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SOME REMARKS ON THE AR-PROBLEM

LE HOANG TRI AND NGUYEN HOANG THANH

Abstract. The aim of this paper is to introduce a possible scheme for con-
structing counterexamples (if there are any) of the AR-problem for compact
sets. In fact, this is an extension of Kalton-Peck-Roberts’ result. We also have
similar results on the AR-problem for the case of non-compact sets.

1. Introduction

Throughout most of this paper, by a linear metric space we mean a topological
linear space X which is metrizable. By Kakutani’s theorem (see, for instance [2])
there is an invariant metric ρ on X. We denote ‖x− y‖ = ρ(x, y). Observe that
‖.‖ is not a norm, in particular ‖λx‖ 6= |λ|‖x‖.

However we assume that ‖.‖ is monotonous, that is ‖λx‖ 6 ‖x‖ for every
x ∈ X and λ ∈ R with |λ| 6 1.

We recall that for p ∈ (0, 1) the linear metric space lp is defined by lp = {x =

(xn)|
∞∑
n=1
|xn|p < ∞} with metric ρ(x, y) =

∞∑
n=1
|xn − yn|p for each x = (xn), y =

(yn) ∈ lp.
For p ∈ (0, 1) the linear metric space Lp is defined by Lp = {f : [0, 1] →

R|
1∫
0

|f(t)|pdt <∞} with metric ρ(f, g) =
1∫
0

|f(t)− g(t)|pdt for each f, g ∈ Lp.

The spaces lp, Lp are non-locally convex linear metric spaces.
A topological space X is called to have the fixed point property if for every

continuous map f : X → X, there exists a point x0 ∈ X such that f(x0) = x0.
Let X,Y be topological spaces. A continuous map f : X → Y is called compact

if f(X) is contained in a compact subset of Y .
A topological space X is called to have the fixed point property for compact

maps if for every compact map f : X → X, there exists a point x0 ∈ X such that
f(x0) = x0.

A topological space Y is called an absolute retract whether
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(a) Y is metrizable and
(b) for any metrizable space X and any closed set A ⊂ X, each continuous

map f : A→ Y is extendable over X.
The class of absolute retracts is denoted by AR (see [2, 5]). We have

Theorem 1.1. (Borsuk, see [5]) Every AR- space has the fixed point property
for compact maps.

In 1951 Dugundji proved the following theorem, see [2].

Theorem 1.2. (Dugundji) Every convex subset of a locally convex linear metric
space is an absolute retract.

Let A be a convex subset of a linear metric space X. The set A is said to
be admissible if, for every compact subset K of A, the idK is the uniform limit
of a sequence of continuous maps fn : K → A such that each spanfn(K) is
finite-dimensional.

(Here spanfn(K) denotes the linear subspace generated by fn(K)).
Hence, a compact convex subset A of a linear metric space X is admissible if

and only if idA is the uniform limit of a sequence of continuous maps fn : A→ A
such that each spanfn(A) is finite-dimensional.

It can easily be proved that the admissibility is an invariant under homeomor-
phism (see [1]).

Every convex absolute retract in a linear metric space is admissible and every
admissible convex subset of a linear metric space has the fixed point property for
compact maps (see Lemma 2.1, Lemma 2.2).

The following is among the most outstanding problems in infinite dimensional
topology.

Problem 1.1. (AR-problem) Is every convex set in a linear metric space an
AR? (See [4, 7]).

Cauty has constructed a counterexample of the above problem for the case of
non-compact sets (see [3]). For the case of compact sets, this problem is still
open.

By Torunczyk’s result in [10], Problem 1.1 for the case of compact sets becomes

Problem 1.2. Is every infinite dimensional compact convex set in an F-space
homeomorphic to the Hilbert cube.

(Here an F -space is a complete linear metric space).
In [6], Kalton, Peck and Roberts have introduced a possible scheme for con-

structing counterexamples (if there are any) as follows: find a compact convex
set K with finite dimensional compact convex subsets Kn and continuous maps
Tn : Kn → K such that
(1) D(Kn,K)→ 0.
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(2) If x ∈ Kn , then ‖Tn(x)− x‖ > 1.
(Here D(Kn,K) = sup{d(x,Kn)|x ∈ K} and d(x,Kn) = inf{‖x− y‖|y ∈ Kn}).

