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A NOTE ON LE-PHA. M’S PAPER - CONVERGENCE IN δEp
SPACES

RAFA L CZYŻ

Abstract. Let δEp, p > 0, be the real vector space containing functions of
the form u1−u2, where u1 and u2 are non-positive plurisubharmonic functions
with finite pluricomplex p-energy. We prove a convergence theorem and give
an example of interesting continuous mappings on this quasi-Banach space.

1. Introduction

Let the cones E0, Ep (p > 0), F , and E be defined as in [4, 5] (see also Section 2).
If K ∈ {E0, Ep, F , E}, then we use the notation δK = K −K. Let p > 0, and for
u ∈ δEp define:

(1.1) ‖u‖p = inf
u1−u2=u
u1,u2∈Ep

(∫
Ω

(−(u1 + u2))p(ddc(u1 + u2))n
) 1

n+p

,

where (ddc · )n is the complex Monge-Ampère operator. If p = 0, then we shall
use (1.1) with the convention that (−(u1 + u2))p = 1. It was proved in [7] that
(δF , ‖ · ‖0) is a Banach space, and in [2] that (δEp, ‖ · ‖p) is a quasi-Banach
space. In Section 2 we recall some definitions, and prove that E0 and δE0 are
generally not closed neither in (δF , ‖ · ‖0) nor in (δEp, ‖ · ‖p) (Proposition 2.1).
We end Section 2 by proving that the inclusions E0 ⊆ F , δE0 ⊆ δF , are proper
in (δF , ‖ · ‖0) (Proposition 2.2). In Section 3, the following convergence theorem
is proved.
Theorem 3.2. Let [uj ], uj ∈ δEp, be a sequence that converges to a function u
in δEp as j tends to ∞, then [uj ] converges to u in capacity.

Example 3.3 shows that convergence in capacity is weaker than convergence in
δEp. It was proved in [8] that the convergence in (δF , ‖ · ‖0) is stronger than the
one in Cn-capacity.

Let now M(Ω) denote the space of signed real Borel measures on Ω with the
topology given by the usual system of semi-norms. Then M(Ω) is a Fréchet
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space. Furthermore, let Mb(Ω) consist of signed, real and finite Borel measures
defined on Ω equipped with the norm given by the total variation on Ω. Then
Mb(Ω) is a Banach space. In Theorem 3.6, we prove that the following maps are
continuous:

T1 : (δEp)n+1 3 (v, u1, . . . , un)→ T1(v, u1, . . . , un) = |v|pddcu1 ∧ · · · ∧ ddcun ∈Mb,

T2 : (δEp)n 3 (u1, . . . , un)→ T2(u1, . . . , un) = ddcu1 ∧ · · · ∧ ddcun ∈M,

T3 : δEp 3 u→ T3(u) = u ∈ δE .

In connection to these mappings it is worth to mention that the following two
maps are continuous ([7, 8]):

T4 : (δF)n 3 (u1, . . . , un)→ T4(u1, . . . , un) = ddcu1 ∧ · · · ∧ ddcun ∈Mb,

T5 : (δE)n 3 (u1, . . . , un)→ T5(u1, . . . , un) = ddcu1 ∧ · · · ∧ ddcun ∈M ,

2. Preliminaries

We start by recalling notations and definitions. Let Ω ⊆ Cn be a bounded,
connected, and open set. Recall that Ω is hyperconvex if there exists a bounded
plurisubharmonic function ϕ : Ω → (−∞, 0) such that the closure of the set
{z ∈ Ω : ϕ(z) < c} is compact in Ω, for every c ∈ (−∞, 0). We say that a plurisub-
harmonic function ϕ defined on Ω belongs to E0 (= E0(Ω)) if limz→ξ ϕ(z) = 0, for
every ξ ∈ ∂Ω, and

∫
Ω (ddcϕ)n <∞, where (ddc · )n is the complex Monge-Ampère

operator.
Assume that u is a plurisubharmonic function defined on Ω and [ϕj ]∞j=1, ϕj ∈

E0, is a decreasing sequence that converges pointwise to u on Ω, as j tends to ∞.
If there can be no misinterpretation a sequence [ · ]∞j=1 will be denoted by [ · ]. For
p > 0 fixed, consider the following assertions:

(1) sup
j

∫
Ω

(−ϕj)p(ddcϕj)n <∞,

(2) sup
j

∫
Ω

(ddcϕj)
n <∞ .

