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REMARKS ON THE KOBAYASHI HYPERBOLICITY
OF COMPLEX SPACES

NGUYEN VAN TRAO AND TRAN HUE MINH

Abstract. The purpose of this article is threefold. The first is to show the
hyperbolicity and the tautness of certain Hartogs type domains. The sec-
ond is to investigate the hyperbolic imbeddedness of an unbounded domain
in a complex space. The third is to consider the uniform convergence of
Green functions with multiple poles (Lempert functions with multiple poles,
Caratheodory functions with multiple poles, respectively) on decreasing do-
mains.

1. Introduction

Let X be a complex space and H : X × Cm → [−∞,∞) be an upper semi-
continuous mapping such that H(z, w) ≥ 0, H(z, λw) = |λ|H(z, w), λ ∈ C, z ∈
X,w ∈ Cm. Put

ΩH(X) := {(z.w) ∈ X × Cm : H(z, w) < 1}.

The domain ΩH(X) is said to be a Hartogs type domain. Over the last few
years, there have been several results for studying the hyperbolicity (complete hy-
perbolicity, tautness, respectively) of Hartogs type domains in special cases of H.
For instance, Thomas, Thai, Duc and Dieu [15, 16, 19] studied the hyperbolicity
(complete hyperbolicity, tautness, respectively) when H(z, w) = |w|eu(z), where
u is an upper semicontinuous function on X. Recently, Park [13] also investi-
gated the above problems when H(z, w) = h(w)eu(z), where h : Cm → [−∞,∞)
is upper semicontinuous, h 6= 0, h(λw) = |λ|h(w), λ ∈ C, w ∈ Cm and u is an
upper semicontinuous function on X.

The first aim of this paper is to show the necessary and sufficient conditions
of the hyperbolicity and the tautness of the Hartogs type domains in the general
case of H. Namely, we prove the following

Theorem 1.1. Ω = ΩH(X) is hyperbolic if and only if X is hyperbolic and the
function H satisfies the following condition:
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If {zk}k≥1 is a sequence in X with lim
k→∞

zk = z0 ∈ X and {wk}k≥1 is a sequence

in Cm with lim
k→∞

wk = w0 6= 0, then lim sup
k→∞

H(zk, wk) 6= 0(∗)

Theorem 1.2. Let X be a complex space. Then ΩH(X) is taut if and only if
X is taut, the fiber ΩH(z) is taut for any z ∈ X and logH is a continuous
plurisubharmonic function.

The hyperbolic imbeddedness in the sense of Kobayashi is one of the most
important problems of hyperbolic complex analysis. Much attention has been
given to this problem, and the results on this problem can be applied to many
areas of mathematics, in particular to the extension of holomorphic mappings.
For details see [8, 10].

Recall that a complex subspace M of a complex space X is hyperbolically
imbedded in X if for distinct p, q ∈ M , the closure of M , there are open sets
Up, Uq in X such that p ∈ Up, q ∈ Uq and dM (M ∩ Up,M ∩ Uq) > 0, where dM is
the Kobayashi pseudodistance on M .

This problem is studied recently by Thai, Duc and Minh [18]. Namely, they
proved the following

Theorem [18, Theorem 3] Let M be a hyperbolic domain in complex space X.
Assume that for each p ∈ ∂M, there are local peak and antipeak plurisubharmonic
functions at p, both defined on a neighborhood of p in X. Then M is hyperbolically
imbedded in X.

However, in our opinion, the conditions in the above-mentioned theorem are
rather strong. The second aim of this work is to give somewhat weaker conditions
for the hyperbolic imbeddedness of M. Namely, we prove the following

Theorem 1.3. Let X be a complex space that is an increasing union of hyperbolic
domains. Let M be an unbounded domain in X. Assume that there are local peak
and antipeak plurisubharmonic functions at ∞, both defined on a neighborhood U
of ∞ in X and U ∩M is hyperbolic. Then M is hyperbolically imbedded in X.

The convergent behavior of the Kobayashi distances on decreasing domains are
studied recently by M. Kobayashi [9]. Namely, he proved the following

Theorem [9, Theorem 1.5] Let D be a bounded domain in Cn with C1-boundary
such that there exists a weak peak function for each point of ∂D. Let {Dj}∞j=1 be
a decreasing sequence of complete hyperbolic domains converging to D. Then the
sequence

{
kDj
}∞
j=1

converges to kD uniformly on compact sets.

