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INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT
NORMS AND APPLICATIONS

S. S. DRAGOMIR

ABSTRACT. Some inequalities for two inner products (:,-), and (-,-), which
generate the equivalent norms ||-||, and ||-||, with applications for invertible
bounded linear operators, positive definite self-adjoint operators, integral and
discrete inequalities are given.

1. INTRODUCTION

Let (H,(-,-)) be an inner product over the real or complex number field K.
The following inequality

(1.1) [z, <=l llyll,  =yeH

is well known in the literature as Schwarz’s inequality. It plays an essential role
in obtaining various results in the Geometry of Inner Product Spaces as well as
in its applications in Operator Theory, Approximation Theory and other fields.

Due to the fact that
(1.2) [Re (z,y)| < [l=[|lyll,  =,y€H,

we can introduce the angle between the vectors x,y, denoted by ®, ,, through
the formula

Re (z,y)

(1.3) cos @y 1= ——7
S

z,y # 0.

As observed by Krein in 1969, [6] (see also [5, p. 56]), the following interesting
inequality holds:

o, < &,y + @, for any z,y,z € H\ {0}.
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We now recall some inequalities in which the quantity |[(x,y)|/ (||z| ||y||) for dif-
ferent vectors is involved:

|z y) (y, 2) (2,2) @) P, | w2 |P | ) [
) EErEEARErI eI
<142 |@UEHED) gy
ERTHE
) @) || @) )
1.5 1 -
(5) 2 Tl ol ~ el ol 1217 Vel Tl 1212
(z,y)
“\lallon] B
&y g.2) | L (,2) uzano’s inequali
R FIETTHEE il @ uality, {2, p- 48]
e s 1 (02 |
D e eE 1+ Tl S Vavitre 2P %Y

where n € K and |n| =1, Ren # —1, and

(z,y) (y,2) 1 (x,2)
Iz 01z llyl* 2l =]

< % [1+ (2, 2) } 2, p. 52],
where z,y,z € H\{0}.

]l 111l
We notice that (1.8) is a refinement of Buzano’s inequality (1.6).
For other inequalities of this type, see [1], [4], [7], [8] and [9].

Motivated by the above results, the main aim of the present paper is to compare
the quantities

(=, 9) |y <Re <fv,y>1>

[l Tyl Xl lylly

{z,2)

[EIIE]

(z,y) (Y, 2)
[ENENE

(1.8) % -

and

(2, )]s <Re <fc7y>2>

2l lyllz \ 2 lyll,

in the case when the inner products (-, ), and (-, ), defined on H? generate two
equivalent norms. We recall that ||-||; and ||-||, are equivalent if there exist the
constants m, M > 0 such that

(1.9) m x|y < [lz|ly < M ||z, for any z € H.

Applications for invertible bounded linear operators, positive definite self-adjoint
operators, integral and discrete inequalities are also given.
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2. THE RESULTS

The following result may be stated.

Theorem 1. Assume that the inner products (-,-),, i € {1,2} on the real or
complex linear space H generate the norms |-||;, i € {1,2} which satisfy the
following condition:

(2.1) mlelly < llzl, < Mall,  for any @ € H,

where 0 < m < M < oo are given constants.
If x,y € H\ {0} satisfy the condition Re (x,y), > 0, then

(22) mizz o R‘e <CC,y>1 S R’e <‘T’y>2 S Re <$7y>1 + %22 -1
M Izl wlly = lllly gl = el lyll, — m
If Re(z,y)y <0, then
(23) 1— miz Re <x,y>1 < Re <£13',y>2 S Re <$ay>1 _ %22
M2 iy lylly = Ml lylly = llly yll m

Proof. For any inner product (-,-) on H, we have

2

Re (z,y) 1 , x,y € H\{0}.

x Y
(2.4) 1_:’_
Izl lyll 2 (=l

Utilising the assumption (2.1), we have successively:

 _BRefwy, 1 =y |’
=l ol — 2=l Tl 1
M) ey
2 {[Tll, Tl Il
2 2 2
(2.5) _ % Hx”z ”yH2 . 2Re <xay>2
2 [l el Nl Dyl
2
SM[Z 12_2Re<x7y>z}
2 [m?2 " m? Tl [yl
:Mz[g_ﬁemb}zi
m? x|y Iyl

Now, if Re (z,y), > 0, then
Re <x7y>2 < Re <$,y>2

iy flylly = M2zl [yl

which implies that
1 Re <.’L‘,y>2 _ M2 Re <$7y>2

(2.6) I<M?|—=— — ,
m? - M|z, [yl m? lzlly [yl
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Utilising (2.5) and (2.6) we deduce
Re (z,y), < M?  Re(z,y),

zlly llylly = m? ey vl
which produces the second inequality in (2.2).