If the sequence [ϕj ] can be chosen such that (1) holds, then we say that u belongs
to Ep and if (2) holds, then u belongs to F . Let E (= E(Ω)) be the class of
plurisubharmonic functions ϕ defined on Ω, such that for each z0 ∈ Ω there exist
a neighborhood ω of z0 in Ω and a decreasing sequence [ϕj ]∞j=1, ϕj ∈ E0, which
converges pointwise to ϕ on ω and (2) holds. It was proved in [4, 5] that (ddc · )n
is well defined on E . Let ep(u) be defined by

(2.1) ep(u) =
∫

Ω
(−u)p(ddcu)n ,

for p > 0. The integral ep(u) is the pluricomplex p-energy of the function u. Note
that if u ∈ Ep, then 0 ≤ ep(u) < ∞. It was proved in [2] that if u ∈ Ep then the

quasi-norm of u in the space δEp is equal to ||u||p = ep(u)
1

n+p .
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Proposition 2.1. Let B = B(0, 1) ⊆ C2 be the unit ball in C2. Then

(1) the cone E0 and the space δE0 are not closed in (δF , ‖ · ‖0).
(2) the cone E0 and the space δE0 are not closed in (δEp, ‖ · ‖p).

Proof. For each j ∈ N, let the function ϕj : B → R ∪ {−∞} be defined by

ϕj(z) = max
(

1
2j

log |z|,−1
j

)
.

Observe that ϕj ∈ E0 and therefore the function uk : B → R defined by uk =∑k
j=1 ϕj belongs to E0. Note that for k > l we have

(2.2) ‖uk − ul‖2 = ‖
k∑

j=l+1

ϕj‖2 =
∫
B

(
ddc

∑k
j=l+1 ϕj

)2
= (2π)2

 k∑
j=l+1

1
2j

2

and

‖uk − ul‖n+p
p = ‖

k∑
j=l+1

ϕj‖n+p
p = ep

 k∑
j=l+1

ϕj


=
∫
B

−
 k∑
j=l+1

ϕj

p (
ddc

∑k
j=l+1 ϕj

)2

=
k∑

j,r=l+1

(
−

(
k∑

m=l+1

ϕm

(
max

(
e
− 2j

j , e−
2r

r

))))p
(2π)2 1

2j+r

≤
k∑

r,j=l+1

(
−uk

(
e−

2r

r

)) p
2

(
−uk

(
e
− 2j

j

)) p
2

(2π)2 1
2j+r

= (2π)2

 k∑
j=l+1

(
−uk

(
e
− 2j

j

)) p
2 1

2j

2

.

Since

−uk
(
e
− 2j

j

)
=

j∑
l=1

1
2l

2l

l
+

2j

j

j∑
l=j+1

1
2l
≤ j + 1,

we have

(2.3) ‖uk − ul‖n+p
p ≤ (2π)2

 k∑
j=l+1

(j + 1)
p
2

2j

2

.

Let u : B → R ∪ {−∞} be defined by u = limk→∞ uk. Hence, u is plurisubhar-
monic, since it is the limit of a decreasing sequence of plurisubharmonic functions
and u(1

2 , 0) > −∞. Moreover u /∈ E0 since u(0) = −∞. Equality (2.2) implies
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that [uk] is a Cauchy sequence in δF . The series
∑∞

j=1
(j+1)

p
2

2j is convergent and
therefore it follows by (2.3) that [uk] is a Cauchy sequence in δEp. �

Proposition 2.2. We have

E0  F , and δE0  δF

in (δF , ‖ · ‖0).

Proof. The idea of this proof originates from [7]. We first recall the definition of
the Lelong number:

ν(u, z0) = lim
r→0

1
(2π)n

∫
B(z0,r)

ddcu ∧ (ddc log |z − z0|)n−1 .

We have that the Lelong number ν(·, z0) at some point z0 ∈ Ω is a continuous
linear functional on δF since by [5] it holds that

ν(u, z0) ≤ (ddcu)n({z0}) .