Here a holomorphic function P in a neighborhood of D is called a weak peak
function for a boundary point ξ ∈ ∂D, if |P (ξ)| = 1 and |P (z)| < 1 for all z ∈ D.

Thus, the following question arises naturally at this point: Does the similar
assertion hold for Green functions with multiple poles (Lempert functions with
multiple poles, Caratheodory functions with multiple poles, respectively)?
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In fact, Nivoche [12] proved that if {Dj}∞j=1 is an increasing sequence of do-
mains converging to a domain D ⊂ Cn, then the sequence of the Green functions
with single pole {gDj}∞j=1 converges uniformly to gD on compact subsets of D.

The last part of this work is to study the uniform convergence of Green func-
tions with multiple poles (Lempert functions with multiple poles, Caratheodory
functions with multiple poles, respectively) on decreasing domains. Namely, we
prove the following

Theorem 1.4. Let D be a strictly hyperconvex domain in Cn, and S = {a1, a2, ...,
aN} ⊂ D. Assume that Dk is a hyperconvex domain defined by Dk = {z ∈ Ω :
%(z) < 1

k} for every k ≥ 1. Then the sequence {gDk}∞k=1 converges uniformly to
gD on compact subsets of D.

Theorem 1.5. Let D be a strongly pseudoconvex domain with C2-boundary in Cn

and {Dk}∞k=1 be a decreasing sequence of domains in Cn converging to D. Then
the sequence {CDk}∞k=1 of the Caratheodory distances converges to CD uniformly
on compact subsets.

Theorem 1.6. Let D be a bounded convex domain in Cn and
{
Dk

}
k≥1

be a
decreasing sequence of domains in Cn converging to D. Then, for every a1, a2, ...,
aN ∈ D and z ∈ D, the following holds

lim
k→∞

`Dk(S, z) = `D(D, z).

2. Hyperbolicity and tautness of certain Hartogs type domains

Thoughout this section, assume that X is a complex space and H : X×Cm →
[−∞,∞) is upper semicontinuous such that H(z, w) ≥ 0, H(z, λw) = |λ|H(z, w)
for all λ ∈ C, z ∈ X,w ∈ Cm.

Definition 2.1. Put ΩH(X) := {(z.w) ∈ X × Cm : H(z, w) < 1} and for each
z ∈ X, ΩH(z) := {w ∈ Cm : H(z, w) < 1}.

Using the same argument as in the proof of Remark 3.1.7 and Proposition
3.1.10 in [5](see also [9]), it is easy to get the following

Lemma 2.2. Let Ω = ΩH(X) and ∆ = {z ∈ C : |z| < 1}. Then `Ω((z, 0), (z, w))
≤ p(0, H(z, w)) for any (z, w) ∈ Ω, where p is the Poincaré distance, and `Ω(a, b)
= inf{p(0, λ) : ∃ϕ ∈ Hol(∆,Ω), ϕ(0) = a, ϕ(λ) = b} is the Lempert function.
Here, the equality holds if H ∈ PSH(X × Cm).

Proof of Theorem 1.1. (=⇒) Suppose ΩH(X) is hyperbolic. Since X is isomor-
phic to a closed complex subspace of ΩH(X), we deduce that X is hyperbolic.
Next, we will show that H verifies the property (∗). Otherwise, there would exist
{zk}k≥1 ⊂ X with lim

k→∞
zk = z0 ∈ X, {wk}k≥1 ⊂ Cm with lim

k→∞
wk = w0 6= 0

such that lim sup
k→∞

H(zk, wk) = 0. Without loss of generality, we may assume that

(zk, wk) ∈ ΩH(X). Then by Lemma 2.2, we have

0 ≤ kΩ((zk, 0), (zk, wk)) ≤ p(0, H(zk, wk)), ∀k ≥ 1.
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By letting k go to ∞, we find that kΩ((z0, 0), (z0, w0)) = 0. This contradicts the
hyperbolicity of ΩH(X).
(⇐=) To proof the converse, we consider the projection π : ΩH(X) → X given
by π(z, w) = z. Let U be a hyperbolic neighborhood of z0 in X. Then ∪

z∈U
ΩH(z)

is a bounded set in Cm.

