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AN ALTERNATING PROJECTIONS ALGORITHM FOR
SOLVING LINEAR PROGRAMS

PHAM CANH DUONG AND LE THANH HUE

ABSTRACT. The method of alternating projections was first introduced by
Von Neumann in 1933 for finding the projection of a given point onto the
intersection of closed subspaces of a Hilbert space. Since its introduction
this method has received considerable attention and has found application in
many areas of mathematics and physics as well as in other fields of science
and engineering. In this paper we show that recent results of the method of
alternating projections for general convex feasibility problems may be used to
construct a simple algorithm for solving linear programs. This new algorithm
is simple to implement, computationally stable and is inherently parallel.

1. INTRODUCTION

The convez feasibility problem (CFP) is to find a point z* in the intersection
C' of finitely many closed, convex sets C; in a Hilbert space H. This problem
appears in various areas of mathematics and physical sciences such as approxi-
mation theory, signal and image reconstruction, medical imaging. The problem
may be solved by using a simple and powerful algorithm, called the method of
successive orthogonal projections (SOP), when an iterate sequence is generated
by projecting cyclically onto the constraint sets C;, which was first introduced by
Von Neumann, back to 1933, in [13]. Due to its extraordinary utility and broad
applicability in many areas, the convex feasibility problem and the method of
successive orthogonal projections continue to receive great attention. A large
number of research papers with new results in this area are discussed in excel-
lent survey papers by Deutch [7, 8], Baushke et al. [1], Combettes [4], Censor
[5, 6]. In this paper we will show that some new results on the behavior of iterate
sequences generated by this kind of projection algorithms when applied to the
linear feasibility problems may be used to derive a simple and efficient algorithm
for solving linear programs approximately. In the next Section 2, we present some
basic results on the convex feasibility problems and the related method of succes-
sive orthogonal projections. In Section 3, we focus on the behavior of the method
of SOP when applied to a system of linear inequalities. Section 4 is devoted to
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describe our new algorithm for solving linear programs. This algorithm is based
upon some new convergence properties of SOP presented in Section 3. Finally, a
brief concluding remark and some preliminary numerical results are presented in
Section 5.

2. PRELIMINARIES

One of the basic tasks in many computational processes is to find a point
satisfying some given set of equations and/or inequalities. An important case
where the solution set and the inequalities involved are convex is referred to as
convex feasibility problem and is formulated as

(2.1) Find 2* € C = (C;
i€l
where for each i € I = {1,2,...,m}, C; is a closed, convex set in a Hilbert

space H. In this paper, we will restrict ourself to the case where H is a finite-
dimensional Euclidean space R™. The successive orthogonal projections (SOP)
method is the following. Begin with an arbitrary z(©), let

(22) (Vl{? S N) «T(kJrl) = P(k mod m)+1 J:(k)a

where P; x denotes the orthogonal projection of x onto the set C;. In the literature
this method is also called the alternating projections or the cyclic projections
method. If problem (2.1) is consistent, i.e. C' # (), the convergence of sequence
(2.2) is established by the following

Theorem 1 (Bregman, [3]). Suppose C = (", C; # 0. Then sequence {x™}
converges (weakly) to some point in C.

If problem (2.1) is inconsistent, that is C' = (), the SOP method (2.2) is still
employed. Its convergence properties were studied in [8, 11|, and recently in [9].
First, let us reindex the iterate sequence {z(*)} as follows. Every index k > 0
can be expressed in the form k£ = ms+4 with 0 < i < m. We then use s and 4 to
index z(®) as

(2.3) 2® = 2 k=ms+(i—-1),0<i<m.

{x(k)}kzo - {{xl(S) [i=1.2,... ’m}}szo '

This way of indexing divides the sequence {x(k)} into equally sized segments

So we can write

{xﬁs) li=1,2,... ,m}, s > 0, which are called projection cycles or, simply cycles.

It is easily seen that, for every ¢ € I, the subsequences {xl(s)} s>0 contains all points

from {x(k)} which belongs to C;. Those subsequences are always convergent if
system (2.1) is convex.
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Theorem 2 (Gubin, Polyak and Raik, [10]). Let {z®)} be any sequence generated
by (2.2). Then there exist points {ZT; }1<i<m such that P| Ty, = 1 and PiZ;—1 =
Z; for everyi € {2,3,...,m}. Moreover, for everyi € {1,2,...,m}, the periodic
subsequence {acgs)}@o converges to such a point ; € C;.