Assume that E0 = F and take u(z) = g(z, z0), where g(z, z0) is the pluricomplex
Green function with pole at z0. Then there exists a sequence [uj ], uj ∈ E0, that
converges to u in δF , as j →∞ and therefore it follows that

0 = ν(uj , z0)→ ν(u, z0) = 1.

Thus, a contradiction is obtained. �

3. On the convergence in δEp

Let us recall the definition of capacity and convergence in capacity.

Definition 3.1. The relative capacity of the Borel set E ⊂ Ω ⊂ Cn with respect
to Ω is defined by

cap(E,Ω) = sup
{∫

E
(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0

}
.

Let uj , u ∈ PSH(Ω). We say that a sequence uj converges to u in capacity if for
any ε > 0 and K b Ω we have

lim
j→∞

cap(K ∩ {|uj − u| > ε}) = 0.

Theorem 3.2. Let [uj ], uj ∈ δEp, be a sequence that converges to a function u
in δEp, as j tends to ∞, then [uj ] converges to u in capacity.

Proof. Without lost of generality we can assume that u = 0. Let [uj ], uj ∈ δEp,
be a sequence such that ‖uj‖p → 0, as j → ∞. From the definition of δEp there
exist functions vj , wj ∈ Ep such that uj = vj−wj and ep(vj +wj)→ 0, as j →∞.
Since

max(ep(vj), ep(wj)) ≤ ep(vj + wj),
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we have that ep(vj)→ 0 and ep(wj)→ 0, as j →∞. Let ε > 0 and K b Ω. For
any ψ ∈ PSH(Ω), −1 ≤ ψ ≤ 0, we have∫

{|vj |>ε}∩K
(ddcψ)n ≤ 1

εn+p

∫
Ω

(−vj)n+p(ddcψ)n ≤ C(n, p)
εn+p

ep(vj),

where C(n, p) is a constant depending only on n and p (see [3]). Therefore we
get

cap({|vj | > ε} ∩K) ≤ C(n, p)
εn+p

ep(vj)→ 0,

as j →∞ and similarly

cap({|wj | > ε} ∩K) ≤ C(n, p)
εn+p

ep(wj)→ 0,

as j →∞. Hence

cap({|uj | > ε} ∩K) ≤ cap
(
{|vj | >

ε

2
} ∩K

)
+ cap

(
{|wj | >

ε

2
} ∩K

)
→ 0,

as j →∞ and this proof is complete. �

The following example shows that convergence in capacity is weaker than con-
vergence in δEp.

Example 3.3. Let B(0, 1) be the unit ball in Cn. Let us define

uj(z) = max
(
j

p
n log |z|,−1

j

)
.

Then uj ∈ E0(B) and ‖uj‖n+p
p = ep(uj) = (2π)n. Thus, [uj ] do not converge to 0

in δEp as j → +∞. Observe also that for fixed ε > 0 and for fixed K b B there
exists j0 such that for every j ≥ j0 we have uj = −1

j > −ε on K. This implies
that K ∩ {uj < −ε} = ∅ and therefore uj → 0 in capacity. 2

It was proved in [7, 8] that it is possible to extend the definition of the complex
Monge-Ampère operator in a reasonable way to the spaces δF and δE . Namely
for u ∈ δE and K b Ω there exist u1, u2 ∈ F such that u = u1 − u2. Define

(ddcu)n|K =
n∑
k=0

(−1)k
(
n

k

)
(ddcu1)k ∧ (ddcu2)n−k|K .

It follows from [8] that the following operator is well defined. For u1, . . . , un ∈ δE
and K b Ω there exist w1

j , w
2
j ∈ F for 1 ≤ j ≤ n such that uj = w1

j − w2
j on K

for 1 ≤ j ≤ n. Define

ddcu1 ∧ · · · ∧ ddcun|K = ddc(w1
1 − w2

1) ∧ · · · ∧ ddc(w1
n − w2

n)|K .
Now we can extend the definition of the mutual p-energy to the space δEp. For
v, u1, . . . , un ∈ δEp there exist functions v1, v2, w1

j , w
2
j ∈ Ep for 1 ≤ j ≤ n such

that v = v1 − v2 and uj = w1
j − w2

j for 1 ≤ j ≤ n. Define

ep(v, u1, . . . , un) =
∫

Ω
|v|pddcu1 ∧ · · · ∧ ddcun
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=
∫

Ω
|v1 − v2|pddc(w1

1 − w2
1) ∧ · · · ∧ ddc(w1

n − w2
n).