In fact, suppose that this property does not hold. Then ∃{zk}k≥1 ⊂ U, {wk}k≥1 ⊂
Cm such that lim

k→∞
‖wk‖ = ∞ and H(zk, wk) < 1. Put wk := rkuk with ‖uk‖ =

1, ∀k ≥ 1, and then |rk| → ∞ as k → ∞. Without loss of generality, we may as-
sume that zk → z0 and uk → u0 6= 0 as k →∞. SinceH(zk, wk) = |rk|H(zk, uk) <
1, so we have lim sup

k→∞
H(zk, uk) = 0. This is a contradiction to the property (∗).

So, there exists R > 0 such that ∪
z∈U

ΩH(z) ⊂ B(0, R). It is then easy to see that

π−1(U) ⊂ U × ∪
z∈U

ΩH(z) ⊂ U ×B(0, R). Therefore, π−1(U) is hyperbolic too. By

Eastwood’s theorem [3] we conclude the proof. �

Proposition 3.2 in [13] is a direct consequence of Theorem 1.1 when X is
a domain G ⊂ Cn, H(z, w) = h(w)eu(z), where h : Cm → [−∞,∞) is upper
semicontinuous, h 6= 0, h(λw) = |λ|h(w), λ ∈ C, w ∈ Cm and u is an upper
semicontinuous function on G.

Corollary 2.3. [13, Proposition 3.2] The domain Ω = ΩH(G) is hyperbolic if
and only if G is hyperbolic, Dh := {w ∈ Cm : h(w) < 1} b Cm and u is locally
bounded on G.

Proof. It suffices to prove that the property (∗) is equivalent to the hypothesis
that Dh := {w ∈ Cm : h(w) < 1} b Cm and u is locally bounded on G.

Suppose H(z, w) = h(w)eu(z) satisfies the condition (∗)
First of all, we show that Dh is bounded in Cm. Indeed, let us suppose the con-

trary. Then there exists a sequence {wk}k≥1 ⊂ Dh such that ‖wk‖ → ∞. Set wk =
rkuk with ‖uk‖ = 1. Then rk →∞. It is clear that 0 ≤ H(z, wk) = h(wk)eu(z) =
|rk|h(uk)eu(z) < eu(z) < ∞. Letting k → ∞, we have lim sup

k→∞
H(z, uk) = 0. This

is a contradiction to the property (∗).
We now show that u is locally bounded on G. Otherwise, there would exist

z0 ∈ G and a sequence {zk}k≥1 converging to z0 such that u(zk)→ −∞. Fix w ∈
Cm, w 6= 0. We have lim

k→∞
H(zk, w) = lim

k→∞
h(w)eu(zk) = 0. This is a contradiction

to the property (∗) of the function H.

Now we assume that H(z, w) = h(w)eu(z), Dh := {w ∈ Cm : h(w) < 1} b
Cm, u is locally bounded onG. Suppose that there exist sequences {zk} ⊂ G, {wk} ⊂
Cm such that zk → z0 ∈ G,wk → w0 6= 0 and lim sup

k→∞
H(zk, wk) = 0. It is easy
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to see that lim sup
k→∞

h(wk)eu(zk) = 0. Since u is locally bounded on G, we have

lim sup
k→∞

h(wk) = 0. Choose a sequence {rk} ⊂ R such that:

(i) rk →∞,
(ii) lim sup

k→∞
rkh(wk) = lim sup

k→∞
h(rkwk) = 0.

Set vk := rkwk. Then {vk} ⊂ Dh for k large enough and ‖vk‖ → ∞. This is a
contradiction. �

Proof of Theorem 1.2. 1) Necessity: Since X is isomorphic to a closed complex
subspace of ΩH(X), we deduce that X is taut. We now show that H is continuous
on X × Cm. Otherwise, there would exist r > 0, {(zk, wk)}k≥1 ⊂ X × Cm such
that

{(zk, wk)} → (z0, w0) ∈ X × Cm and H(zk, wk) < r < H(z0, w0), ∀k ≥ 1.

For each k ≥ 1, we define the holomorphic mapping fk : ∆ → ΩH(X) given

by fk(λ) = (zk,
λwk
r

). It is clear that fk(0) = (zk, 0) → (z0, 0) ∈ ΩH(X). Since

ΩH(X) is taut, by passing to a subsequence if necessary, we may assume that fk
converges locally uniformly on ∆ to a holomorphic mapping f ∈ Hol(∆,ΩH(X)).

It is easy to see that f(λ) = (z0,
λw0

r
). Hence

|λ|
r
H(z0, w0) = H(z0,

λw0

r
) < 1,∀λ ∈ ∆.

