) ∩Θ, we set z̄ = 0 ∈ Y . It can be easily verified that (x̄, z̄) ∈ gph(G ◦ F )

and ȳ ∈ M(x̄, z̄), where the last set is defined by (6). By our assumptions, F is a polyhedral convex set-valued

mapping and G is a generalized polyhedral convex set-valued mapping or vice versa. So, fixing any w∗ ∈ Y ∗,

by Theorem 4.3 and formula (2) we can infer that

D∗(G ◦ F )(x̄, z̄)(w∗) = D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)(w∗)

= D∗F (x̄, ȳ)
(
N(ȳ; Θ)

)
.

Since the relation D∗(G ◦ F )(x̄, z̄)(w∗) = D∗ (∆F−1(Θ)

)
(x̄, z̄)(w∗) is valid by (16), this together with (2)

establishes (15). □

Next, consider a function f : X → R and define the sublevel sets

Lγ :=
{
x ∈ X

∣∣ f(x) ≤ γ
}
, γ ∈ R.

Our goal is to establish a formula for the normal cone to the sublevel sets associated with a generalized

polyhedral convex function. To continue, for x̄ ∈ dom(f) we use the following notation

λ⊙ ∂f(x̄) :=


λ∂f(x̄) if λ > 0,

∂∞f(x̄) if λ = 0.

Here ∂∞f(x̄) denotes the singular subdifferential of f at x̄ defined by

∂∞f(x̄) =
{
x∗ ∈ X∗ | (x∗, 0) ∈ N((x̄, f(x̄)); epi(f)

}
.
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It follows directly from the definition that for the epigraphical mapping Ef : X → R given by Ef (x) :=

[f(x),∞) for all x ∈ X we have

D∗Ef (x̄, f(x̄))(λ) = λ⊙ f(x̄) for all x̄ ∈ dom(f), λ ≥ 0. (17)

Corollary 4.3. Let f : X → R be a generalized polyhedral convex function with x̄ ∈ dom(f) and f(x̄) = γ.

Then

N(x̄;Lγ) =
⋃
λ≥0

λ⊙ ∂f(x̄).

Proof. Let Θ := (−∞, γ] and F (x) := Ef (x) for x ∈ X. Then one has Lγ = F−1(Θ). Since gph(F ) =

epi(f), we see that F is a generalized convex polyhedral set-valued mapping. In addition, Θ is a polyhedral

convex set. Observe also that

N(f(x̄); Θ) = N(γ; (−∞, γ]) = [0,∞).

Therefore, by Theorem 4.4 and (17) we have

N
(
x̄;Lγ

)
= N

(
x̄;F−1(Θ)

)
= D∗F (x̄, f(x̄))

(
N(ȳ; Θ)

)
=

⋃
λ≥0

D∗F (x̄, f(x̄))(λ)

=
⋃
λ≥0

λ⊙ ∂f(x̄),

which completes the proof of the corollary. □

In a more general setting, consider m functions fi : X → R together with γi ∈ R for i = 1, . . . ,m. Let

γ := (γ1, . . . , γm) and define

Lγ :=
{
x ∈ X

∣∣ fi(x) ≤ γi for all i = 1, . . . ,m
}
.

Let I := {1, . . . ,m}. Given x̄ ∈
⋂
i∈I

dom(fi), define

I(x̄) :=
{
i ∈ I

∣∣ fi(x̄) = γi
}
.

The next theorem extends the result in Corollary 4.3 to the case where the functions involved are continuous.