We write ep(u) for the case when v = u1 = . . . = un = u. If u ∈ Ep then
ep(u) < ∞, so (ddcu)n = 0 on the set {z ∈ Ω : u(z) = −∞}. For u ∈ δEp,
u = u1 − u2, u1, u2 ∈ Ep we have that (ddcu)n = 0 on the set {z ∈ Ω : u1(z) =
−∞} ∪ {z ∈ Ω : u2(z) = −∞}. By previous observation, and by [8] the mutual
p-energy is well defined.

In the rest of this section we shall need the following theorem. Theorem 3.4
was proved in [9] (see also [4, 6]), and for 0 < p < 1 in [1]. If p = 0, then (3.1)
can be interpreted as Corollary 5.6 in [5].

Theorem 3.4. Let p > 0 and u0, u1, . . . , un ∈ Ep. Then∫
Ω

(−u0)pddcu1 ∧ · · · ∧ ddcun

≤ D(n, p) ep(u0)p/(p+n)ep(u1)1/(p+n) · · · ep(un)1/(p+n),(3.1)

where D(n, p) ≥ 1 is a constant depending only on n and p.

Lemma 3.5. For v, u1, . . . , un ∈ δEp we have

|ep(v, u1, . . . , un)| ≤ D(n, p)‖v‖pp‖u1‖p . . . ‖un‖p
and

|ep(v)| ≤ ‖v‖n+p
p .

Proof. Let v, u1, . . . , un ∈ δEp then there exist v1, v2, w1
j , w

2
j ∈ Ep for 1 ≤ j ≤ n

such that v = v1 − v2 and uj = w1
j − w2

j for 1 ≤ j ≤ n. Note that

|ep(v, u1, . . . , un)| =
∣∣∣∣∫

Ω
|v1 − v2|pddc(w1

1 − w2
1) ∧ · · · ∧ ddc(w1

n − w2
n)
∣∣∣∣

≤
∫

Ω
(−v1 − v2)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

n + w2
n)

≤ D(n, p)ep(v1 + v2)
p

n+p ep(u1
1 + u2

1)
1

n+p · · · ep(u1
n + u2

n)
1

n+p .

By taking infimum over all decomposition of the functions v, u1, . . . , un we get

|ep(v, u1, . . . , un)| ≤ D(n, p)‖v‖pp‖u1‖p . . . ‖un‖p .
For the second part we observe that

|ep(v)| =

∣∣∣∣∣
∫

Ω
|v1 − v2|p

n∑
k=0

(−1)k
(
n

k

)
(ddcv1)k ∧ (ddcv2)n−k

∣∣∣∣∣
≤
∫

Ω
(−v1 − v2)p

n∑
k=0

(
n

k

)
(ddcv1)k ∧ (ddcv2)n−k = ep(v1 + v2).

Now by taking infimum over all decomposition of the function v it follows that

|ep(v)| ≤ ‖v‖p+np .

�
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Recall from the introduction thatM(Ω) denotes the space of signed real Borel
measures on Ω. For every µ ∈ M(Ω), and every K b Ω, we denote by ‖µ‖K the
variation of µ on K. The space M(Ω) with the topology given by the system of
semi-norms ‖ · ‖K is a Fréchet space. Furthermore, the space Mb(Ω) consisting
of signed, real and finite Borel measure on Ω equipped with the norm given by
the total variation on Ω is a Banach space.

Theorem 3.6. The following mappings are continuous.

T1 : (δEp)n+1 3 (v, u1, . . . , un)→ T1(v, u1, . . . , un) = |v|pddcu1 ∧ · · · ∧ ddcun ∈Mb,

T2 : (δEp)n 3 (u1, . . . , un)→ T2(u1, . . . , un) = ddcu1 ∧ · · · ∧ ddcun ∈M,

T3 : δEp 3 u→ T3(u) = u ∈ δE .