This implies that H(z0, w0) <
r

|λ|
,∀λ ∈ ∆, and hence H(z0, w0) ≤ r. This is a

contradiction.
We now prove that ΩH(z) is taut for each z ∈ X.
Fix z ∈ X. Let {ϕk}k≥1 ⊂ Hol(∆,ΩH(z)) be a sequence. For each k ≥ 1, we

define a map ψk : ∆ → ΩH(X) by ψk(λ) = (z, ϕk(λ)), λ ∈ ∆. Clearly, it is well-
define and {ψk}k≥1 ⊂ Hol(∆,ΩH(X)). So, the tautness of ΩH(X) implies that
there is a sequence {ψ1k}k≥1 ⊂ {ψk}k≥1 which is either normally convergent in
Hol(∆,ΩH(X)) or compactly divergent. Consequently, the sequence {ϕ1k}k≥1 ⊂
{ϕk}k≥1 is either normally convergent in Hol(∆,ΩH(z)) or compactly divergent
and we get the tautness of ΩH(z).

It remains to show that logH is plurisubharmonic.
According to a theorem of Fornaess and Narasimhan [4], it suffices to show that

u(z) := logH ◦ g(z) = logH(g1(z), g2(z)) is subharmonic for every g = (g1, g2) ∈
Hol(∆, X × Cm) ∩ C(∆, X × Cm). Suppose the contrary. Then ∃z0 ∈ X, r > 0,
and a harmonic function h such that h(z) ≥ u(z) for any z = z0 + reiθ,∀θ ∈ R,
but u(z0) > h(z0).

We have u(z)− h(z) = logH
(
g1(z), e−h(z)−ih̃(z)g2(z)

)
≤ 0, ∀z = z0 + reiθ and

u(z0)− h(z0) = ε0 > 0.
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For any n ≥ 1, we set ϕn(λ) :=
(
g1(z), e−h(z)−ih̃(z)−ε0− 1

n g2(z)
)
, where z =

z0 + rλ. It is easy to see that ϕn ∈ Hol(∆, ωH(X)), ϕn(∂∆) b ΩH(X) as n→∞,
and ϕn(0) tend to a boundary point. This contradicts the tautness of ΩH(X)
and completes the proof.
2) Sufficiency: We consider the projection π : ΩH(X)→ X given by π(z, w) = z.
Let U be a taut neighborhood of z ∈ X. Since H is continuous, ΩH(z) is taut for
any z ∈ X, there exists a ball B b Cm such that

π−1(U) = ΩH(U) ⊂ U ×B.

Let {ϕn}n≥1 ⊂ Hol(∆,ΩH(U)). Since U×B is taut, {ϕn} is a normal subfamily
of Hol(∆, U × B), i.e. there is a sequence {ϕ1n}n≥1 ⊂ {ϕn}n≥1 which is either
normally convergent in Hol(∆, U ×B) or compact divergent. In the second case,
the sequence {ϕ1n}n≥1, as a subfamily of Hol(∆,ΩH(U)), is compactly divergent.

For n ≥ 1, we put ϕn = (fn, gn), where {fn}n≥1 ⊂ Hol(∆, U), {gn}n≥1 ⊂
Hol(∆, B). From now on, we only suppose that {ϕ1n}n≥1 is normally conver-
gent in Hol(∆, U × B). Take a function ϕ = (f, g) ∈ Hol(∆, U × B), where
f ∈ Hol(∆, U), g ∈ Hol(∆, B) such that f1n

K=⇒ f, g1n
K=⇒ g as n → ∞. It is

easy to see that ϕ(∆) ⊂ ΩH(U), and f(∆) ⊂ U. Since U is taut, either f(∆) ⊂ ∂U
or f(∆) ⊂ U. In the first case, it is clear that ϕ(∆) ⊂ ∂ΩH(U), which implies that
{ϕ1n}n≥1, as a subsequence of Hol(∆,ΩH(U)), is compactly divergent. Now we
assume that f(∆) ⊂ U and define ψ := H ◦ϕ. Observe that ψ ∈ (C∩SH)(∆) and
ψ ≤ 1 on ∆. Then the maximum principle for subharmonic functions implies that
either ψ|∆ = 1 or ψ|∆ < 1. These properties yield that either ϕ(∆) ⊂ ∂ΩH(U)
or ϕ(∆) ⊂ ΩH(U). Consequently, the sequence {ϕ1n}n≥1 is either normally con-
vergent in Hol(∆,ΩH(U)) or compact divergent. And hence, π−1(U) = ΩH(U)
is taut. By a theorem of Thai and Huong [14] we conclude the proof. �

3. Hyperbolic imbeddedness

First, we recall some preminaries. Let X be a complex space and let TX be
the Zariski tangent space of X. By a length function on X we mean a function
H : TX → [0,∞) satisfying

(LF1) H(v) = 0 if and only if v = 0,
(LF2) For all complex numbers c ∈ C, we have H(cv) = |c|H(v),
(LF3) H is continuous.
Now we shall define jets for holomorphic mappings into a complex space X.