Constructing of K is very difficult because before we have to construct a com-
pact convex set K, then construct finite dimensional compact convex subsets Kn

of K and finally construct continuous maps Tn : Kn → K satisfying (1), (2).
The results of this paper are

Theorem 1.3. Let {Kn} be a sequence of finite - dimensional compact convex
subsets of an F- space X satisfying the condition: for every n ∈ N, there exists
a continuous map fn : Kn → X such that ‖fn(x) − x‖ > 1 for each x ∈ Kn,
D(Kn, fn(Kn))→ 0 and ∪∞n=1Kn is totally bounded. Then there exists a compact
convex subset which is not an AR set of X.

Theorem 1.4. Let {Kn} be a sequence of finite - dimensional convex subsets of
an F- space X satisfying the condition: for every n ∈ N, there exists a continuous
map fn : Kn → X such that ‖fn(x)−x‖ > 1 for each x ∈ Kn, D(Kn, fn(Kn))→ 0
and ∪∞n=1fn(Kn) is totally bounded. Then there exists a compact convex subset
which is not an AR set of X.

It can easily be proved that if there is not a sequence {Kn} satisfying the
hypothesis of Theorem 1.3 then every compact convex subset of a linear metric
space has the fixed point property.

In fact, assume on the contrary that there exist a compact convex subset K
of a linear metric space X and a continuous map f : K → K such that f(x) 6= x
for each x ∈ K.

Replacing X by its completion , we can assume that X is an F -space.
By the compactness of K, there exists an ε0 > 0 such that ‖f(x)− x‖ > ε0 for

each x ∈ K.
Multiplying the metric of X by a constant, we derive that there exist a compact

convex subset L of a linear metric space Y and a continuous map g : L→ L such
that ‖g(x) − x‖ > 1. For each n ∈ N , by the compactness of L, we choose a
finite- dimensional compact convex subset Kn of L such that D(Kn, L) < 1

n . Let
fn : Kn → Y be defined by fn(x) = g(x) for each x ∈ Kn. Then ‖fn(x)− x‖ > 1
for each x ∈ Kn, D(Kn, fn(Kn)) → 0 and ∪∞n=1Kn ⊂ L. This implies that
∪∞n=1Kn is totally bounded.

Similarly, if there is not a sequence {Kn} satisfying the hypothesis of Theorem
1.4 then every convex subset of a linear metric space has the fixed point property
for compact maps. We can prove that in the space lp (p ∈ (0, 1) ), for every ε > 0
there exist a finite - dimensional compact convex subset K and a continuous map
f : K → lp such that ‖f(x) − x‖ > 1 for each x ∈ K and D(K, f(K)) < ε
(Remark 2.1).

2. Some remarks on the AR-problem for compact sets

The main result of this section is
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Theorem 2.1. Let {εn} be an arbitrary sequence of positive numbers which
tends to zero, {Kn} be a sequence of finite - dimensional compact convex subsets
of a linear metric space X satisfying the condition: for every n ∈ N there exists
a continuous map fn : Kn → X such that ‖fn(x) − x‖ > 1 for each x ∈ Kn;
for each y ∈ fn(K) there exists an element x ∈ Kn such that ‖y − x‖ < εn and
∪∞n=1Kn is totally bounded. Then there exists a compact convex subset which is
not an AR set of X̂ (Here X̂ is the completion of the linear metric space X).

We note that Theorem 2.1 is an equivalent form of Therem 1.3.
For every n ∈ N we let An = fn(Kn). By using the Brouwer fixed point

theorem (see [5]), for each continuous map gn : An → Kn there exists an element
x ∈ An such that ‖gn(x)− x‖ > 1.

Therefore this theorem is a corollary of the following theorem.