By (2.4) and (2.1) we also have

2
o o Relmshomle s
ey lylly = 2 Azl llylllls
2 2
_m? 2l lylly Re @,y
2 T 71 PR 7

2
Zm[lﬁlf Re@wz}
2 (M2 M2 el Tyl

_ 9 [1_ Re<x,y>2} .7

M2zl llyly
Due to the fact that Re (z,y), > 0, we have

Re(z,y), . Re(z,y),
Il lylly = m? iy lylly”

which implies that

1 Re <fL‘,y>2 m2 Re (x,y>2
(2.8) J > m? [— - e Uiy
M2 m? |zl [yl

By making use of (2.7) and (2.8) we get

M lzfly [yl

1 Re <xay>1 > m72 . Re <1’,y>2

llly gy — M2 lzlly s

which is clearly equivalent to the first inequality in (2.2).
Finally, if Re (z,y), < 0, then Re (z, —y), > 0 and writing the inequality (2.2)
for —y instead of y, we easily deduce (2.3). O

Corollary 1. Let A € B(H) be an invertible operator on the Hilbert space
(H;(-,-)). If v,y € H\ {0} are such that Re (z,y) > 0, then

29) 1 ]AP|A7*+ Re (z,y) _ Re(Az, Ay)

lzlHlyll — [lAz] | Ayl
Re (z,y) B 1
= =yl 1A A=)

If v,y € H\ {0} and Re (x,y) <0, then

2.10 AP AT =1+ ot < ’
(2.10) AN [ A™H] lzllyll — [[Az[ [[Ay]l
Re (z,y) 1

< - 1.
E R
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Proof. Since A € B (H) is invertible, then

1
AT [zl < [[Az| < [[A[{l«],  for any z € H.

Applying Theorem 1 for (z,y), = (Az, Ay), (z,y), := (z,y) and m = ”Tl,lH,

M = || Al| and doing the necessary calculations, we deduce the desired result. O

Corollary 2. Let A € B(H) be a self-adjoint operator on the Hilbert space
(H; (-,-)) which satisfies the condition

(2.11) NI < A<TI,
in the operator order of B (H), where 0 < v <T' < 0o are given.
If v,y € H\ {0} are such that Re (x,y) > 0, then
T Re(a:,y>< Re (Az,y) <Re<x,y>+1_1.
v =yl ™ Az, 2) Ay, gz T Izl r
If v,y € H\ {0} are such that Re (x,y) < 0, then
r Re(z,y) < Re (Ax,y) Re(z,y) v
=Ll ~ [(Az, ) (Ay,y)1z — lellliyl T
Proof. From (2.11) we have
v{z,z) < (Az,z) <T'(x,z), x € H,
which implies that /7 [|z]| < [(Az,2)]"/* < VT ||z, = € H.

Now, if we apply Theorem 1 for (z,y), := (Az,y), (z,y)y = (z,y), v,y € H
and m = /vy, M = VT, then we obtain the desired result. O

(2.12) 1

N|=

(2.13)

N|=

The following lemma is of interest in itself.

Lemma 1. Assume that the inner products (-,-), , i € {1,2} defined on H satisfy
the condition (2.1). Then for any x,y € H we have

(2.14) m? [llzlly lylly = 1@ w)la] < llzlly Iyl = [z, 9)l,
< M2 {llzlly lylly = [z, )1o]

and
(2.15) m? [l lyll, — Re {a,5)y) < llel, lll, - Re (2. ),

< M?[||z[ly lyll, — Re {2, )],
respectively.

Proof. We use the following result obtained by Dragomir and Mond in [3] (see
also [2, p. 9]):

1/2
1

If [-,-]y, [,:], are two hermitian forms on H with [z,z];"" < [x,x]%ﬂ for any

x € H, then

(2.16) e, 2 [y, ylh” = Nyl | < [, 21y [y, )y — |z gl
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and
(2.17) 2.2y [y, 11 = Re[o, ], < [0y [y, )y — Re [y,
for any z,y € H.

Now, if we apply (2.16) and (2.17) firstly for [, -]y == (-,)y, [ ]y = m? (-, )y
and then for [-,-], = M2 (-,")y, [,-]; := (-,);, we deduce the desired results
(2.14) and (2.15). O

The following result may be stated as well.