Denote by ∆r the disc of radius r > 0 and the unit disc ∆1 by ∆. Let x ∈ X. We
consider germs of holomorphic mappings f : ∆r → X that satisfy f(0) = x. In a
local holomorphic coordinate system any such f is given by its convergent series

f(z) = f (0) + f (1)z + f (2) z
2

2!
+ f (3) z

3

3!
+ ...,

where f (k) ∈ Cn for some n > 0 and f (0) = x.
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Two germs f and f̃ osculate to order k if

f (0) = f̃ (0), f (1) = f̃ (1), ..., f (k) = f̃ (k).

The equivalence classes of such germs will be called jets of order k at x and
denoted by Jk(X)x. We set Jk(X) =

⋃
x∈X Jk(X)x.

Given a holomorphic mapping f : ∆r → X with f(0) = x, we denote by
jk(f)x ∈ Jk(X)x the k-jet defined by the germ of f at x.

Next, we will define an action of C on jets. Let f : ∆r → X be a holomorphic
map with f(0) = x and t ∈ C. We set ft(z) = f(tz) and define t·jk(f)x = jk(ft)x.

In general, the jet spaces Jk(X) are holomorphic fibre bundles over X, but for
k ≥ 2 they are not vector bundles. Moreover, a holomorphic mapping h : X → Y
between complex spaces induces a map h∗ : Jk(X)→ Jk(Y ) on k-jets.

We now define the Kobayashi k-metric of a complex space X. Given a com-
plex space X, a point x ∈ X and a k-osculating vector ξ ∈ Jk(X)x, we define the
Kobayashi length Kk

X(x, ξ) by the greatest lower bound of the positive real num-
bers of the form 1/r for which there exists a holomorphic mapping f : ∆ → X
satisfying f(0) = x and jk(f)x = rξ. The function Kk

X : Jk(X) → [0,∞) so
defined will be called the Kobayashi k-metric of the complex space X. For the
Kobayashi k-metrics the following results hold:

(M1) Given two complex spaces X and Y , and any holomorphic mapping
f ∈ Hol(X,Y ), then Kk

Y (f(x), f∗x(ξ)) ≤ Kk
X(x, ξ) for all x ∈ X and ξ ∈ Jk(X)x.

(M2) For every k ≥ 1 the Kobayashi k-metric Kk
X : Jk(X)→ [0,∞) is a Borel

function.
(M3) Let γ : [a, b]→ X, [a, b] ⊂ R, be a real-analytic curve. For every t ∈ [a, b]

there exists just one holomorphic germ ϕt ∈ Hol(C, X) such that ϕt(0) = γ(t)
and γ(t + s) = ϕt(s) for sufficiently small ε > 0 and every s ∈ (−ε, ε). This
enables us to define, for every k ≥ 1,

jkγ(t) = jk(ϕt)γ(t) ∈ Jk(X)γ(t).

We define

LkX(γ) =
∫ b

a
Kk
X(γ(t), jkγ(t))dt.

All these definitions extend in an obvious way to continuous, piecewise real-
analytic curves. If γ : [a, b] → X is a continuous, piecewise real-analytic curve
in a complex space X then {LkX(γ)}∞k=1 is a bounded increasing sequence of
nonnegative real numbers.

(M4) (Theorem of Venturini [21]) For every p, q ∈ X we have

dX(p, q) = inf
{

sup
k≥1

∫ 1

0
Kk
X(γ(t), jkγ(t))dt : γ ∈ Ωp,q

}
,

where Ωp,q denotes the set of all continuous piecewise real-analytic curves joining
p and q.
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For more fundamental properties of this subject, see [21] or [17].
We recall the following:
Let M be a domain in a complex space X, that is, M is a connected open

nonempty subset of X. Let X+ = X ∪ {∞} be the 1-point Alexandrov com-
pactification of X [6]. Denote by ClX+M the closure of M in X+. We say that
M is bounded if ∞ 6∈ ClX+M and M is unbounded if ∞ ∈ ClX+M . If M is
unbounded and ϕ is a function defined on M and c a complex number, we set
ϕ(∞) = c if lim

z→∞
ϕ(z) = c.

