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Abstract. We give exact formulas for the subdifferentials of perturbed distance
functions in a normed space. Our method, seemingly novel and different from
existing ones, is to turn the involved problem equivalently to a parametric opti-
mization problem and then apply variational analysis technique to the optimal
value function. In the convex setting, we obtain new representations for the
subdifferential of perturbed distance functions, which do not depend on the rel-
ative position of the reference point with respect to the input set, and which are
described directly via the input data. Our results complement those of Wang
et al. [J. Global Optim. 46 (2010), 489–501] and of Li and Bounkhel [Nonlinear
Anal. 108 (2014), 173–188] which were established by different methods.
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1 Introduction

Let X be a real Banach space endowed with a norm ‖ · ‖, S ⊂ X be a nonempty closed
subset, and J : S → IR be a lower semicontinuous function. For each x ∈ X, consider the
following perturbed optimization problem, which is denoted by minJ(x, S),

min{‖x− y‖+ J(y) : y ∈ S}. (1.1)
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The perturbed optimization problem of this type was first presented and investigated
by Baranger [1]. Since then, it has been studied extensively and applied to optimal control
problems governed by partial differential equations; see, for example, [2, 3, 4, 5]. Generic
results on the solution existence and/or well-posedness of perturbed optimization problems
have been established in [6, 7, 8, 9, 10, 11, 12, 13, 14]. Apart from these studies, there is
another main research stream, which focuses on differential stability of the optimal value
function of minJ(x, S). The function is called perturbed distance function, denoted by
dJS : X → IR, and given by

dJS(x) := inf{‖x− y‖+ J(y) : y ∈ S}, x ∈ X. (1.2)

In the case when J(·) ≡ 0, the perturbed distance function dJS(·) is reduced to the well-
known distance function dS : X → IR defined by dS(x) := inf{‖x − y‖ : y ∈ S} for each
x ∈ X. The latter is a backbone in the theory of optimization and variational analysis
(see, e.g., the papers [15, 16, 17, 18, 19] for original results and the books [20, 21, 22, 23]
for connections among different theories). It also plays an important role in the analysis of
PDEs of Monge–Kantorovich type arising from problems in optimal transportation theory
and shape optimization [24, 25]. In the other case when S = X, the exact penalization [26,
Theorem 2.5], which plays a key role in algorithms for convex composite optimization [27]
as a natural extension of the so-called big-M method of linear programming to nonlinear
constrained programming can be seen as a perturbed distance function. In a similar manner,
the bounded approximants for monotone operators using sequences of infimal convolutions
of a function with n‖ · ‖ (instead of n‖ · ‖2 as in Moreau–Yosida approximation method,
and thus can work in non-reflexive Banach spaces) proposed by Fitzpatrick and Phelps [28]
are other examples of functions in the form of (1.2) with S = X.

Various subdifferentials (including the subdifferential in the sense of convex analysis,
the proximal subdifferential, the Fréchet subdifferential, the Fréchet type ε-subdifferential,
the limiting/Mordukhovich subdifferential, as well as the Clarke subdifferential) of distance
functions have been investigated in [29, 30, 31, 32] and the references therein. Likewise,
results on lower or upper estimations, exact representations, and regularities for subdiffer-
entials of perturbed distance functions have been obtained in [33, 34, 35, 36, 37]. Many
of these results have been extended to the corresponding ones for subdifferentials of dis-
tance functions in Banach spaces. Meanwhile, several results have just been developed for
perturbed distance functions in Riemannian manifolds in [38, 39], where the perturbed
optimization problems were introduced and considered in a more general setting with Rie-
mannian manifolds, instead of the setting with real Banach spaces.

We pay attention to exact representations for subdifferentials of the perturbed distance
function dJS(·) given by (1.2) in the Banach space setting. The first exact formulas for
subdifferentials of dJS(·) are due to Wang et al. in [33]. Herein, the reference points are
assumed to be in a subset of S called the target set consisting of points that are solutions
of the corresponding perturbed minimization problem (see, formula (3.8) below). In the
convex case, when the input data S and J(·) are both convex, the function dJS(·) is convex.
Thus, its subdifferential in the sense of convex analysis at a given point in the target set
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was considered and represented as the intersection of the corresponding subdifferential of
the function (J + δS)(·) at that point and the closed unit ball in the topological dual space
(see formula (3.6) in [33] or (3.9) in this paper). Here, (J + δS)(·) is the function that
coincides with J(·) on S and takes the value +∞ otherwise. Let us mention this type of
representation as R1-type. In the nonconvex case, representations for proximal and Fréchet
subdifferentials of dJS(·) were given in R1-type, under assumptions on the well-posedness (in
the sense of Tykhonov) of the perturbed optimization problem and on the center locally
Lipschitz constant of the input function at the reference point. Similar results were given by
Nam in [37] for Fréchet and Hölder subdifferentials by an approach from infimal–convolution
theory. The R1-type representation for limiting subdifferential of dJS(·) was also obtained
by Li et al. in [34], under an additional assumption that X is finite-dimensional.