Proof. T1: Let vj , uj1, . . . , u
j
n, v, u1, . . . , un ∈ δEp be such that vj → v, ujk → uk,

for 1 ≤ k ≤ n in δEp. Then there exist v1, v2, v
j
1, v

j
2, w

1
j , w

2
j , ϕ

j
k, ψ

j
k, α

j , βj , xjk, y
j
k ∈

Ep for 1 ≤ k ≤ n such that v = v1−v2, vj = vj1−v
j
2, vj−v = αj−βj , uk = w1

k−w2
k,

ujk = xjk − y
j
k, u

j
k − uk = ϕjk − ψ

j
k and

ep(αj + βj)→ 0, ep(ϕ
j
k + ψjk)→ 0,

as j → ∞. Moreover, observe that we can choose the functions above so that
there exists a constant C > 0 not depending on j satisfying

sup
j≥1,k=1,...,n

{
ep(v

j
1 + vj2), ep(w1

j + w2
j ), ep(ϕ

j
k + ψjk), ep(α

j + βj), ep(x
j
k + yjk)

}
≤ C .

We prove that T1 is continuous. Note that

T1(vj , uj1, . . . , u
j
n)− T1(v, u1, . . . , un)

= |vj |pddcuj1 ∧ · · · ∧ dd
cujn − |v|pddcu1 ∧ · · · ∧ ddcun

=
n∑
k=1

|vj |pddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddc(ujk − uk) ∧ dd
cujk+1 ∧ · · · ∧ dd

cujn

+ |vj |pddcu1 ∧ · · · ∧ ddcun − |v|pddcu1 ∧ · · · ∧ ddcun =
n∑
k=1

µjk + νj .

For 1 ≤ k ≤ n it holds that

‖µjk‖ =
∥∥∥ |vj |pddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddc(ujk − uk) ∧ dd

cujk+1 ∧ · · · ∧ dd
cujn

∥∥∥
=
∥∥∥ |vj |pddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddc(ϕjk − ψ

j
k) ∧ dd

cujk+1 ∧ · · · ∧ dd
cujn

∥∥∥
≤
∫

Ω
(−vj1 − v

j
2)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

k−1 + w2
k−1) ∧ ddc(ϕjk + ψjk)

∧ ddc(xjk+1 + yjk+1) ∧ · · · ∧ ddc(xjn + yjn)

≤ D(n, p)ep(v
j
1 + vj2)

p
n+p ep(ϕ

j
k + ψjk)

1
n+p×
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×
k−1∏
l=1

ep(w1
l + w2

l )
1

n+p

n∏
l=k+1

ep(x
j
l + yjl )

1
n+p

≤ D(n, p)C
n+p−1

n+p ep(ϕ
j
k + ψjk)

1
n+p → 0, as j →∞.

We shall now prove that ‖νj‖ → 0, as j →∞. First assume that 0 < p < 1, and
observe that for x, y ≥ 0 we have |xp − yp| ≤ |x − y|p. Using this inequality we
get ∣∣ |vj |p − |v|p ∣∣ ≤ ∣∣ |vj | − |v| ∣∣p ≤ |vj − v|p ≤ (−αj − βj)p ,
hence

‖νj‖ = ‖ |vj |pddcu1 ∧ · · · ∧ ddcun − |v|pddcu1 ∧ · · · ∧ ddcun‖

≤
∫

Ω
(−αj − βj)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

n + w2
n)

≤ D(n, p)ep(αj + βj)
p

n+p

n∏
l=1

ep(w1
l + w2

l )
1

n+p

≤ D(n, p)C
n

n+p ep(αj + βj)
p

n+p → 0, as j →∞.
We have proved that T1 is continuous for 0 < p < 1. Now assume that p ≥ 1. For
x, y ≥ 0 we have that |xp − yp| ≤ p(max(x, y))p−1|x − y|, and therefore it holds
that ∣∣ |vj |p − |v|p ∣∣ ≤ p (max(|vj |, |v|))p−1

∣∣ |vj | − |v| ∣∣
≤ p (max(−vj1 − v

j
2,−v1 − v2))p−1(−αj − βj) .