Theorem 2.2. Let {εn} be an arbitrary sequence of positive numbers which tends
to zero, {Kn} be a sequence of finite - dimensional compact convex subsets and
{An} be a sequence of subsets of a linear metric space X satisfying the condition:
for every n ∈ N, for each continuous map gn : An → Kn , there exists an
element x ∈ An with ‖gn(x)− x‖ ≥ 1; for each y ∈ An there exists x ∈ Kn with
‖y−x‖ < εn and ∪∞n=1Kn is totally bounded. Then there exists a compact convex
subset which is not an AR set of X̂.

Before proving this theorem, we have some remarks.

Remark 2.1. For every p ∈ (0, 1) , for every ε > 0 there exist a finite -
dimensional compact convex subset K of the space lp and a continuous map
f : K → lp such that, for each x ∈ K ‖f(x)−x‖ > 1 and for each y ∈ f(K) there
exists an element x ∈ K such that ‖y − x‖ < ε.

Proof. For each n ∈ N , let a = n
2− 1

p and

e1 = (a, 0, 0, . . . , 0, 0, . . .) ∈ lp,
e2 = (0, a, 0, . . . , 0, 0, . . .) ∈ lp, ...,
en = (0, 0, 0, . . . , a, 0, . . .) ∈ lp,

pn = (
a

n2
,
a

n2
,
a

n2
, . . . ,

a

n2︸ ︷︷ ︸
n times

, 0, . . .) ∈ lp,

Kn = conv{e1, e2, . . . , en},
we have ‖pn‖ = 1.

Let f : Kn → lp be defined by f(x) = x+ pn for each x ∈ Kn.
Then f is a continuous map and ‖f(x)− x‖ = ‖pn‖ = 1 for each x ∈ Kn.
For each x + pn ∈ f(Kn) there exist the numbers α1 > 0, α2 > 0, . . . , αn > 0,

n∑
i=1

αi = 1 such that x =
n∑
i=1

αiei = (aα1, aα2, . . . , aαn, 0, . . .). Thus x + pn =

(aα1 + a
n2 , aα2 + a

n2 , . . . , aαn + a
n2 , 0, . . .).
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Without loss of generality we can assume α1 > α2 > α3 > . . . > αn; therefore
α1 > 1

n . We have

aα2 +
a

n2
+ . . .+ aαn +

a

n2
= a(1− α1) +

a(n− 1)
n2

= a(
n2 + n− 1

n2
− α1)

6 a(
n2 + n− 1

n2
− 1
n

) = a(
n2 − 1
n2

) 6 a.

Hence, if we put

y =
(
a− (aα2 + . . .+ aαn +

a(n− 1)
n2

), aα2 +
a

n2
, . . . , aαn +

a

n2
, 0, . . .

)
,

then y ∈ conv{e1, e2, . . . , en} and

‖x+ pn − y‖ = ‖
(
aα1 +

a

n2
− a+ (aα2 + . . .+ aαn +

a(n− 1)
n2

), 0, 0, . . .
)
‖

= ‖
( a
n2

+
a(n− 1)
n2

, 0, 0, . . .
)
‖ = ‖(a

n
, 0, 0, . . .)‖

=
ap

np
=
n2p−1

np
=

1
n1−p .

It follows that there exists a number n0 ∈ N such that 1
n1−p < ε for every n > n0.

Thus, for every ε > 0, there exist a finite - dimensional compact convex subset
K (namely, Kn0) of the space lp and a continuous map f : K → lp such that
‖f(x) − x‖ > 1 for every x ∈ K and for all y ∈ f(K) there exists an element
x ∈ K such that ‖y − x‖ < ε. �

By using the Brouwer fixed point theorem, we have

Remark 2.2. For every p ∈ (0, 1) , for each ε > 0, there exist a finite -
dimensional compact convex subset K of the space lp and a subset A of the space
lp such that for each x ∈ A there exists an y ∈ K with ‖x− y‖ < ε and for each
continuous map f : A→ K there exists an element x ∈ A with ‖f(x)− x‖ > 1.

Applying similar arguments to needle point spaces (see [7, 8, 9]), we have

Remark 2.3. Let X be an arbitrary needle point space with an element x0 ∈ X
such that ‖x0‖ > 1. Then for each ε > 0, there exist a finite - dimensional
compact convex subset K of X and a continuous map f : K → X such that for
every x ∈ K ‖f(x)−x‖ > 1 and for each y ∈ f(K) there exists an element x ∈ K
such that ‖y − x‖ < ε.