Note that even if J(·) can be defined only on S, dJS(·) is well-defined on the whole
space, not just on S; therefore, not just on the target set. So, formulas for computing
subdifferentials of dJS(·) at points outside the target set are obviously desired. Unfortunately,
R1-type representations for subdifferentials of dJS(·) at points outside the target set are no
longer true in general. For instance, if J(·) is nonexpansive on S, then the target set equals
to S by definition. At points outside S, subdifferentials of J+δS are just empty sets; hence,
so are the intersections in R1-type representations. Meanwhile, subdifferentials of dJS(·) at
those points are not always empty as can be shown by simple examples. This leads to the
need of finding alternative representations, instead of the R1-type one, for subdifferentials
of dJS(·) at points outside the target set.

It turns out that for subdifferentials of dJS(·) at points outside the target set, though
quite rich results on lower or upper estimations were obtained in [34, 35, 36], few exact
representations can be found in the paper [35] by Li and Bounkhel. Herein, proximal and
Fréchet subdifferentials of dJS(·) at points outside the target set were represented in terms of
enlargement sets by distinguishing two prior assumptions on the input function. The first
one is that J(·) has a continuous extension on X. In this situation, extra requirements
are put on the well-posedness of the perturbed optimization problem, the center Lipschitz
constant, and the second center Lipschitz constant of J(·) on enlargement sets at the
reference point. The second one is that J(·) is continuous on S. In this situation, an
additional assumption related to an asymptotic behavior of J(·) on S is needed. The
obtained representations in [35] for proximal and Fréchet subdifferentials of dJS(·) at points
outside the target set are sharp, though a bit complicated because the enlargement sets are
not easy to describe directly from input data.

From the above observations, a natural question arises: Is there any representation for
subdifferentials of dJS(·) at a point that does not depend on the relative position between the
reference point and the input set and that is described directly via the input data? This paper
aims at giving some answers to the question. Toward this aim, we propose a new approach
to the studying of subdifferentials of dJS(·), the idea of which is as follows. The perturbed
optimization problem minJ(x, S) is viewed as a parametric optimization problem with x
playing the role of a parameter. Therefore, one can estimate or compute subdifferentials of
its optimal value function dJS(·) via the differential information of the objective function and
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the constraint set. From (1.1), we notice that the objective function of minJ(x, S) is given
as a sum of the norm and the input function. So, sum rules for computing subdifferentials
in variational analysis should be exploited; hence, the subdifferential of the norm could be
fully taken into account.

Note also that minJ(x, S) is well-defined in any normed space X (not necessarily Banach
space). Thus, in this paper, we will just assume that (X, ‖ · ‖) is a normed space. Besides,
to avoid an overwhelming presentation of different subdifferentials, we devote this paper for
implementing the above-mentioned approach with a basic assumption on input data, that
is, S and J(·) are both convex. The first obtained result (Theorem 3.1 in Section 3) allows
us to compute the subdifferential (in the sense of convex analysis) of dJS(·) at any given
point, as long as its corresponding perturbed minimization problem has a solution. Apart
from using directly information of input data as in the R1-type, the new representation is
established by utilizing the information of an arbitrary solution and of subdifferential of
the norm. Interestingly, the R1-type representation for the subdifferential of dJS(·) at points
in the target set and formulas for the subdifferential of the distance function dS(·) can be
recovered as corollaries of this result. Besides, in a combination with a special property
of solution sets, this new representation reveals a relation among subdifferentials of dJS(·)
at points on the segment connecting the reference point and points in its corresponding
solution set.

The rest of this paper is organized as follows. In Section 2, we recall some notations
and state our assumptions. The results, together with illustrative examples, are included
in Section 3. The approach for studying subdifferentials of perturbed distance functions is
presented as a preliminary for the proof of the main result in Section 4. Some concluding
remarks and open topics are discussed in Section 5.

2 Notations and assumptions

Throughout this paper, let (X, ‖ · ‖) be a normed space with its topological dual space
denoted by X∗. The notation 〈x∗, x〉 is used to indicate the value of a bounded linear
functional x∗ ∈ X∗ at a given point x ∈ X. The symbols IB and IB∗ stand for the closed
unit balls in X and X∗, respectively.