Hölder’s inequality yields that

‖νj‖ = ‖ |vj |pddcu1 ∧ · · · ∧ ddcun − |v|pddcu1 ∧ · · · ∧ ddcun‖

≤
∫

Ω
p(max(−vj1 − v

j
2,−v1 − v2))p−1(−αj − βj)ddc(w1

1 + w2
1)

∧ · · · ∧ ddc(w1
n + w2

n)

≤ p
(∫

Ω
(−αj − βj)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

n + w2
n)
) 1

p

×

×
(∫

Ω
(max(−vj1 − v

j
2,−v1 − v2))pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

n + w2
n)
) p−1

p

≤ pD(n, p)
1
p ep(αj + βj)

1
n+p

n∏
l=1

ep(w1
l + w2

l )
1

p(n+p)

×
[ ∫

Ω
(−vj1 − v

j
2)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

n + w2
n)

+
∫

Ω
(−v1 − v2)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

n + w2
n)
] p−1

p

≤ pD(n, p)
1
pC

n
p(n+p) ep(αj + βj)

1
n+pD(n, p)

p−1
p ×



A NOTE ON LE-PHA. M’S PAPER 409

×
[
ep(v

j
1 + vj2)

p
n+p

n∏
l=1

ep(w1
l + w2

l )
1

n+p

+ ep(v1 + v2)
p

n+p

n∏
l=1

ep(w1
l + w2

l )
1

n+p

] p−1
p

≤ 2
p−1

p pD(n, p)C
p+n−1

n+p ep(αj + βj)
1

n+p → 0 as j →∞.

Thus, T1 is continuous for p ≥ 1.
T2: Now we continue by proving that T2 is a continuous mapping. We have

T2(uj1, . . . , u
j
n)− T2(u1, . . . , un)

= ddcuj1 ∧ · · · ∧ dd
cujn − ddcu1 ∧ · · · ∧ ddcun

=
n∑
k=1

ddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddc(ujk − uk) ∧ dd
cujk+1 ∧ · · · ∧ dd

cujn

=
n∑
k=1

µ̃jk.

Fix K b Ω. The relative extremal function for K is defined by

hK(z) = sup{u(z) : u ∈ PSH(Ω), u ≤ 0, u ≤ −1 on K}.

It is well known that h∗K ∈ E0, h∗K(z) = −1 on K and −1 ≤ h∗K ≤ 0. For
1 ≤ k ≤ n it holds that

‖µ̃jk‖K =
∥∥∥ddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddc(ujk − uk) ∧ dd

cujk+1 ∧ · · · ∧ dd
cujn

∥∥∥
K

=
∥∥∥ddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddc(ϕjk − ψ

j
k) ∧ dd

cujk+1 ∧ · · · ∧ dd
cujn

∥∥∥
K

≤
∫

Ω
(−h∗K)pddc(w1

1 + w2
1) ∧ · · · ∧ ddc(w1

k−1 + w2
k−1) ∧ ddc(ϕjk + ψjk)

∧ ddc(xjk+1 + yjk+1) ∧ · · · ∧ ddc(xjn + yjn)

≤ D(n, p)ep(h∗K)
p

n+p ep(ϕ
j
k + ψjk)

1
n+p

k−1∏
l=1

ep(w1
l + w2

l )
1

n+p

n∏
l=k+1

ep(x
j
l + yjl )

1
n+p

≤ D(n, p)C
n−1
n+p ep(h∗K)

p
n+p ep(ϕ

j
k + ψjk)

1
n+p → 0 as j →∞ .

Thus, T2 is continuous.
T3: Fix u ∈ δEp, u1, u2 ∈ Ep ∩ F such that u = u1 − u2 and fix K b Ω. Let hK
be the relative extremal function for K in Ω. Then we have∫
K

(ddc(u1+u2))n ≤
∫

Ω
(−h∗K)p(ddc(u1+u2))n ≤ D(n, p)ep(h∗K)

p
n+p ep(u1+u2)

n
n+p ,

so (∫
K

(ddc(u1 + u2))n
) 1

n

≤ C(K,n, p)ep(u1 + u2)
1

n+p ,
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where the constant C(K,n, p) depends only on K, n and p. Taking infimum over
all decomposition of the function u we obtain

‖u‖K ≤ C(K,n, p)‖u‖p,
which proves that T3 is continuous. �
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