Remark 2.4. Let X be an arbitrary needle point space with an element x0 ∈ X
such that ‖x0‖ > 1. Then for each ε > 0, there exist a finite - dimensional compact
convex subset K of X and a subset A of X such that for every x ∈ A there exists
an element y ∈ K with ‖y − x‖ < ε and for every continuous map f : A → K
there exists an element x ∈ A with ‖f(x)− x‖ > 1.

Let {Ln} be a sequence of nonempty subsets in a complete linear metric space
X, we denote by
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lim− Ln the set of all elements x of X such that for each n ∈ N there exists an
element xn ∈ Ln satisfying x = lim

n→∞
xn.

lim+ Ln the set of all elements x of X such that there exists a subsequence
{mn} of the sequence {n} such that for each n ∈ N there exists xmn ∈ Lmn

satisfying x = lim
n→∞

xmn .

Note that lim− Ln ⊂ lim+ Ln and lim+ Ln is a closed subset of X.

Lemma 2.1. Every admissible convex set has the fixed point property for com-
pact maps.

Proof. Let A be an admissible convex subset of an arbitrary linear metric space
(X, d). Suppose A has not the fixed point property for compact maps, then there
exists a compact map f : A → A and f(x) 6= x, for each x ∈ A. Since f is a
compact map, then there exists ε0 > 0 such that d(x, f(x)) > ε0 for each x ∈ A.
Let K be a compact subset of A such that f(A) ⊂ K. Since A is admissible, there
exists a continuous map g : K → A such that d(x, g(x)) < ε0 for each x ∈ K
and g(K) is contained in a finite - dimensional linear subspace L of X. Therefore
g(K) ⊂ L ∩ A and L ∩ A is a convex set in the finite dimensional linear metric
space L.

Consider g ◦ f |L∩A : L ∩A→ L ∩A. We know that every finite - dimensional
linear metric space is a locally convex linear metric space, hence L ∩ A is an
AR (Dugundji Theorem). Thus L ∩ A has the fixed point property for compact
maps and g ◦ f |L∩A(L ∩ A) ⊂ g(K), g(K) is a compact set. Therefore there
exists x0 ∈ L ∩ A such that g ◦ f(x0) = x0. Thus d(g(f(x0)), f(x0)) < ε0, hence
d(x0, f(x0)) < ε0. This contradicts our assumption. �

Lemma 2.2. Every convex absolute retract in a linear metric space is admissible.

Proof. Let A be an AR convex subset of an arbitrary linear metric space (X, d).
By Arens - Eells Theorem (see [2]), there exists ϕ : A→ A′ which is an isometric
embedding of A in a closed set A′ of a normed linear space E.

Let K be compact in A. We denote K ′ = ϕ(K) , then K ′ is compact in A′,
let r : E → A′ be a retraction.

Let ε, δ > 0. Because E is a normed linear space, then E is admissible (using
Schauder projection, see [5]). Therefore there exists a continuous map f : K ′ → E
such that f(K ′) is contained in a finite dimensional linear subspace of E and
‖f(x)− x‖ < δ for each x ∈ K ′.

Consider ϕ−1◦r|f(K′) : f(K ′)→ A, since f(K ′) is a finite dimensional compact
set and A is convex then there exists a continuous map g : f(K ′)→ A such that
‖g(x)−ϕ−1 ◦ r(x)‖ < δ, for each x ∈ f(K ′) and g ◦ f(K ′) is contained in a finite
- dimensional linear subspace of X.
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Note that g ◦ f ◦ ϕ|K : K → A is a map with image contained in a finite
dimensional linear subspace of X and for every x ∈ K,

‖g ◦ f ◦ ϕ|K(x)− x‖
6 ‖g ◦ f ◦ ϕ|K(x)− ϕ−1 ◦ r ◦ f ◦ ϕ(x)‖+ ‖ϕ−1 ◦ r ◦ f ◦ ϕ(x)− x‖
6 δ + ‖ϕ−1 ◦ r ◦ f ◦ ϕ(x)− ϕ−1 ◦ ϕ(x)‖
= δ + ‖r ◦ f ◦ ϕ(x)− ϕ(x)‖
= δ + ‖r ◦ f ◦ ϕ(x)− r ◦ ϕ(x)‖.