Theorem 4.5. Let fi : X → R for i = 1, . . . ,m, and let γ := (γ1, . . . , γm) ∈ Rm, m ≥ 2. Suppose that among

fi, i = 1, . . . ,m, there are at least m − 1 polyhedral convex functions and the remaining one is generalized

polyhedral convex. Then for any x̄ ∈ Lγ we have

N(x̄;Lγ) =

 ∑
i∈I(x̄)

λi ⊙ ∂f(x̄)
∣∣ λi ≥ 0 for all i ∈ I(x̄)

+
∑

i/∈I(x̄)

N(x̄; dom(fi)). (18)

Proof. Consider the set-valued mapping F : X →→ Rm given by

F (x) := [f1(x),∞)× · · · × [fm(x),∞), x ∈ X.
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It can be shown that F is a generalized polyhedral convex set-valued mapping. Consider the set Θ :=

(−∞, γ1]× · · · × (−∞, γm] and observe that Θ is a polyhedral convex set in Rm. Clearly, Lγ = F−1(Θ).

Define the following subsets of X × Rm:

Ω1 := {(x, λ1, . . . , λm) | λ1 ≥ f1(x)} = epi(f1)× Rm−1,

Ω2 := {(x, λ1, . . . , λm) | λ2 ≥ f2(x)},

· · ·

Ωm := {(x, λ1, . . . , λm) | λm ≥ fm(x)}.
By our assumptions, among these sets there are at least m− 1 polyhedral convex sets and the remaining one

is a generalized polyhedral convex. Note also that gph(F ) =
⋂
i∈I

Ωi. By induction, from the last equality and

Theorem 4.1 we have

N
((

x̄, f1(x̄), . . . , fm(x̄)
)
; gph(F )

)
=

∑
i∈I

N
((

x̄, f1(x̄), . . . , fm(x̄)
)
; Ωi

)
.

Thus, by the special construction of Ωi, i ∈ I, one has

(x∗,−λ1, . . . ,−λm) ∈ N
(
(x̄, f1(x̄), . . . , fm(x̄)); gph(F )

)
if and only if there exists x∗

i for i = 1, . . . ,m such that (x∗
i ,−λi) ∈ N

(
(x̄, fi(x̄)); epi(fi)

)
for each i ∈ I and

x∗ =
∑
i∈I

x∗
i . It follows that

D∗F (x̄, f1(x̄), . . . , fm(x̄))(λ1, . . . , λm) =
∑
i∈I

λi ⊙ ∂fi(x̄), (19)

provided that λi ≥ 0 for all i ∈ I. We also see that

N((f1(x̄), . . . , fm(x̄)); Θ) =
{
(λ1, . . . , λm)

∣∣ λi ≥ 0 ∀i ∈ I, λi = 0 if i /∈ I(x̄)
}
.

By Theorem 4.4 we have

N(x̄;Lγ) = N
(
x̄;F−1(Θ)

)
= D∗F (x̄, f1(x̄), . . . , fm(x̄))

(
N((f1(x̄), . . . , fm(x̄)); Θ)

)
.

Therefore, taking into account that ∂∞fi(x̄) = N(x̄; dom(fi)) for every i ∈ I, we can obtain (18) from (19).

□

The next corollary provides a simplified version of (18) in the case where fi is continuous at x̄ for all i ∈ I.

Corollary 4.4. Under the assumptions of Theorem 4.5, assume in addition that all the functions fi for i ∈ I

are continuous at x̄ ∈ Lγ . Then we have

N(x̄;Lγ) =

 ∑
i∈I(x̄)

λi∂f(x̄)
∣∣ λi ≥ 0 for all i ∈ I(x̄)

 . (20)

Proof. For each i ∈ I, since fi is continuous at x̄, we have x̄ ∈ int(dom(fi)). Thus,

∂∞fi(x̄) = N(x̄; dom(fi)) = {0}.
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Moreover, as ∂fi(x̄) ̸= ∅ by the continuity of fi, we see that

λi ⊙ ∂fi(x̄) = λi∂fi(x̄)

whenever λi ≥ 0. Therefore, the equality (20) follows directly from (18). □

5 Generalized Differentiation for Optimal Value Functions

In this section we consider the optimal value/marginal function given by

µ(x) := inf
{
φ(x, y)

∣∣ y ∈ F (x)
}

(1)

for all x ∈ X, where F : X →→ Y is a set-valued mapping and φ : X × Y → R is an extended-real-valued

function. For simplicity of the presentation, we assume that µ(x) > −∞ for all x ∈ X.