Let f : X → IR := IR ∪ {+∞} be an extended real-valued function. One calls the
sets dom f := {x ∈ X : f(x) < +∞} and epi f := {(x, λ) ∈ X × IR : λ ≥ f(x)}
the effective domain and epigraph of f , respectively. The function f is said to be lower
semicontinuous (resp., convex ) if epi f is a closed (resp., convex) set in X × IR. When f is
a convex function, the subdifferential (in the sense of convex analysis) of f at a point x̄ is
the empty set if x̄ ∈ X \ dom f and is the set

∂f(x̄) := {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ f(x)− f(x̄), ∀x ∈ X}

if x̄ ∈ dom f .
Let S be a nonempty subset of X. The set S is associated with an extended real-valued

function on X by the so-called indicator function δS : X → IR of S, where δS(x) := 0 if
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x in S and δS(x) := +∞ otherwise. It is clear that δS(·) is lower semicontinuous (resp.,
convex) iff S is closed (resp., convex). When S is a convex set, the normal cone to S at
x̄ ∈ S is defined by N(x̄, S) := ∂δS(x̄). It is easy to verify that

N(x̄, S) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ S}.

Now, if a function h : S → IR is given only on S, it can be linked with the function
h+ δS : X → IR defined on the whole space X by

(h+ δS)(x) :=

{
h(x), if x ∈ S
+∞, if x /∈ S.

In this situation, one says that h is lower semicontinuous (resp., convex ) if h+ δS is lower
semicontinuous (resp., convex).

For a systematical treatment of convex analysis, the interested reader is referred to the
books by Penot [22] or by Ioffe and Tihomirov [40], for example.

In this paper, we consider the problem minJ(x, S) defined in (1.1) and the perturbed
distance function dJS(·) given by (1.2) with the assumptions: (X, ‖ · ‖) is a normed space,
S ⊂ X is a nonempty convex set, and J : S → IR is a convex function. (The completeness
of (X, ‖ · ‖), the closedness of S and the lower semicontinuity of J(·), which were usually
supposed in the literature, are not necessary herein.) By the convexity of S and J(·), it is
not hard to see that the perturbed distance function dJS : X → IR given by (1.2) is convex
(see, e.g., the comments after Lemma 4.1). We aim at providing exact formulas for the
subdifferential of the perturbed distance function dJS(·).

3 Results

The following theorem allows us to compute the subdifferential of dJS(·) at any point x in
X, as long as its corresponding problem minJ(x, S) has a solution, i.e., the solution set

P J
S (x) :=

{
y ∈ S : dJS(x) = ‖x− y‖+ J(y)

}
is nonempty.

Theorem 3.1. Suppose that S is a nonempty convex subset of a normed space (X, ‖ · ‖)
and J : S → IR is a convex function. Let x̄ ∈ X be such that P J

S (x̄) 6= ∅. Then, for any
ȳ ∈ P J

S (x̄) one has
∂dJS(x̄) = ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄− ȳ), (3.3)

where

∂‖ · ‖(x̄− ȳ) =

{
IB∗, if ȳ = x̄

{x∗ ∈ X∗ : ‖x∗‖ = 1, 〈x∗, x̄− ȳ〉 = ‖x̄− ȳ‖}, if ȳ 6= x̄.
(3.4)
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The proof of Theorem 3.1 will be presented in the next section of this paper.

As we can see from formula (3.3), at a point x̄ such that P J
S (x̄) 6= ∅, the subdifferential

of dJS(·) is computed not only by exploiting the information of S and J(·), which are
initial data of the problem, but also by taking into account the subdifferential of the norm
appearing in the objective function of the problem. This makes the representation (3.3)
become totally novel in the existing literature on subdifferentials of the perturbed distance
function dJS(·).

Regarding the sets in the right-hand side of formula (3.4), the reader is referred to
(says) [41, Section 4.6] for subdifferential of the norm in a normed space. Discussions on
or detailed descriptions of subdifferentials of the norm in infinite-dimensional spaces can
be found in [40, Subsection 4.4.3] for the case where the norm is differentiable at non-zero
points, such as Lp([t0, t1]) with 1 < p < +∞ or Hilbert spaces and in [40, Subsection 4.5.1]
for the spaces C(T ) and Ln

p ([t0, t1]) with p ∈ {1,+∞} where the norm is non-differentiable
at non-zero points. To keep it simple to verify, let us now present an illustrative example
for Theorem 3.1 in the following setting.