We will show that there exists δ0 > 0 such that for every δ ∈ (0, δ0), ‖r ◦ f ◦
ϕ(x)− r ◦ ϕ(x)‖ < ε

2 (*).
Suppose this claim is false, then for every n ∈ N there exist a continuous map

fn : K ′ → E and a sequence {yn} ∈ K ′ such that ‖r ◦ fn(yn) − r(yn)‖ > ε
2

and ‖fn(yn) − yn‖ < 1
n for every n ∈ N. Since K ′ is a compact set there is no

loss generality in assuming that there exists y0 ∈ K ′ such that yn → y0. Thus
fn(yn)→ y0 ∈ K ′, hence r ◦ fn(yn)→ r(y0) since yn → y0 implies r(yn)→ r(y0).
This contradiction proves the claim (*).

Choose δ sufficiently small and less than ε
2 , then the proof of Lemma 2.2 is

complete. �

Lemma 2.3. Let {Kn} be a sequence of non-empty subsets in a complete linear
metric space X such that ∪∞n=1Kn is totally bounded. Then there exists a subse-
quence {Knn} of {Kn} such that lim+Kn = cl lim−Kn (where clA denotes the
closure of A in X).

Proof. Since ∪∞n=1Kn is totally bounded and X is complete, then lim+Kn 6= ∅.
Because lim+Kn ⊂ cl(∪∞n=1Kn), lim+Kn is compact.

Choose z1 ∈ lim+Kn and a subsequence {K1n} of {Kn} such that z1 ∈
lim−K1n.

Choose z2 ∈ lim+K1n such that ‖z1− z2‖ > 2−1 (if there exists) and choose a
subsequence {K2n} of {K1n} such that z2 ∈ lim−K2n.

Next, we choose z3 ∈ lim+K2n such that ‖z1− z3‖ > 2−1, ‖z2− z3‖ > 2−1, (if
there exists) and choose a subsequence {K3n} of {K2n} such that z3 ∈ lim−K3n.

This process has to stop because lim+Kn ⊃ lim+K1n ⊃ lim+K2n ⊃ . . . and
lim+Kn is totally bounded.

Suppose we find z1, z2, . . . , zp1 and a subsequence {Kp1n}, we choose zp1+1 ∈
lim+Kp1n and ‖z1 − zp1+1‖ > 2−2, ‖z2 − zp1+1‖ > 2−2,...,‖zp1 − zp1+1‖ > 2−2,
(if there exists).

Then, we choose a subsequence {K(p1+1)n} of {Kp1n} such that

zp1+1 ∈ lim−K(p1+1)n.

Continue this process we obtain p1 + 1, . . . , p2, p2 + 1, . . . , p3, . . . , pn, . . ..
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We consider the two following cases:
(1) The above process stops at a point zm, then there is no point different from
z1, z2, . . . , zm in lim+Kmn.

We have z1 ∈ lim−K1n, z2 ∈ lim−K2n,...,zm ∈ lim−Kmn and lim−K1n ⊂
lim−K2n ⊂ . . . ⊂ lim−Kmn.

Since z1, z2, . . . , zm ∈ lim−Kmn, we have conv{z1, z2, . . . , zm} ⊂ lim−Kmn

(by the convexity of lim−Kmn). Therefore conv{z1, z2, . . . , zm} ⊂ lim−Kmn ⊂
lim+Kmn.

Thus conv{z1, z2, . . . , zm} is a singleton; lim+K1n = {z1} and lim−K1n =
{z1}. So lim+K1n ⊂ cl(lim−K1n) and {K1n} is the sequence which we need.
(2) The above process does not stop. Consider the diagonal sequenceK11,K22, . . . ,
Knn, . . . Now we have to prove that lim+Knn = cl(lim−Knn) , i.e. lim+Knn ⊂
cl(lim−Knn). For each y ∈ lim+Knn, for each m ∈ N we have y ∈ lim+Knn ⊂
lim+Kpmn.