Theorem 5.1. Let µ be an optimal value function of the form (1). Suppose that φ is a polyhedral convex

function and F is a generalized polyhedral convex set-valued mapping, or φ is a generalized polyhedral convex

function and F is a polyhedral convex set-valued mapping. For any x̄ ∈ dom(µ), consider the solution set

S(x̄) :=
{
ȳ ∈ F (x̄)

∣∣ µ(x̄) = φ(x̄, ȳ)
}
.

If S(x̄) is nonempty, then for any ȳ ∈ S(x̄) we have

∂µ(x̄) =
⋃

(u,v)∈∂φ(x̄,ȳ)

[
u+D∗F (x̄, ȳ)(v)

]
. (2)

Proof. The inclusion “⊃” in (2) holds when φ is merely a convex function and F is merely a convex

set-valued mapping. Indeed, given w∗ from the right-hand side of (2), we can find (u, v) ∈ ∂φ(x̄, ȳ) such that

w∗ − u ∈ D∗F (x̄, ȳ)(v). Hence, (w∗ − u,−v) ∈ N((x̄, ȳ); gph(F )). It follows that

⟨(w∗ − u,−v), (x− x̄, y − ȳ)⟩ ∀(x, y) ∈ gph(F ).

Then we have

⟨w∗, x− x̄⟩ ≤ ⟨(u, v), (x, y)− (x̄, ȳ)⟩ ≤ φ(x, y)− φ(x̄, ȳ)

for any x ∈ X and y ∈ F (x). Taking the infimum of the right-hand side of the inequality ⟨w∗, x − x̄⟩ ≤

φ(x, y)− φ(x̄, ȳ) and using the condition ȳ ∈ S(x̄) yield

⟨w∗, x− x̄⟩ ≤ µ(x)− µ(x̄)⟩ ∀x ∈ X.

This means that w∗ ∈ ∂µ(x̄).

Let us verify the inclusion “⊂” in (2) under the assumptions that φ is a polyhedral convex function and

F is a generalized polyhedral convex set-valued mapping. Pick an element ȳ ∈ S(x̄) and let w∗ ∈ ∂µ(x̄) be
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given arbitrarily. For any x ∈ X, we have

⟨w∗, x− x̄⟩ ≤ µ(x)− µ(x̄) = µ(x)− φ(x̄, ȳ)

≤ φ(x, y)− φ(x̄, ȳ)

for all y ∈ F (x). This implies that, whenever (x, y) ∈ X × Y , the next inequality holds:

⟨w∗, x− x̄⟩+ ⟨0, y − ȳ⟩ ≤
[
φ(x, y) + δ

(
(x, y); gphF )

]
−
[
φ(x̄, ȳ) + δ

(
(x̄, ȳ); gphF

)]
.

Hence, considering the function f(x, y) := φ(x, y) + δ((x, y); gphF ) for (x, y) ∈ X × Y , we have (w∗, 0) ∈

∂f(x̄, ȳ). Letting h(x, y) := δ((x, y); gphF ) for (x, y) ∈ X × Y , we see that

epi(h) = gph(F )× [0,∞)

is a generalized polyhedral convex set. Since φ is a polyhedral convex function, by the subdifferential sum

rule in Theorem 4.1 one has

(w∗, 0) ∈ ∂f(x̄, ȳ) = ∂φ(x̄, ȳ) + ∂h(x̄, ȳ) = ∂φ(x̄, ȳ) +N
(
(x̄, ȳ); gphF

)
.

This shows that (w∗, 0) = (u∗
1, v

∗
1) + (u∗

2, v
∗
2) for some (u∗

1, v
∗
1) ∈ ∂φ(x̄, ȳ) and

(u∗
2, v

∗
2) ∈ N((x̄, ȳ); gphF ).