The set of limit points {Z;}1<ij<m is called limit cycle of {x®)}. Moreover, in
the important special cases of (2.1), when all the C;’s are affine spaces or affine
half-spaces, the iterate sequences {z(*)} and {a:z(»s)}, mentioned in Theorems 1 and
2, are known to be linearly convergent with the rate independent of the starting
point (Deutch [8], Bauschke et al. [2]). We recall that a sequence {z(*)} is said
to converge linearly to its limit x* if there exists a natural number A > 0 and a
number 0 < ¢ < 1 such that

(2.4) (Vk > h) |lz®+D — 2B < ¢]z® — 21|

An alternative definition is that

(2.5) (Vk e N) l2® D —a|| < effa™ — 2|

It is interesting to note that the linear convergence of the iterate sequences
is proved for more general setting in the inconsistent case of system (2.1)(see
Bauschke et al.[2], Fact 5.5.7), in particular, in R™ it is true for every finite
family of closed convex sets {C;} with empty intersection. However, if (2.1) is
consistent, it must be assumed to be linear to guarantee the linear convergence
of {z(®} ([1], Theorem 5.7). Most known alternating projection type algorithms
required some kind of linearity assumption. In the next section, we will focus
on the behavior of the method of SOP when applying to the linear feasibility
problems.

3. CONVERGENCE PROPERTIES FOR LINEAR FEASIBILITY PROBLEM

For the remainder of the paper we shall assume that problem (2.1) is linear,
that is all C;’s are affine half-spaces in R”. If it is consistent then by virtue
of Theorem 1 and Theorem 5.7 in [1] the iterate sequence {z(%)};>q converges
linearly to some point z* € C = (),c; C; with the rate 0 < ¢ < 1. Applying
(2.5) recursively to z®) =1 p(E=m) implies

(VkeN) ||z —a*[| < & ||a™ ™ — 2.
So, setting p = ¢, for every ¢ € I we have

(3.1) Vs eN) |2 -z || < p|laP T =¥

i %

This means that all subsequences {xgs)}szo, i=1,2,...,m, converge linearly to
x* with the rate p.
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Now, given a tolerance € > 0, let’s denote by p the number of cycles necessary

(s>p)

to ensure that for every i € I the points x; are close to x* by ¢, i.e.

(3.2) (Viel)(VseN,s>p) ||zl —a*| < e.
Such a number p can be estimated as follows. From (3.1) we deduce

(vseN) o —a* || < p* |2l — 2"

)

Thus p can be determined from the following inequality
0 *
Pl —at|| < e

Setting ¢’ = €/)..(0) _ || and noting that p < 1 gives

||z;
In(e’)
In(p) °
Consequently, the number of cycles necessary to guarantee (3.2) can be taken as
In(e’ )}
3.3 p = [ +1,
(33) In(p)

where [ | denotes the integer-part function.

Next, we will examine in more details the behavior of sequences {xl(s) }s>0 near
their limits. Let us define

(vseN) (viel) A 2 |z -2
é

i+1) mod m
(VseN) (Viel) d & (al -zl

7

Proposition 1. Suppose (2.1) is linear and consistent. Then:
() viel) lim hY = o.
S—00

(s)
(i) (viel) lim -~

s—oo ||d|

= a; < +o0.

Proof. (i) is obvious by Theorem 1 and the definition of linear convergence. (ii):
First, we show that for all ¢ € I, {hz(-s)} s>0 converges linearly to 0 with the same
rate as {xl(s)}. Indeed, by Theorem 1, {z(®)} and, consequently, all subsequences
{xgs)},i € I, converge linearly to some point z* € [,c; C; with the convergence

rate 0 < ¢ < 1. By the definition of hgs), the triangle inequality implies

n <l =t e - )l

7

By the definition of linear convergence, it follows that
0 * 0 %
(3.4) mY < el —at|) e - )
Since the amount in the bracket is a positive constant, (3.4) means that for all
1el, {hl(s)}@o converges linearly to 0 with the rate c.
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Next, using the definition of h(s) and dz(s) we can write

= |V + ) = @Y ).

The triangle inequality implies

P = @i = e @ a2 Y = 4 - a7
Dividing both sides of this inequality by hES Vo gives
n I3 — a7
7 > 7
(35) T 2 - T

Since d(i)l = Pidgs) and the projection operator is non-expansive, it follows that

||d +1|| < ||d§s)\|. Hence, the second term in the right-hand side of (3.5) can be
estimated as
e e 0 T TR 1
h(s 1) = h(s 1) = h(s 1) S h(s) ’

Now, if we suppose to the contrary, (ii) does not hold, this term would tend to
0 as s — oo which makes (3.5) contradict to (3.4) for sufficiently large s. The
proof is complete. U

The following proposition is an immediate consequence of Theorem 2 and the
fact that {:UES)} s>0 are linearly convergent.
Proposition 2. Suppose (2.1) is linear and inconsistent. Then

(Viel) lim —5- = +o0

(S)
Moreover, it is easy to see that the sequence { dt ( )H} grows to 400 as fast as

{1

Next, let us define

h(s+1) h(s)
(VieI)(vseN) D £ | e — |
ez 11 1™l
By Propositions 1 and 2 we obtain the following
(3.6) (viel) 1lim DY =0, ifC#0,
(3.7) (VieI) lim DY = oo, ifC=0.