Example 3.1. Consider the problem minJ(x, S) with X := IR, S := [0,+∞), J(y) := y
for all y ∈ S. For every x ∈ X, it is not hard to verify that

dJS(x) = |x| and P J
S (x) =

{
[0, x], if x > 0

{0}, if x ≤ 0.
(3.5)

The graphs of dJS(·) and P J
S (·) are illustrated in Figure 1.

Figure 1: The perturbed distance function dJS : IR → IR and the perturbed projection
P J
S : IR ⇒ IR in (3.5).

By direct computing, we have

∂dJS(x) =


{1}, if x > 0

[−1, 1], if x = 0

{−1}, if x < 0,

(3.6)
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∂(J + δS)(y) =

{
{1}, if y > 0

(−∞, 1], if y = 0,
and ∂‖ · ‖(x− y) =


{1}, if x > y

[−1, 1], if x = y

{−1}, if x < y.

(3.7)

Fix an x̄ ∈ X and take any ȳ ∈ P J
S (x̄). We are going to show that (3.3) holds.

Consider first the situation where x̄ > 0. Then, we have P J
S (x̄) = [0, x̄] by (3.5) and

∂dJS(x̄) = {1} by (3.6). The inclusion ȳ ∈ [0, x̄] is separated into two cases: ȳ ∈ [0, x̄) and
ȳ = x̄. If ȳ ∈ [0, x̄), then from (3.7) we get that ∂(J + δS)(ȳ) equals to either (−∞, 1] or
{1} while ∂‖ · ‖(x̄ − ȳ) = {1}. Thus, ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄ − ȳ) = {1} and therefore
(3.3) is valid. Similarly, if ȳ = x̄, then it follows from (3.7) that ∂(J + δS)(ȳ) = {1} and
∂‖ · ‖(x̄− ȳ) = [−1, 1]. So, ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄− ȳ) = {1}; hence (3.3) is fulfilled.

Next, in the situation where x̄ = 0, we have P J
S (x̄) = {0} by (3.5). By using (3.6)

and (3.7), we see that the equality (3.3) is valid with ȳ = 0, as both sides of the equality
equal to [−1, 1].

The final situation is x̄ < 0, where we have P J
S (x̄) = {0} by (3.5). Thanks to (3.6)

and (3.7), one can similarly verify (3.3) with ȳ = 0. In this situation, both dJS(x̄) and
∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄− ȳ) equal to {−1}.

Note that the sets on the right-hand side of the equality in (3.3) do not depend on a
particular choice ȳ in P J

S (x̄). Thus, if x̄ is a point in the target set (see, [11, 13])

S0 := {x ∈ S : x ∈ P J
S (x)}, (3.8)

one can choose ȳ := x̄ in (3.3) to obtain the representation for ∂dJS(x̄) in the paper by
Wang, Li, and Xu [33, Theorem 3.1], which we mentioned in the introduction as the R1-
type representation, as a corollary. Keep in mind that the completeness of (X, ‖ · ‖), the
closedness of S and the lower semicontinuity of J(·) required in [33] are not necessary
herein.

Corollary 3.1. If x̄ ∈ S0, then

∂dJS(x̄) = ∂(J + δS)(x̄) ∩ IB∗. (3.9)

Proof. If x̄ ∈ S0, then x̄ ∈ P J
S (x̄). Applying Theorem 3.1 for ȳ := x̄, we obtain (3.9).

The next corollary gives formulas for computing subdifferential of the distance function
dS(x) := inf{‖x− y‖ : y ∈ S}, x ∈ X, as a special case of the perturbed distance function
dJS(·) with J(·) ≡ 0. These formulas can be found in [29, Theorem 1] under the additional
assumption that S is a closed subset of a normed space X for the second formula and of a
reflexive Banach space X for the first one, and in [42, Example 2.130] or in [33, Corollary
3.1] with the extra requirement that S is a closed subset of a Banach space X.

Corollary 3.2. Let x̄ ∈ X with PS(x̄) := {y ∈ S : dS(x̄) = ‖x̄− y‖} 6= ∅. Then for any
ȳ ∈ PS(x̄), one has

∂dS(x̄) = N(ȳ, S) ∩ ∂‖ · ‖(x̄− ȳ).

In particular, if x̄ ∈ S, then
∂dS(x̄) = N(x̄, S) ∩ IB∗.
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Proof. Note that when J(·) ≡ 0, (J + δS)(·) ≡ δS(·) and S0 = S by definitions. Therefore,
the first claim of the corollary is straightforward from Theorem 3.1, while the second one
follows directly from Corollary 3.1.

