DUAL INTEGRAL EQUATIONS INVOLVING FOURIER TRANSFORMS WITH INCREASING SYMBOLS

NGUYEN VAN NGOC

Abstract. The aim of the present work is to propose a method for investigating and solving dual integral equations involving Fourier transfom with increasing symbols.

1. INTRODUCTION

Let R be the real axis, $S(\mathbb{R})$ and $S'(\mathbb{R})$ be the L. Schwartz spaces of test and generalized functions, respectively (see [8, 15]). Denote by F and F^{-1} the direct and inverse Fourier transforms defined on $S'(\mathbb{R})$, respectively. The classical Fourier transforms F and F^{-1} are defined by the formulas

$$
F[u](\xi) = \int_{-\infty}^{\infty} u(x)e^{i\xi x} dx, \quad F^{-1}[v](x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} v(x)e^{-i\xi x} d\xi.
$$

The Sobolev-Slobodeskii space $H^s(\mathbb{R})(s \in \mathbb{R})$ is defined as the closure of the set $C_o^{\infty}(\mathbb{R})$ of infinitely differentiable functions with compact support with respect to the norm (cf. [8])

$$
||u||_{s} = \left[\int_{-\infty}^{\infty} (1+\xi^2)^s |\hat{u}(\xi)|^2 d\xi\right]^{1/2} < \infty, \quad \hat{u} = F[u].
$$

For a certain bounded interval $(a, b) \subset \mathbb{R}$, the subspace of $H^s(\mathbb{R})$ consisting of functions $u(x)$ with supp $u \subset [a, b]$ is denoted by $H_o^s(a, b)$, while the space of functions $v(x) = ru(x)$, where $u \in H^{s}(\mathbb{R})$ and r is the restriction operator to (a, b) is denoted by $H^s(a, b)$. The norm in $H^s(a, b)$ is defined by

$$
||v||_{H^s(a,b)} = \inf_l ||v||_s,
$$

where the infimum is taken over all possible extentions $lv \in H^s(\mathbb{R})$.

Let us consider the dual equation

(1.1)
$$
\begin{cases} F^{-1}[\xi]^p A(\xi) \hat{u}(\xi)](x) = f(x), & x \in (a, b), \\ F^{-1}[\hat{u}(\xi)](x) = 0, & x \in \mathbb{R} \setminus (a, b), \end{cases}
$$

Received January 14, 2008; in revised form June 25, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 45H05, 42A38, 46F05, 46F10, 47G30.

Key words and phrases. Boundary value problems of mathematical physics, integral transforms, dual equations.

306 NGUYEN VAN NGOC

where $\hat{u} \in S'(\mathbb{R}) \cap C^{\infty}(\mathbb{R})$ is the unknown function, $f(x)$ is a given function in $H^{-p/2}(a, b), p \ge 0$ is an integer. Concerning the function $A(\xi)$ we make the following assumptions:

i)
$$
A(\xi) \in C^{\infty}(\mathbb{R}), \quad A(-\xi) = A(\xi), \quad \text{Re}A(\xi) \ge 0, \quad \forall \xi \in \mathbb{R},
$$

ii) $L(\xi) = 1 - A(\xi) = O(|\xi|^{-q}), \quad |\xi| \to \infty, \quad q \gg 1.$

The dual equation (1.1) is a generalisation of some cases encountered in mixed boundary value problems of mathematical physics and contact problems of elasticity (see for example, $[1, 2, 9, 13, 15]$). The case $p = 1$ was considered in $[10]$ and the case $p = -m$, where m is positive number was considered in [12].

The aim of the present work is to propose a method for investigating and solving the dual equation (1.1) for an arbitrary non-negative integer p. Depending on whether p is an odd or even number, we shall reduce this dual equation to equivalent Fredholm integral equations of second type.

We get the following result which has been proved in [11].

Theorem 1.1. If $f(x) \in H^{-p/2}(a, b)$, then under asumptions i) and ii) the dual equation has a unique solution $u = F^{-1}[\hat{u}] \in H_0^{p/2}(a, b)$.