These relationships will be used as stopping rules in the proposed algorithm
for solving approximately linear programs.
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4. DESCRIPTION OF THE ALGORITHM

Let’s consider a linear program of the form
{min <ec,r>

4.1
(4.1) st. €M £ {z €R"|Azx < b}.

where A is a m X n-matrix and b is a vector in R™. For the simplicity of expla-
nation we assume the following

(1) Az < b is consistent;
(2) (4.1) has a finite solution x*.

For every i € I, let’s denote by IM; the affine halfspace defined by the i-th row
of the constraint system, i.e.

M, £ {iL‘ERn’ <Aj,x>< bl}

We will propose an algorithm for solving (4.1) approximately in the following
sense. Given a tolerance € > 0, it uses the algorithm of SOP (2.2) to find an
approximate solution z} to the system (4.1) that satisfies

dizl,M;) < e VMiel);
| <c,zl> —<cz*>| < ¢.

In system (2.1) let’s set
(VlGI) C; = {.CC| <A, x>< bi};

4.2
(42) Cmt1 = {z| <c,z>< v},

where v is some real number. We will say that (4.2) is e-consistent if there exists
x € R™ such that d(z, M;) < e for all i € I, where d(x, M;) denotes the usual
euclidean distance from z to the set M;.

Given a tolerance ¢ and an arbitrary point (), by Proposition 1 , (3.2), (3.3)
and (3.7) one can see that the algorithm of SOP, applied to system (4.2), will give
||d£i)+1” < e with either D,,11 &~ 0 (the system is e-consistent) or D, > 1
(the system is inconsistent), after a finite number p of projection cycles. So for
every real number v the algorithm SOP may be used to detect whether (4.2) is
e-consistent or not. This fact is used in the following algorithm.

The Algorithm:
1. Initialization

a. Choose the tolerance € > 0;
b. Pick an arbitrary starting point z();

c. Choose numbers US’ and v, such that system (4.2) is consistent with v = v
and inconsistent with v = v;;
d.Set v = (v +vy)/2, k = 1.
2. Step k

while (|[d};),|| > ¢)
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Apply the algorithm SOP to (4.2);
endwhile
if (D)., < 1) then

(4.2) is e-consistent.

Set vy, = (v +vp)/2, vy = v
else (Dq(T'L)Jrl > 1)

(4.2) is inconsistent.

Set vy = (0 + 0/ far = 0
endif
if ((v;y — v;) < €) then goto Stop;
endif

Set v = (U,JCZrl + v 1)/2 k= k+1;
goto Step k+1;

(s)

3. Stop (zf = current x,,’ ;; appox. obj. Value = current vy).

We note that the initial value of 1}8_ and v, , mentioned in the initialization
step, are often known beforehand for many practical problems. var and v, may
also be obtained using SOP in a similar way as described earlier in step k.

Complexity analysis. Let {a:(k)} be the sequence of projection points gener-
ated by the algorithm SOP at j-th iteration. As explained in Section 2, this
sequence consists of a number of projection cycles. Each such a cycle requires m
n-dimensional vector-to-vector multiplications which is equivalent to nm floating
point multiplications (the number of additions can be ignored). The number of
cycles in one iteration, obtained earlier in (3.3), is bounded. So, the complexity
of one iteration of the proposed algorithm is of order O(nm). The number of
iterations, denoted by ¢, is estimated using the following inequality

|0g — 2 |

<
24 =

We see that g does not depend on n and m. Therefore, the overall complexity of
our algorithm is O(nm).

Remark 1. It is easy to determine the number of multiplications needed by
one iteration of Dantzig’s original simplex algorithm and its revised form. It is
about (n+1)(m+1) for the primal simplex method and is nm + (m+1)? for the
revised simplex algorithm (see for ex. [12]). However, no good estimate for the
number of iterations has been found so far. From a large number of experiments
it is believed that this number grows linearly with m, the number of constraints,
and is some where between 3m and 10m. Comparing this with the complexity
result obtained above shows that our algorithm may outperform both of them
in finding approximate solutions, especially for systems with large number of
constraints. However, it is worthy to note that this algorithm can only provide
us with an e-feasible optimal solution which may not be feasible to the input
system. Therefore, if an exact solution is needed the simplex method is likely a
better choice.
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5. NUMERICAL EXPERIMENTS

The proposed algorithm is simple to implement and requires little system re-
sources. The amount of memory needed is nearly minimal and is used mainly
for storing all entries in matrix A and vectors b and c. This algorithm uses
mainly vector-to-vector multiplications and do not alter the input data during
calculation. So it may be directly used for solving sparse systems and, in this
case, may be implemented in small, resource-constrained systems. Another ad-
vantage of the proposed algorithm is its computational stability. We have done
some numerical experiments, using MATLAB, on a number of test problems of
small and moderate size. The performance of this algorithm is quite satisfactory,
especially for the problems with m > n. As it is based on a basic form of SOP,
it may converge slowly for some set of data. The speed of convergence may be
notably improved by using accelerated variants of SOP (see, for ex. in [6, 9] or
recently, in [14]).
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