Definition 3.1. Let M be a domain in a complex space X.
(i) A function ϕ is called a local peak plurisubharmonic function at ∞ if there

exists a neighborhood U of ∞ such that ϕ is plurisubharmonic on U ∩M that is
continuous up to U ∩M and satisfies{

ϕ(∞) = 0,

ϕ(z) < 0 for all z ∈ (U ∩M) \ {∞}.

(ii) A function ψ is called a local antipeak plurisubharmonic function at ∞ if
there is a neighborhood U of ∞ such that ψ is plurisubharmonic on U ∩M that
is continuous up to U ∩M and satisfies{

ψ(∞) = −∞,
ψ(z) > −∞ for all z ∈ (U ∩M) \ {∞}.

Lemma 3.2. [18] Let X be a complex space and let H be a length function on X.
Then X is hyperbolic if and only if for each p ∈ X, there are a neighborhood U
of p and a constant C > 0 such that FX(ξ) ≥ CH(ξ) for all ξ ∈ TxX with x ∈ U
Lemma 3.3. [18] Let M be an unbounded domain in X. Assume that there
are local peak and antipeak plurisubharmonic functions on a neighborhood of ∞.
Then for every neighborhood U of ∞ there exists a neighborhood V of ∞ such
that V ⊂ U and for every holomorphic mapping f : ∆→ M satisfying f(0) ∈ V
we have f(∆1/2) ⊂ U.

Proof of Theorem 1.3. Let p, q ∈ ∂M, p 6= q be given. Take relatively compact
neighborhoods Up, Uq of p, q in X such that Up ∩ Uq = ∅.

By Lemma 3.3 and the hypothesis, there exist two neighborhoods U and V of
∞ in X satisfying the following:

i) V ⊂ U,U ∩M is hyperbolic and (Up ∪ Uq) ∩ V = ∅;
ii) For every analytic disc f in M,

f(0) ∈ V ⇒ f(∆1/2) ⊂ U ∩M.

In particular, for every z ∈ V ∩M and ξ ∈ TzM we get FM (z, ξ) ≥ 1
2FU∩M (z, ξ).

Thus, FM (z, ξ) ≥ C
2 H(z, ξ) for every z ∈ V ∩M and ξ ∈ TzM.

Let x, y ∈M \V be arbitrary points. Let γ(t) be any continuous piecewise real-
analytic curve on M such that γ(0) = x, γ(1) = y. If γ(t) ∈M \V , ∀t ∈ [0, 1], then
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KM (γ(t), γ′(t)) ≥ KM\V (γ(t), γ′(t)),∀t ∈ [0, 1]. If there exist minimal numbers
0 < r < s < 1 such that γ(r) ∈ ∂U and γ(s) ∈ ∂V then we have∫ 1

0
K1
M (γ(t), γ′(t))dt ≥

∫ s

r
K1
M (γ(t), γ′(t))dt =

∫ s

r
FM (γ(t), γ′(t))dt

≥ C

2

∫ s

r
H(γ′(t))dt ≥ C

2
dist(∂U, ∂V ) =: C1 > 0.

By a result of Venturini [21], it follows that

dM (x, y) = inf{sup
k≥1

∫ 1

0
Kk
M (γ(t), jkγ(t))dt : γ ∈ Ωx,y}

≥ min{dM\V (x, y);C1}, ∀x, y ∈M \ V .

Since X is an increasing union of hyperbolic domains, there exists a hyperbolic
domain Ω of M such that M \ V b Ω. Thus

dM\V (Up ∩M,Uq ∩M) ≥ dΩ(Up ∩M,Uq ∩M) =: C2 > 0.

This implies that

dM (Up ∩M,Uq ∩M) ≥ min{C1, dM\V (Up ∩M,Uq ∩M)} ≥ min{C1, C2} > 0,

and hence, M is hyperbolically imbedded in X. �

4. Convergence of invariant functions with multiple poles on
decreasing domains

Let us begin this section by recalling some definitions.

Definition 4.1. Let D be a domain in Cn and S = {a1, ..., aN} a finite subset
of D.