2. Some preliminary considerations

Let $J = (a, b)$ be a certain bounded interval, $\varphi(x) \in L^1(a, b)$ and m a positive integer. The differential operator of negative order $D^{-m}_{\mathcal{I}}$ j^m is defined by the following formula (see [4]):

(2.1)
$$
D_J^{-m}[\varphi](x) := \frac{1}{\Gamma(m)} \int_a^x (x-t)^{m-1} \varphi(t) dt, \ \ x \in J = (a, b),
$$

where $\Gamma(m)$ is the Gamma-function. It is known that D^{-m}_{I} $J^{m}[\varphi] \in C^{m-1}[a,b]$ and

(2.2)
$$
D^{m} D_{J}^{-m} [\varphi](x) = \varphi(x), \quad \lim_{m \to 0} D_{J}^{-m} [\varphi](x) = \varphi(x),
$$

(2.3)
$$
D_J^{-m} D^m[\varphi](x) = \varphi(x) + P_{m-1}(x),
$$

where $D^m = \frac{d^m}{dx^m}$ $\frac{d}{dx^m}$, $P_{m-1}(x)$ is an arbitrary polynomial of degree $m-1$.

Extensions of the operator $D^{-m}_{\bar{J}}$ $J^{m}(m > 0)$ for generalized functions can be found in [7, 16].

We introduce the following definition.

Definition 2.1. Denote by $\mathcal{O}_m(a, b)$ the class of all functions $\varphi \in L^1(a, b)$, supp $(\varphi) \subset$ $[a, b]$, satisfying the conditions

(2.4)
$$
\int_{a}^{b} \varphi(x) x^{k} dx = 0, \quad (k = 0, 1, ..., m - 1).
$$

Obviously, the conditions (2.4) are equivalent to the following

(2.5)
$$
\int_{a}^{b} \varphi(x) Q_{k}(x) dx = 0 \quad (k = 0, 1, \dots, m - 1),
$$

where $Q_k(x)$ are arbitrary polynomials of degree k. As an immediate consequence of the formula (2.4), we note the following equalities

(2.6)
$$
\int_{a}^{b} \varphi(t)(x-t)^{k} dt = 0 \quad (k = 0, 1, ..., m-1), \quad -\infty < x < \infty,
$$

$$
(2.7)\ \int_a^x \varphi(t)(x-t)^k dt = -\int_x^b \varphi(t)(x-t)^k dt \ \ (k=0,1,...,m-1), \ \ a \leq x \leq b.
$$

For $\varphi \in L^1(a, b)$ we introduce the operator

(2.8)
$$
K_m[\varphi](x) = \frac{1}{2\Gamma(m)} \int_a^b \varphi(t)(x-t)^{m-1} \operatorname{sign}(x-t) dt, \quad x \in \mathbb{R}.
$$

We get the following result.

Lemma 2.1. If $\varphi \in \mathcal{O}_m(a, b)$, then

1)
$$
K_m[\varphi](x) = 0 \quad x \notin (a, b),
$$

\n2) $K_m[\varphi](x) \equiv D_J^{-m}[\varphi](x) \quad a \leq x \leq b,$
\n3) $F[\varphi](\xi) \in C^{\infty}(\mathbb{R}), \quad F[\varphi](\xi) = O(|\xi|^k) \quad (\xi \to 0, \quad k \geq m),$
\n4) $F[K_m[\varphi]](\xi) = \frac{1}{(-i\xi)^m} F[\varphi](\xi) \quad (\xi \neq 0),$
\n $F[K_m[\varphi]](0) = \frac{1}{m\Gamma(m)} \int_a^b \varphi(t)(b-t)^m dt.$