Corollary 3.3. Suppose that S = X. Let x̄ ∈ X be such that P J
S (x̄) 6= ∅. Then for any

ȳ ∈ P J
S (x̄), it holds that

∂dJS(x̄) = ∂J(ȳ) ∩ ∂‖ · ‖(x̄− ȳ). (3.10)

Proof. It is clear that when S = X, one has (J + δS)(·) ≡ J(·). Thus, the desired formula
comes instantly from Theorem 3.1 and Corollary 3.1.

Let us present an illustrative example for Corollary 3.3.

Example 3.2. Consider the following nonlinear optimization problem

min
{√
|x1 − y1|2 + |x2 − y2|2 + |y1 − y2| : (y1, y2) ∈ IR2

}
, (x1, x2) ∈ IR2.

Clearly, the above problem is in the form of minJ(x, S) in the Euclidean space X := IR2

with S := X and J(y) := |y1 − y2| for all y = (y1, y2) ∈ S. It is not hard to see that

x̄ := (1, 0) is a point outside of the target set S0. Besides, ȳ := (
1

2
,
1

2
) ∈ P J

S (x̄). Thus, we

can compute the subdifferential dJS(x̄) by (3.10) and get

dJS(x̄) = ([−1, 1]× {(1,−1)}) ∩

{√
2

2
(1,−1)

}
=

{
(

√
2

2
,−
√

2

2
)

}
.

The conclusions in the next proposition on a special property of the solution sets and
of the perturbed distance function were obtained in [34, Proposition 4.1] for the problem
minJ(x, S) under the assumptions that X is a Banach space, S ⊂ X is a nonempty closed
set, and J : S → IR is a lower semicontinuous function. However, we found from the proof
therein that those assumptions are not necessary to get the same conclusions. For the sake
of completeness, we include some details below.

Proposition 3.1. Consider the problem minJ(x, S) defined by a nonempty (not necessary
closed nor convex) subset S of a normed space X and a (not necessary lower semicontinuous
nor convex) function J : S → IR. Let x̄ ∈ X be such that P J

S (x̄) 6= ∅ and ȳ ∈ P J
S (x̄). Then

it holds for any λ ∈ [0, 1] that

ȳ ∈ P J
S (λȳ + (1− λ)x̄) (3.11)

and

dJS(λȳ + (1− λ)x̄) = (1− λ)dJS(x̄) + λJ(ȳ). (3.12)
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Proof. Let x̄ ∈ X be such that P J
S (x̄) 6= ∅ and ȳ ∈ P J

S (x̄) and fix any λ ∈ [0, 1]. Then, for
any y ∈ S, using basic properties of the norm and the inclusion ȳ ∈ P J

S (x̄), we have

‖λȳ + (1− λ)x̄− ȳ‖+ J(ȳ) = ‖(1− λ)(x̄− ȳ)‖+ J(ȳ)

= dJS(x̄)− λ‖ȳ − x̄‖
≤ ‖x̄− y‖+ J(y)− λ‖ȳ − x̄‖
≤ ‖λȳ + (1− λ)x̄− y‖+ J(y).

Thus, we get the inclusion (3.11). As a consequence,

dJS(λȳ + (1− λ)x̄) = ‖λȳ + (1− λ)x̄− ȳ‖+ J(ȳ)

= ‖(1− λ)(x̄− ȳ)‖+ J(ȳ)

= (1− λ)‖x̄− ȳ‖+ (1− λ)J(ȳ) + λJ(ȳ)

= (1− λ)dJS(x̄) + λJ(ȳ),

which shows the equality (3.12) and completes the proof.

Thanks to the above proposition, we are able to obtain a relationship among subdif-
ferentials of dJS(·) at points on a segment connecting a reference point and points in its
corresponding solution set in the next theorem.

Theorem 3.2. Suppose that S is a nonempty convex subset of a normed space (X, ‖ · ‖)
and J : S → IR is a convex function. Let x̄ ∈ X be such that P J

S (x̄) 6= ∅. Then, for any
ȳ ∈ P J

S (x̄) and λ ∈ [0, 1), one has

∂dJS(λȳ + (1− λ)x̄) = ∂dJS(x̄). (3.13)

Proof. Let x̄ ∈ X be such that P J
S (x̄) 6= ∅. Fix any ȳ ∈ P J

S (x̄) and λ ∈ [0, 1). If ȳ = x̄ or
λ = 0, then (3.13) holds trivially. If ȳ 6= x̄ and λ ∈ (0, 1), then by (3.4), we have

∂‖ · ‖((1− λ)(x̄− ȳ)) = ∂‖ · ‖(x̄− ȳ). (3.14)

Besides, as ȳ ∈ P J
S (x̄) and λ ∈ (0, 1), it follows from (3.11) that ȳ ∈ P J

S (λȳ + (1 − λ)x̄).
Thus, applying Theorem 3.1 for x̄ := λȳ + (1− λ)x̄, we have

∂dJS(λȳ + (1− λ)x̄) = ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(λȳ + (1− λ)x̄− ȳ)

= ∂(J + δS)(ȳ) ∩ ∂‖ · ‖((1− λ)(x̄− ȳ)).