Generalizing the Green function with single pole, Lelong has introduced in [11]
the one with multiple poles. More precisely, the Green function of D with the
pole set S is defined by

(i) gD(S, z) = sup
{
u(z) : u ∈ PSH(D), u ≤ 0, u(x) = log |x−aj |+O(1) (1 ≤

j ≤ N)
}
.

In [2], Coman defined the Lempert function with multiple poles as follows.

(ii) `D(S, z) = inf
{ N∑
j=1

log |ζj | : ∃ ϕ ∈ Hol(∆, D), ϕ(0) = z, ϕ(ζj) = aj (1 ≤

j ≤ N)
}
.

Now we move to another useful function, the Caratheodory function that will
give a lower bound for g. Set

(iii) CD(S, z) = sup
{

log |F (z)| : F ∈ Hol(D,∆), F (aj) = 0 (1 ≤ j ≤ N)
}
.
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Definition 4.2. Let D be a bounded domain in Cn.

(i) D is said to be hyperconvex if there exists a continuous plurisubharmonic
exhaustive function % : D → (−∞, 0).

(ii) D is said to be strictly hyperconvex if there exist a bounded domain Ω and
a function % ∈ (Ω, (−∞, 1)) ∩ PSH(Ω) such that D = {z ∈ Ω : %(z) < 0}, % is
exhautive for Ω and for all real number C ∈ [0, 1], the open set {z ∈ Ω : %(z) < C}
is connected.

We now prove Theorem 1.4 by using the main ideas in [12].

Proof of Theorem 1.4. Let R > r > 0 be given such that B(aj , r) ⊂ D b Dk ⊂
B(aj , R) (k ≥ 1, 1 ≤ j ≤ N) and B(aj , r) ∩B(ai, r) = ∅ (j 6= i).

(i) We now show that lim
k→∞

gDk(S, z) = 0 = lim
ζ→z
ζ∈D

gD(S, ζ) (z ∈ ∂D).

Indeed, for each k ≥ 1, define the function ωk by putting

ωk(z) :=


max

{
d(%(z)− Ck);

N∑
j=1

log
(‖z − aj‖

R

)}
if z ∈ Dk\ ∪Nj=1 B(aj , r)),

N∑
j=1

log
(‖z − aj‖

R

)
if z ∈ ∪Nj=1B(aj , r),

where % is the function in the definition of the strict hyperconvexity of the domain
D and Ck ∈ [0, 1] such that D ⊂ D′k := {z ∈ Dk : %(z) ≤ Ck} (k ≥ 1) and d is a
positive constant such that d%(z) < N log(

r

R
) (z ∈ ∪Nj=1∂B(aj , r)).

It is easy to see that

D ⊂ ∩∞k=1D
′
k, ωk ∈ PSH(Dk, [−∞, 0))

and

ωk(z) =
N∑
j=1

log
(‖z − aj‖

R

)
(z ∈ ∪Nj=1B(aj , r)).

Then ωk belongs to the defining family for gDk(S, .). Consequently, ωk ≤
gDk(S, .) on Dk. Hence lim inf

k→∞
gDk(S, z) ≥ lim

k→∞
ωk = 0 (z ∈ ∂D). On the other

hand, we know that gDk ≤ 0 (z ∈ D). So lim
k→∞

gDk(S, z) = 0 (z ∈ ∂D).

(ii) For every k ≥ 1, define γk = inf
z∈∂D

gDk(S, z). Since gDk is a continuous

negative real-valued function on the compact set ∂D, it follows that γk ∈ (−∞, 0).
Since the sequence {gDk}k≥1 is an increasing sequence of continuous functions
on ∂D and converges pointwise to the function gD|∂D ≡ 0, according to Dini
theorem, it follows that the sequence {gDk} converges uniformly on compact
subsets of ∂D to 0 and lim

k→∞
γk = 0.
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For k ≥ 1, define the function gk on Dk by

gk(z) :=

{
gDk(S, z) if z ∈ Dk\D,
max

{
gDk(S, z); gD(S, z) + γk

}
if z ∈ D.

Then gk belongs to the defining family of gDk(S, .). This implies that gk ≤ gDk
on Dk. In particular, gD + γk ≤ gDk , and hence, gDk ≤ gD ≤ gDk − γk on D. The
theorem is proved. �

Assume that D is a strongly pseudoconvex domain in Cn with C2-boundary
and ρ is a strictly plurisubharmonic function of class C2 on an open neighborhood
of D such that

i) D =
{
z ∈ Cn : ρ(z) < 0

}
,

ii) 5ρ(ζ) 6= 0 (ζ ∈ ∂D), where 5 = (
∂

∂z1
, ...,

∂

∂zn
).