Theorem 2. Assume that the inner products (-,-),, i € {1,2} satisfy the condi-
tion (2.1). Then for any z,y € H\ {0}, we have the inequalities

TR R L7 N[0 MR (7 N RV
M? 2l lylly = l=lla lylly = lllly lyll, — m?
Proof. Dividing the inequality (2.14) by ||z||; |ly|l; # 0, we obtain
o19)  wpflllole_ lmubl ) Yo
el llylly Tl llolld =l gl
< 2 [llfl?l!g lylly 1€, 9)s|
N 2l lyll =l Tyl

for any z,y € H\ {0}.
Observe, by (2.1) that

[z llylls 1

N (2 S |27 Y I
Il Tyl = m 2T, Tyl = ~ 322 e, T,

Utilising the second inequality in (2.19), we deduce

L lmonl M )|

[l lylly = m? el llylly

which is equivalent to the second inequality in (2.18).

In addition, we have

B O N L) 1 B L% /31
M2z flylly m2|[z(l; [lyll, = T2l Tyl

which together with the first inequality in (2.19) produces the first part of (2.18).
O

Remark 1. By utilising the inequality (2.15) and an argument similar to the
one in the proof of Theorem 2, we can reobtain the inequalities (2.2) and (2.3)
from Theorem 1. The details are omitted.
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Corollary 3. Let A € B(H) be an invertible operator on the Hilbert space
(H: (")) Then

e el (As, Ay))
(2.20) 1—|AIP||A7Y|" + <
A7+ ol = Tl Tl
el 1
— 2 1112
el Tl ™ A Ay

for any x,y € H\ {0} .

The proof follows from Theorem 2 by choosing (x,y), := (Az, Ay), (x,y), :=
(x,y), z,y € H and m = ”Tl,lH, M =||A].

Corollary 4. Let A € B(H) be a self-adjoint operator satisfying the condition
(2.11). Then

(2.21) Dy Newl o [zl Hewl oy

3 1Tl [am, o) g s = Tl 71T
for any x,y € H\ {0} .

The proof follows from Theorem 2 by choosing (z,y), = (Az,y), (x,y)y =
(z,y), z,y € H and m = /5, M = VT.

3. APPLICATIONS FOR INTEGRAL INEQUALITIES

Assume that (K (-,-)) is a Hilbert space over the real or complex number field
K. If p : [a,b] C R —[0,00) is a measurable function then we may consider the
space L2 ([a,b]; K) of all functions f : [a,b] — K that are strongly measurable

and f; p () ||f @)]]* dt < co. It is well known that L2 ([a,b]; K) endowed with the
inner product (-,-), defined by

b
(), = [ o) (0.9 0)de

and generating the norm

I#1,= ([ "o) uf(lt)H?dt)é

is a Hilbert space over K.

The following proposition can be stated.

Proposition 1. Let p1,p2 : [a,b] — [0,00) be two measurable functions with the
property that there exist 0 < ¢ < ® < 0o so that

p1 (t)

(3.1) = p2 (t)

<& forae te€]ab].
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Then for any f,g € LIQJ2 (la,b] ; K) we have the inequalities

(1)) dt|
(J2or)1f t>\|2dt) (f 2 () lg 0] at)
7 o2 (6 (F () g (1))

(J202 W) dté(f o () g O] at)

3 0.9 (1) di]
(CIC |dt)§(f o2 (1) llg (0 at)

Proof. From (3.1) we have

ﬁ(/:p2<t>\|f<dt) (/ D17 0 at)
f(/ ()IIf()IIth)é-

Applying Theorem 2 for (-,-); = (-,-),,, @ € {1,2} and H = L2 ([a,b]; K) =
L2, ([a,0]; K), we deduce the desired result. O

¢

(3.2) 1+

+

|

[N

N[

Remark 2. A similar result can be stated if one uses Theorem 1. The details
are omitted.

4. APPLICATIONS FOR DISCRETE INEQUALITIES

Assume that (K (-,-)) is a Hilbert space over the real or complex number field
and p = (p;);ey With p; >0, ¢ € Nand Y ;2 p; < oo. Define

6120 (K):= {x = (T4);en ‘ z; € K, i €N and Zpi lai]|* < oo} .
i=1
It is well known that /2 (K) endowed with the inner product

n
Y)p = D pi (i, i)
=1

and generating the norm

o0 >
2
[l == (Zpi ]| )
i=1

is a Hilbert space over K.
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Proposition 2. Assume that p = (pi);en > 4 = (¢i);en are such that p;, ¢ > 0,
ieN, Z?ilpiaz;.il g < oo and

(4.1) ng <pi <Ng; forany i€N,
where 0 <n < N < oo. Then we have the inequality
n > 21 pi (@i, yi)|
2\ 2 2\ 2
(Z2pillzil?)* (2 millwl?)
< 1> i1 i (4, i) |
B 2\2 (oo 2\ 2
(2 alad?) (22 allwil?)
oo . . .
S ‘Zi:llzl <xz7yl>‘ - _'_g_l
2\ 2 2\ 2
(2 pilleal®)* (3 lil?)
A similar result can be stated if one uses Theorem 1. However the details are
omitted.
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