This and (3.14) imply that ∂dJS(λȳ + (1− λ)x̄) = ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄− ȳ), which in a
combination with (3.3) yields (3.13). The proof is complete.

Let us verify Theorem 3.2 via the next example.
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Example 3.3. Consider the problem minJ(x, S) with the same setting as in Example 3.1.
Let x̄ ∈ X. From (3.5), we have P J

S (x̄) = {0} if x̄ ≤ 0 and P J
S (x̄) = [0, x̄] if x̄ > 0. As

the equality (3.13) automatically holds when P J
S (x̄) is a singleton, i.e., when x̄ ≤ 0, to

illustrate Theorem 3.2, we only need to verify the equality (3.13) in the situation where
x̄ > 0. Since x̄ > 0, it follows from (3.6) that ∂dJS(x̄) = {1}. Taking any ȳ ∈ P J

S (x̄) = [0, x̄]
and λ ∈ [0, 1), one has λȳ + (1 − λ)x̄ > 0. Thus, (3.6) yields ∂dJS(λȳ + (1 − λ)x̄) = {1};
hence (3.13) is verified.

We close this section by providing a proposition regarding properties of the solution
set of the perturbed minimization problem, including the nonemptiness, which plays a key
assumption for all the above results.

Proposition 3.2. We have, for each x ∈ X, P J
S (x) is a convex set. Suppose, in addition,

that X is a reflexive Banach space, S is closed, J(·) is lower semicontinuous, and either S
is bounded or J(·) satisfies the coercivity condition

lim
‖y‖→+∞

(y∈S)

J(y) = +∞. (3.15)

Then P J
S (x) is nonempty.

Proof. Let x ∈ X. The fact that the solution set P J
S (x) of the problem minJ(x, S) is

convex follows from the convexity of S and J(·). To see the nonemptiness, suppose that X
is a reflexive Banach space. If J(·) is a lower semicontinuous and convex function on the
nonempty, closed, and convex set S, then so is the function y 7→ f(y) := ‖x−y‖+J(y), y ∈
S. Thus, when either S is bounded or J(·) satisfies (3.15), it follows from [43, Corollary 3.23]
that f(·) attains minimum on S, i.e., the problem minJ(x, S) has a solution.

4 Proof of the main result

To prove the exact formula for the subdifferential of the perturbed distance function dJS(·)
in Theorem 3.1, we will first transform minJ(x, S) to a parametric minimization problem.

4.1 minJ(x, S) as a parametric minimization problem

Let ϕ1, ϕ2, and ϕ be functions from X ×X to IR with

ϕ1(x, y) := ‖x− y‖, (x, y) ∈ X ×X, (4.16)

ϕ2(x, y) :=

{
J(y), if (x, y) ∈ X × S
+∞, if (x, y) /∈ X × S,

(4.17)

and
ϕ(x, y) := ϕ1(x, y) + ϕ2(x, y), (x, y) ∈ X ×X. (4.18)
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Clearly, domϕ1 = X ×X, domϕ2 = domϕ = X × S, and

ϕ(x, y) =

{
‖x− y‖+ J(y), if (x, y) ∈ X × S
+∞, if (x, y) /∈ X × S.

Besides, by the convexity of S and J(·), we see that ϕ1, ϕ2, and ϕ are convex functions.
For each x ∈ X, consider the following unconstrained minimization problem

min{ϕ(x, y) : y ∈ X}. (Px)

We see that (Px) is a parametric minimization problem with x playing the role of the
parameter. The optimal value function µ : X → IR and the solution map M : X ⇒ X of
(Px) are, respectively, given by

µ(x) := inf{ϕ(x, y) : y ∈ X}, x ∈ X

and
M(x) := {y ∈ X : ϕ(x, y) = µ(x)}, x ∈ X.

The easy proof of the next lemma on the equivalence between the constrained opti-
mization problem minJ(x, S) and the unconstrained one (Px) is omitted. (See, e.g., [22,
Excercise 2, p. 47].)