By the definition of pm , there exists z ∈ {z1, z2, . . . , zpm} such that ‖y− z‖ <
2−m.

We have z1 ∈ lim−K1n, z2 ∈ lim−K2n,...,zpm ∈ lim−Kpmn and lim−K1n ⊂
lim−K2n ⊂ . . . ⊂ lim−Kpmn.
It follows that z ∈ lim−Kpmn ⊂ lim−Knn ⊂ cl(lim−Knn), hence y ∈ cl(lim−Knn).
Thus lim+Knn = cl(lim−Knn). �

Proof of Theorem 2.2. Without loss of generality we can assume X is a com-
plete linear metric space and by Lemma 2.3, we can assume that lim+Kn =
cl(lim−Kn).

Let K = lim+Kn = cl(lim−Kn). Thus K is a compact convex subset of X.
Assumse on the contrary that K is an AR. Let r : X → K be a retraction.
Because K is compact then there exists δ0 > 0 such that
(1) for each x ∈ X with d(x,K) < δ0 we have ‖r(x) − x‖ < 1

4 , where d(x,K) =
inf{d(x, a)|a ∈ K}.
We have
(2) there exists n0 ∈ N such that sup{d(x,K)|x ∈ Kn} < δ0

2 for each n > n0.
In fact, if (2) does not hold then there exists a subsequence {mn} of {n} such
that for each n ∈ N, sup{d(x,K)|x ∈ Kmn} > δ0

2 . Thus for each n ∈ N, there
exists xmn ∈ Kmn such that d(xmn ,K) > δ0

4 .
Since ∪∞n=1Kn is totally bounded then we can assumse that {xmn} converges

to an element x ∈ X, hence x ∈ K = lim+Kn.
Since d(xmn ,K) > δ0

4 for every n ∈ N, we get d(x,K) > δ0
4 , a contradiction.

Because lim
n→∞

εn = 0 then

(3) There exists n1 ∈ N such that sup{d(x,Kn)|x ∈ An} < δ0
2 for each n > n1.

Since K is a convex AR set then K is admissible (Lemma 2.2), therefore there
exist a finite dimensional compact convex set K0 ⊂ K and a continuous map
(4) r+ : K → K0 such that ‖r+(x)− x‖ < 1

4 for each x ∈ K.
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Because K0 ⊂ K = cl(lim−Kn) and K0 is a finite dimensional compact convex
set then there exist n > max{n0, n1} and a continuous map
(5) h : K0 → Kn such that ‖h(x)− x‖ < 1

4 for each x ∈ K0.
Let u : An → Kn be the restriction of the map h ◦ r+ ◦ r on An. Then for
each x ∈ An, ‖u(x) − x‖ = ‖h ◦ r+ ◦ r(x) − x‖ 6 ‖h ◦ r+ ◦ r(x) − r+ ◦ r(x)‖
+‖r+ ◦ r(x)− r(x)‖+ ‖r(x)− x‖. Therefore ‖u(x)− x‖ < 1

4 + 1
4 + ‖r(x)− x‖.

Because x ∈ An then d(x,Kn) < δ0
2 . Hence there exists an y ∈ Kn such that

d(x, y) < δ0
2 .

By (2), we have d(y,K) < δ0
2 . Thus d(x,K) 6 d(x, y)+d(y,K) < δ0

2 + δ0
2 = δ0.

This implies that ‖r(x) − x‖ < 1
4 hence ‖u(x) − x‖ < 1

4 + 1
4 + 1

4 = 3
4 . This

contradics the assumption on gn in the statement of Theorem 2.2. �

3. Some remarks on the AR-problem for non-compact sets

In this section we will extend the results of Section 2 for the case of non-
compact sets.

The main result of this section is

Theorem 3.1. Let {εn} be an arbitrary sequence of positive numbers which
tends to zero, {Kn} be a sequence of finite - dimensional convex subsets of a
linear metric space X satisfying the condition: for every n ∈ N there exists a
continuous map fn : Kn → X such that ‖fn(x) − x‖ > 1 for each x ∈ Kn; for
each y ∈ fn(Kn) there exists x ∈ Kn such that ‖y − x‖ < εn and ∪∞n=1fn(Kn) is
totally bounded. Then there exists a convex subset which is not an AR set of X̂
(Here X̂ is the completion of the linear metric space X).