Proof. The assertions 1)-3) hold in virtue of (2.4) , (2.6) and (2.7) . We prove the assertion 4). The cases $\xi = 0$ is clear. For the cases $\xi \neq 0$, we have

$$
F[K_m[\varphi]](\xi) = \frac{1}{\Gamma(m)} \int_a^b \varphi(t) e^{i\xi t} dt \int_0^{b-t} e^{i\xi \lambda} \lambda^{m-1} d\lambda.
$$

Using the formula

$$
\int_0^{b-t} e^{i\xi \lambda} \lambda^{m-1} d\lambda = \frac{\Gamma(m)}{(-i\xi)^m} + \Gamma(m) e^{i\xi(b-t)} \sum_{k=0}^{m-1} \frac{(-1)^k (b-t)^{m-1-k}}{(i\xi)^{k+1} (m-1-k)!},
$$

we have

(2.9)
$$
F[K_m[\varphi]](\xi) = \frac{1}{(-i\xi)^m} \int_a^b \varphi(t)e^{i\xi t} dt +
$$

+
$$
e^{i\xi b} \sum_{k=0}^{m-1} \frac{(-1)^k}{(i\xi)^{k+1}(m-1-k)!} \int_a^b \varphi(t)(b-t)^{m-1-k} dt.
$$

Since $\varphi \in \mathcal{O}_m^o(a, b)$, from (2.9) the assertion 4) follows.

Definition 2.2. Denote by $\hat{C}^m_o(a, b)$ the class of continuous functions $u(x) \in$ $S'(\mathbb{R})$, such that $u(x) \in C^{m-1}[a,b], \quad u^{(k)}(x) = 0 \ (k = 0,1,\ldots,m-1), \quad x \notin$ $(a, b), u^{(m)}(x) \in L^2(a, b).$

Theorem 2.2. In order that $u(x)$ belongs to the class $\hat{C}_o^m(a,b)$ it is necessary and sufficient that it is representable in the form (2.8) , *i.e.*

$$
(2.10) \ \ u(x) = K_m[\varphi](x) = \frac{1}{2\Gamma(m)} \int_a^b \varphi(t)(x-t)^{m-1} \text{sign}(x-t)dt, \ \ \varphi \in \mathcal{O}_m(a,b).
$$

Proof. The sufficiency holds in virtue of Lemma 2.1. Now we prove the necessity. Let $u(x) \in \hat{C}_o^m(a, b)$. We put $\varphi(x) = D^m u(x)$. Obviously, $\varphi \in L^1(\mathbb{R})$ and supp $(\varphi) \subset [a, b]$. Integrating by parts, taking into account that $u(x) \in \hat{C}_o^m(a, b)$, we have

(2.11)
$$
\int_{a}^{b} x^{j} \varphi(x) dx = \int_{a}^{b} x^{j} D^{m} u(x) dx = 0 \quad (j = 0, 1, ..., m - 1),
$$

it means that $\varphi \in \mathcal{O}_m^o(a, b)$. Due to (2.2) , (2.3) we have

(2.12)
$$
u(x) = D_J^{-m}[\varphi](x) + \sum_{j=0}^{m-1} c_j x^j, \quad x \in [a, b],
$$

where c_j are arbitrary constants. Since $u^{(k)}(x)$ and $D_j^{-(m-k)}$ $J^{-(m-k)}[\varphi](x)$ $(k = 0, 1, \ldots,$ $m-1$) are equal to zero on a and b, from (2.12) it follows that $c_j = 0$ (j = $0, 1, \ldots, m-1$. Thus we have

(2.13)
$$
u(x) = D_J^{-m}[\varphi](x), \ \ x \in [a, b].
$$

Using (2.1) , (2.7) and (2.13) we get (2.10) .