Lemma 4.1. The problems minJ(x, S) and (Px) are equivalent in the sense that, for each
x ∈ X, one has dJS(x) = µ(x) and P J

S (x) = M(x).

As ϕ is a convex function, [22, Lemma 1.51] yields that µ is a convex function. Hence,
so is dJS(·) by Lemma 4.1. Moreover, due to considering dJS(·) in the role of the optimal
value function of (Px), we can now provide a rough estimate for subdifferential of dJS(·)
via subdifferential of the objective function ϕ of (Px). Similar approaches for parametric
optimization problems under inclusion constraints can be found in [44, 45, 46].

Lemma 4.2. Let x̄ ∈ X be such that P J
S (x̄) 6= ∅. Then, for any ȳ ∈ P J

S (x̄) one has

∂dJS(x̄) = {x∗ ∈ X∗ : (x∗, 0) ∈ ∂ϕ(x̄, ȳ)}. (4.19)

Proof. Let x̄ ∈ X be such that P J
S (x̄) 6= ∅ and fix any ȳ ∈ P J

S (x̄). By Lemma 4.1, one has
ȳ ∈M(x̄). So, it follows from [22, Proposition 3.37] that

∂µ(x̄) = {x∗ ∈ X∗ : (x∗, 0) ∈ ∂ϕ(x̄, ȳ)}.

This and the fact in Lemma 4.1 that dJS(x) = µ(x) for all x ∈ X imply the desired
formula (4.19).

By (4.19), to represent the subdifferential of dJS(·) in terms of initial data of the problem
minJ(x, S), we need to explore the relation (x∗, 0) ∈ ∂ϕ(x̄, ȳ). As ϕ(·) is defined by the sum
in (4.18), we will apply the sum rule from [22, Theorem 3.39] to compute subdifferential
of ϕ(·) via subdifferentials of functions ϕ1(·) and ϕ2(·), which are given in the next two
lemmas.
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Lemma 4.3. Setting A(x, y) = x− y for all (x, y) ∈ X ×X, one has

∂ϕ1(x̄, ȳ) = A∗(∂‖ · ‖(x̄− ȳ)), (x̄, ȳ) ∈ X ×X, (4.20)

where A∗ : X∗ → X∗×X∗ stands for the adjoint operator of the continuous linear operator
A : X ×X → X.

Proof. Since ϕ1(x, y) = ‖A(x, y)‖ for all (x, y) ∈ X × X, one has ϕ1 = ‖ · ‖ ◦ A. Thus,
applying the chain rule from [22, Theorem 3.40] for the linear operator A : X × X → X
and the convex function ‖ · ‖ : X → IR, we get formula (4.20).

Lemma 4.4. For any (x̄, ȳ) ∈ X × S, one has

∂ϕ2(x̄, ȳ) = {0} × ∂(J + δS)(ȳ). (4.21)

Proof. It follows from (4.17) that ϕ2(x, y) = (J+δS)(y) for all (x, y) ∈ X×X. So, formula
(4.21) is straightforward from the definition of subdifferential.

Lemma 4.5. Let (x̄, ȳ) ∈ X×S. Then, for any x∗ ∈ X∗, one has (x∗, 0) ∈ ∂ϕ(x̄, ȳ) if and
only if there exists y∗ ∈ ∂(J + δS)(ȳ) such that (x∗,−y∗) ∈ A∗(∂‖ · ‖(x̄− ȳ)).

Proof. Let (x̄, ȳ) ∈ X × S. Then, (x̄, ȳ) ∈ domϕ1 ∩ domϕ2. From formulas (4.16)–(4.18),
we see that ϕ is the sum of two convex functions ϕ1 and ϕ2. Moreover, ϕ1 and ϕ2 are finite
at (x̄, ȳ), and ϕ1 is continuous on the whole space X ×X containing domϕ1 ∩ domϕ2. So,
applying the sum rule from [22, Theorem 3.39] for the functions ϕ1 and ϕ2, we get

∂ϕ(x̄, ȳ) = ∂ϕ1(x̄, ȳ) + ∂ϕ2(x̄, ȳ).

Combining this with (4.20) and (4.21) yields

∂ϕ(x̄, ȳ) = A∗(∂‖ · ‖(x̄− ȳ)) + {0} × ∂(J + δS)(ȳ).

Thus, for any x∗ ∈ X∗, (x∗, 0) ∈ ∂ϕ(x̄, ȳ) if and only if there exist (x∗1, y
∗
1) ∈ A∗(∂‖·‖(x̄−ȳ))

and y∗ ∈ ∂(J+δS)(ȳ) such that (x∗, 0) = (x∗1, y
∗
1)+(0, y∗). The latter equality yields x∗1 = x∗

and y∗1 = −y∗; hence the claim of the lemma is proved.