We note that Theorem 3.1 is an equivalent form of Theorem 1.1.
Without loss of generality we can assume X is a complete linear metric space.
For every n ∈ N let An = clfn(Kn) , we see that sup{d(x,Kn)|x ∈ fn(Kn)} =

sup{d(x,Kn)|x ∈ clfn(Kn)} and An is compact. By using the fixed point theorem
of Borsuk (Theorem 1.1 ( also see [5])), for each continuous map gn : An → Kn

there exists an element x ∈ An such that ‖gn(x)− x‖ > 1.
Therefore this theorem is a corollary of the following theorem.

Theorem 3.2. Let {εn} be an arbitrary sequence of positive numbers which tends
to zero, {Kn} be a sequence of convex subsets and {An} be a sequence of subsets
of a linear metric space X satisfying the condition: for every n ∈ N, for each
continuous map gn : An → Kn , there exists x ∈ An such that ‖gn(x) − x‖ > 1;
for every y ∈ An there exists x ∈ Kn such that ‖y − x‖ < εn and ∪∞n=1An is
totally bounded. Then there exists a convex subset which is not an AR set of X̂.

Before proving this theorem we have to prove the following lemma:

Lemma 3.1. Let {Kn} be a sequence of convex subsets and {An} be a sequence
of subsets of a complete linear metric space X satisfying the conditions: for
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every n ∈ N, for every y ∈ An there exists x ∈ Kn such that ‖y − x‖ < εn and
∪∞n=1An is totally bounded. Then there exists a subsequence {nn} of {n} such
that lim+Ann ⊂ cl lim−Knn.

Proof. Since ∪∞n=1An is totally bounded and X is complete, then lim+An 6= ∅.
Because lim+An ⊂ cl ∪∞n=1 An , lim+An is compact.
Choose z1 ∈ lim+An ⊂ lim+Kn and a subsequence {K1n} of {Kn} such that
z1 ∈ lim−K1n, choose z2 ∈ lim+A1n ⊂ lim+K1n such that ‖z1 − z2‖ > 2−1 (if
there exists) and choose a subsequence {K2n} of {K1n} such that z2 ∈ lim−K2n.

Next, we choose z3 ∈ lim+A2n ⊂ lim+K2n such that ‖z1 − z3‖ > 2−1, ‖z2 −
z3‖ > 2−1, (if there exists) and choose a subsequence {K3n} of {K2n} such that
z3 ∈ lim−K3n.

This process has to stop because lim+An ⊃ lim+A1n ⊃ lim+A2n ⊃ . . . and
lim+An is totally bounded.

Suppose we find z1, z2, . . . , zp1 and a subsequence {Ap1n}, we choose zp1+1 ∈
lim+Ap1n ⊂ lim+Kp1n and ‖z1 − zp1+1‖ > 2−2, ‖z2 − zp1+1‖ > 2−2,...,‖zp1 −
zp1+1‖ > 2−2, (if there exists).

Now, we choose a subsequence {K(p1+1)n} of {Kp1n} such that

zp1+1 ∈ lim−K(p1+1)n.

Continue this process we obtain p1 + 1, . . . , p2, p2 + 1, . . . , p3, . . . , pn, . . ..
We consider two following cases:

(a) The above process stops at a point zm. Then there is no point different from
z1, z2, . . . , zm in lim+Amn. We have z1 ∈ lim−K1n, z2 ∈ lim−K2n, . . . , z

m ∈
lim−Kmn and lim−K1n ⊂ lim−K2n ⊂ . . . ⊂ lim−Kmn. So z1, z2, . . . , zm ∈
lim−Kmn. Thus lim+Amn ⊂ lim+Kmn ⊂ cl lim−Kmn

(b) The above process does not stop. Consider the diagonal sequenceK11,K22, . . . ,
Knn, . . . and we have to prove that lim+Ann ⊂ cl lim−Knn.

For each y ∈ lim+Ann and for each ε > 0, choose m ∈ N such that 2−m < ε,
y ∈ lim+Ann ⊂ lim+Apmn.