It follows that v∗2 = −v∗1 ; hence (u∗
2,−v∗1) ∈ N((x̄, ȳ); gphF ). Thus, we get u∗

2 ∈ D∗F (x̄, ȳ)(v∗1) and therefore

w∗ = u∗
1 + u∗

2 ∈ u∗
1 +D∗F (x̄, ȳ)(v∗1).

So, the inclusion “⊂” in (2) is valid.

The verification of the inclusion “⊂” in (2) under the assumptions that φ is a generalized polyhedral convex

function and F is a polyhedral convex set-valued mapping can be done in the same way. Namely, in the above

notations, it suffices no note that epi(h) is a polyhedral convex set. As φ is a generalized polyhedral convex

function, we can appy the subdifferential sum rule in Theorem 4.1 to get the desired result.

The proof of the theorem is completed. □

From Theorem 5.1 we get the following useful chain rule for convex compositions.

Corollary 5.1. Let f : X → R be a real-valued convex function and let ϕ : R → R be a nondecreasing convex

function. Take x̄ ∈ X and let ȳ = f(x̄) ∈ dom(ϕ). If f is a generalized polyhedral convex function and ϕ is a

polyhedral convex function or vice versa, then

∂(ϕ ◦ f)(x̄) =
⋃

λ∈∂ϕ(ȳ)

λ⊙ ∂f(x̄). (3)

If we assume in addition that f is continuous at x̄, then

∂(ϕ ◦ f)(x̄) =
⋃

λ∈∂ϕ(ȳ)

λ∂f(x̄). (4)
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Proof. Observe that the composition ϕ ◦ f is a convex function. Let φ(x, y) := ϕ(y) for (x, y) ∈ X × R

and F (x) := [f(x),∞) for x ∈ X. Since φ is nondecreasing, one has

(ϕ ◦ f)(x) = inf
y∈F (x)

ϕ(y) = inf
y∈F (x)

φ(x, y).

Hence we can let ϕ ◦ f play the role of the optimal value function µ in Theorem 5.1. As f is a generalized

polyhedral convex function and ϕ is a polyhedral convex function or vice versa, by Theorem 5.1 we have

∂(ϕ ◦ f)(x̄) =
⋃

λ∈∂ϕ(ȳ)

D∗F (x̄, ȳ)(λ).

Taking again into account that ϕ is nondecreasing yields λ ≥ 0 for every λ ∈ ∂ϕ(ȳ). It follows that

∂(ϕ ◦ f)(x̄) =
⋃

λ∈∂ϕ(ȳ)

D∗F (x̄, ȳ)(λ) =
⋃

λ∈∂ϕ(ȳ)

λ⊙ ∂f(x̄),

which implies (3).

The simplified version (4) under the continuity of f at x̄ follows from the observation in the proof of

Corollary 4.4. □

6 Concluding Remarks

In the first main part of the paper we provided a full answer to an open question raised by Mordukhovich

and Nam in [6, Exercise 3.118]. Our answer clarifies that the necessary and sufficient conditions for the sepa-

ration of a convex set and a PCS obtained by Kung Fu Ng and Wen Song in [7, Theorem 3.1] are no longer

valid when considering GPCS instead of PCS. In the second main part of the paper, we successfully developed

major calculus rules of generalized differentiation for polyhedral convex and generalized polyhedral set-valued

mappings with specifications for nonsmooth functions. In this setting qualification conditions via the notion of

quasi-relative interior introduced by Borwein and Lewis in [2] is no longer needed as the related results in [6]

for operations on convex set-valued mapping and polyhedral convex set-valued mappings. In our future work,

we plan to explore the role of generalized relative interiors including the quasi-relative interior in developing

convex generalized differentiation which aims to unify convex analysis in finite and infinite dimensions.
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