We are now in a position to give a proof to Theorem 3.1.

4.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Let x̄ ∈ X be such that P J
S (x̄) 6= ∅ and fix a point ȳ ∈ P J

S (x̄). Since
(3.4) directly follows from formulas for subdifferential of the norm function (see, e.g., [41,
Section 4.6]), we only need to show that the equality in (3.3) holds. To do so, we will prove
the validity of both inclusions ⊆ and ⊇.

[⊆] Take any x∗ ∈ ∂dJS(x̄). By (4.19), one has (x∗, 0) ∈ ∂ϕ(x̄, ȳ). Hence, it follows from
Lemma 4.5 that there exists y∗ ∈ ∂(J + δS)(ȳ) such that (x∗,−y∗) ∈ A∗(∂‖ · ‖(x̄− ȳ)). So,
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there is some z∗ ∈ ∂‖ · ‖(x̄− ȳ) satisfying (x∗,−y∗) = A∗(z∗). Thus, using the definition of
the adjoint operator A∗, we have

〈(x∗,−y∗), (x, y)〉 = 〈A∗(z∗), (x, y)〉 = 〈z∗, A(x, y)〉

for all (x, y) ∈ X ×X. By the definition of A, the latter means that

〈x∗, x〉 − 〈y∗, y〉 = 〈z∗, x− y〉, ∀(x, y) ∈ X ×X.

This yields that x∗ = y∗ = z∗. Combining this and the properties that y∗ ∈ ∂(J + δS)(ȳ)
and z∗ ∈ ∂‖ · ‖(x̄− ȳ), we obtain x∗ ∈ ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄− ȳ).

[⊇] Fix some x∗ ∈ ∂(J + δS)(ȳ) ∩ ∂‖ · ‖(x̄ − ȳ). Since x∗ ∈ ∂‖ · ‖(x̄ − ȳ), one has
A∗(x∗) ∈ A∗(∂‖ · ‖(x̄− ȳ)). Besides, using the definitions of A∗ and A, one gets

〈A∗(x∗), (x, y)〉 = 〈x∗, A(x, y)〉 = 〈x∗, x− y〉 = 〈(x∗,−x∗), (x, y)〉

for all (x, y) ∈ X ×X. This means that (x∗,−x∗) = A∗(x∗). Combining this with the fact
that A∗(x∗) ∈ A∗(∂‖ · ‖(x̄− ȳ)) yields (x∗,−x∗) ∈ A∗(∂‖ · ‖(x̄− ȳ)). Hence, remembering
that x∗ ∈ ∂(J + δS)(ȳ) and using Lemma 4.5, we obtain (x∗, 0) ∈ ∂ϕ(x̄, ȳ). So, by (4.19),
we have x∗ ∈ ∂dJS(x̄). The proof is complete.

5 Conclusion and open topics

In this paper, we have proposed a new approach for studying subdifferentials of perturbed
distance functions in normed spaces. The involved perturbed optimization problem is
viewed as a parametric optimization problem of which the optimal value function repre-
sents the perturbed distance function under investigation. Hence, subdifferentials of the
perturbed distance function can be estimated/computed directly via differential informa-
tion of all input data, which are the constraint set, the perturbed function, and the norm.
We have shown that this approach performed well for the convex case where both the con-
straint set and the perturbed function are convex. Namely, the main result (Theorem 3.1)
allows us to compute the subdifferential (in the sense of convex analysis) of the perturbed
distance function at any given point without depending on its relative position w.r.t. the
so-called target set, as long as its corresponding perturbed minimization problem has a
solution. As straightforward consequences, existing results on the subdifferential of the
perturbed distance function at points in the target set and on the subdifferential of the
well-known distance function can be recovered under milder assumptions. Last, but not
least, in a combination with a special property of solution sets, the new representation
in Theorem 3.1 reveals a special relation among subdifferentials of the perturbed distance
function at points on the segment connecting the reference point and points in its corre-
sponding solution set in Theorem 3.2.

The nice performance of the proposed approach to the convex case allows us to hope
that similar results for estimating or computing the Fréchet/Mordukhovich/Clarke subdif-
ferentials of the perturbed distance function in the nonconvex case can be attainable, and
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are therefore deserved for further investigation. Another interesting topic is the setting of
the underlying space. In this paper we worked out our approach in the normed space set-
ting; however, we do not know whether our approach is viable for the Riemannian manifold
setting, as done in [38, 39]. This turns out to be an interesting open topic for future study.
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