We define Dδ =
{
z ∈ Cn : ρ(z) < δ

}
for δ ∈ R sufficiently near zero. Note

that Dδ is also a strongly pseudoconvex domain in Cn with C2-boundary and{
Dδ

}
δ>0

is an open neighborhood base of D.
In order to prove Theorem 1.5 we need the following lemmas

Lemma 4.3. [1, Theorem 2.4]. Let F be a bounded holomorphic function on D.
Then there exist functions

{
Fj
}∞
j=1

such that

(i) Fj is continuous on D which is holomorphic in D,

(ii) ‖Fj‖D ≤ ‖F‖D for all j,
(iii) Fj → F pointwise on D as j →∞,

where ‖ . ‖D denotes the supremum norm on D.

Lemma 4.4. [7, Theorem 1.4.1]. There exists an open set U ⊂ Cn with D ⊂
U such that any continuous function on D which is holomorphic in D can be
uniformly approximated on D by a holomorphic function G on U .

Proof of Theorem 1.5. Fix points a1, a2, ..., aN , z in D and an extremal function
F ∈ Hol(D,∆) for CD(S, z) such that log |F (z)| = CD(S, z). By Lemma 4.3, for
any ε > 0 we can choose a continuous function G on D that is holomorphic in
D such that |F (z) − G(z)| < ε, |F (aj) − G(aj)| < ε and ‖G‖D ≤ 1. By Lemma
4.4, we can choose a holomorphic function H on an open neighborhood of D such
that ‖H − G‖D < ε. Since {Dδ}δ>0 forms an open neighborhood base of D for
some δ > 0 small enough, |H(z) − F (z)| < 2ε and |H(aj) − F (aj)| < 2ε and
‖H‖Dδ < 1 + 2ε.

Now, we can construct a polynomial P ∈ C[z] such that P (aj) = −H(aj) (1 ≤
j ≤ N) and ‖P‖L∞(Dδ) ≤ C · ε.

Put L = H + P and

F̃ (z) :=
1

1 + (2 + C)ε
L(z).
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Then F̃ belongs to the defining family of CDδ , and hence, log |F (z)| = CD(S, z) ≥
CDδ(S, z) ≥ log |F̃ (z)|. Since ε is arbitrarily small, we have CDδ(S, z)→ CD(S, z)
as δ → 0. By the continuity of CDδ for every δ ≥ 0 and by the distance decreasing
property, it follows that this convergence is uniform on compact sets because of
Dini’s theorem. �

For Lempert functions with single pole Theorem 1.6 was proved by Jarnicki
and Pflug (see [5, Proposition 3.3.5]). We now prove Theorem 1.6 by using the
ideas of [5].

Proof of Theorem 1.6. The sequence
{
`Dk(S, z)

}
k≥1

is increasing with lim
k→∞

`Dk(S, z) ≤
`D(S, z). Now let us suppose that lim

k→∞
`Dk(S, z) < M < `D(S, z). Then we are

able to select holomorphic functions ϕk ∈ Hol(∆, Dk) with ϕk(0) = z, ϕk(ζkj ) =
aj , ζ

k
j ∈ ∆ (1 ≤ j ≤ N, k ≥ 1) such that

N∑
j=1

log |ζkj | < M (k ≥ 1).

By passing to a subsequence if necessary, we may assume that ϕk converges
locally uniformly to some ϕ ∈ Hol(∆, D). Also again by passing to a subsequence
if necessary, we may assume for each j that ζkj −→ ζj ∈ ∆ as k →∞. Set

J = {j ∈ {1, ..., N} : ζj ∈ ∆}.

Suppose that J = ∅. Then `D(S, z) = 0. This is a contracdiction. Hence J 6= ∅.
It is easy to see that

ϕ(0) = z;ϕ(ζj) = aj (j ∈ J) and `Dk(S, z) −→
N∑
j=1

log |ζj | ≤M.

Put SJ = {aj : j ∈ J}. By [22] (see also [20]), it follows that

`D(S, z) ≤ `D(SJ , z) ≤
∑
j∈J

log |ζj | ≤M < `D(S, z).

This is a contradiction. �
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