By the definition of pm, there exists z ∈ {z1, z2, . . . , zpm} such that ‖y − z‖ <
2−m.

We see z1 ∈ lim−K1n, z2 ∈ lim−K2n,...,zpm ∈ lim−Kpmn and lim−K1n ⊂
lim−K2n ⊂ . . . ⊂ lim−Kpmn. So z ∈ lim−Kpmn ⊂ lim−Knn ⊂ cl lim−Knn.
Thus y ∈ cl lim−Knn hence lim+Ann ⊂ cl lim−Knn. �

Proof of Theorem 3.2. Without loss of generality we can assume X is a complete
linear metric space and by Lemma 3.1, we can assume that lim+An ⊂ cl lim−Kn.

Let K = cl lim−Kn. We see that K is a closed convex subset of X. Assume
on the contrary that K is an AR. Let r : X → K be a retraction. We will show
that for every δ > 0, there exists N0 ∈ N such that for each n > N0, for each
xn ∈ An, ‖r(xn)− xn‖ < δ (*).
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In fact, assume on the contrary that there exist δ0 > 0 and a subsequence
{mn} of {n} such that there exists xmn ∈ Amn with ‖r(xmn)− xmn‖ > δ0.

Since ∪∞n=1Kn is totally bounded then we can assumse that {xmn} converges
to an element x ∈ X.

Since lim
n→∞

xmn = x we have lim
n→∞

r(xmn) = r(x) = x = lim
n→∞

xmn . This

contradits ‖r(xmn)− xmn‖ > δ0, for each n ∈ N.
Thus

(1) There exists N0 ∈ N such that for all n > N0, for each x ∈ An, ‖r(x)−x‖ < 1
4 .

We see that r(cl∪∞n=1An) ⊂ K , r(cl∪∞n=1An) is compact, K is an AR. By Lemma
2.2, K is admissible. Therefore there exist a finite dimensional convex set H ⊂ K
and a continuous map γ : r(cl ∪∞n=1 An)→ H such that
(2) ‖γ(x)− x‖ < 1

4 for all x ∈ r(cl ∪∞n=1 An).
By Mazur’s Lemma and the closedness of K, we can assume that H is compact.

Because K = cl lim−Kn and H is a finite dimensional compact convex subset
of K then there exist n sufficiently large and a continuous map
ξn : H → Kn such that

(3) ‖ξn(x)− x‖ < 1
4 for each x ∈ H.

Consider the composite map ξn ◦ γ ◦ r|An : An → Kn. Then for each x ∈ An,
from (1), (2), (3) we have ‖ξn ◦ γ ◦ r(x)− x‖ 6 ‖ξn ◦ γ ◦ r(x)− γ ◦ r(x)‖+ ‖γ ◦
r(x)− r(x)‖+ ‖r(x)− x‖ < 1

4 + 1
4 + 1

4 = 3
4 < 1.

This is a contradiction to our assumption. �

As an immediate consequence, we obtain

Corollary 3.1. Let {εn} be an arbitrary sequence of positive numbers which
tends to zero, {Kn} be a sequence of finite - dimensional subspaces of a linear
metric space X satisfying the condition: for every n ∈ N there exists a continuous
map fn : Kn → X such that ‖fn(x) − x‖ > 1 for each x ∈ Kn; for every
y ∈ fn(Kn) there exists x ∈ Kn such that ‖y−x‖ < εn and ∪∞n=1fn(Kn) is totally
bounded. Then there exists a linear subspace which is not an AR set of X̂ (where
X̂ is the completion of the linear metric space X).

Theorem 3.3. Let {εn} be an arbitrary sequence of positive numbers which tends
to zero, {Kn} be a sequence of linear subspaces and {An} be a sequence of subsets
of a linear metric space X satisfying the condition: for every n ∈ N, for each
continuous map gn : An → Kn, there exists x ∈ An such that ‖gn(x)−x‖ > 1; for
every y ∈ An there exists x ∈ Kn such that ‖y − x‖ < εn and ∪∞n=1An is totally
bounded. Then there exists a linear subspace which is not an AR set of X̂.
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