Definition 2.3. By $L^{p\pm 0}(a, b)$ we denote the classes of functions f belonging to $L^{p\pm \varepsilon}$ respectively for sufficiently small $\varepsilon > 0$ $(p - \varepsilon \ge 1)$. If the interval (a, b) is bounded, then the symbol $L^{p-0}(a, b)$ denotes the set of functions f belonging to $L^q(a,b), \ 1 \leqslant q < p.$

Definition 2.4. Let $\rho(x) = \sqrt{(x-a)(b-x)}$ $(a < x < b)$. We denote by $L^2_{\rho^{\pm 1}}(a, b)$ the Hilbert spaces of functions with respect to the scalar product and the norm

$$
(u,v)_{L^{\rho^{\pm 1}}} = \int_a^b \rho^{\pm 1}(x) u(x) \overline{v(x)} dx, \quad ||u||_{L_{\rho^{\pm 1}}} = \sqrt{(u,u)_{L_{\rho^{\pm 1}}}} < +\infty.
$$

The following lemma holds.

Lemma 2.3. Let $\varphi \in L^2_{\rho}(a,b)$. Denote by φ_0 the zero-extension of the function φ on R. Then, $\varphi_0 \in H_o^{-1/2}(a, b)$.

Proof. Using Holder inequality one can prove that $L^2_{\rho}(a, b) \subset L^{4/3-0}(a, b)$. Therefore, the function $\varphi_0 \in L^{4/3-0}(\mathbb{R})$. Due to Hausdorff-Young theorem [14] we have $\hat{\varphi}_0(\xi) := F[\varphi_o](\xi) \in L^{4+0}(\mathbb{R})$. Hence

$$
(2.14) \quad \int_{-\infty}^{\infty} \frac{|\hat{\varphi}_o(\xi)|^2}{1+|\xi|} d\xi \leq \left(\int_{-\infty}^{\infty} |\hat{\varphi}_o|^{2q} d\xi\right)^{1/q} \left(\int_{-\infty}^{\infty} \frac{d\xi}{(1+|\xi|)^{q/(q-1)}}\right)^{(q-1)/q}
$$

where $q = 2 + \varepsilon$ ($\varepsilon > 0$). From (2.14), we have $\varphi_o \in H^{-1/2}(\mathbb{R})$, hence $\varphi_o \in$ $H_o^{-1/2}(a, b).$

In the spaces $L_2^{\rho^{\pm 1}}$ $e^{\rho+1}(a, b)$ we consider the singular integral operator

$$
S_J[\varphi](x) = \frac{1}{\pi i} \int_a^b \frac{\varphi(t)}{x - t} dt, \quad x \in J = (a, b),
$$

where the integral is taken in the sense of Cauchy principal value. The following theorem is due to Khvedelidze and Duduchava [5].

Theorem 2.4. The operator S_J is bounded in the spaces $L^2_{\rho^{\pm 1}}(a, b)$.

In the sequel we shall need the following inverse formula for the Cauchy integral [6].

Theorem 2.5. Under the assumption that $f(x) \in L^2_{\rho}(a, b) \cap H^{1/2}(a, b)$ the integral equation

(2.15)
$$
\frac{1}{\pi} \int_{a}^{b} \frac{\varphi(t)}{t - x} dt = f(x)
$$

in the $L^2_{\rho}(a,b)$ has the solution

(2.16)
$$
\varphi(x) = -\frac{1}{\pi \rho(x)} \int_{a}^{b} \frac{f(t)\rho(t)}{t-x} dt + \frac{C}{\rho(x)},
$$

where C is an arbitrary constant. Besides, if $f(x) \in L^2_{\rho^{-1}}(a, b)$ and the following condition holds

(2.17)
$$
\int_{a}^{b} \frac{f(x)dx}{\rho(x)} = 0,
$$

then the integral equation (2.15) has a unique solution in $L^2_{\rho^{-1}}(a,b)$, defined by the formula

(2.18)
$$
\varphi(x) = -\frac{\rho(x)}{\pi} \int_a^b \frac{f(t)dt}{\rho(t)(t-x)}.
$$

,

310 NGUYEN VAN NGOC

3. EQUATION WITH THE SYMBOL $|\xi|^{2m}A(\xi)$

In this section we consider the dual equation (1.1) for the case $p = 2m$, where m is a non-negative integer. Using the formulas

$$
|\xi|^{2m} = (-1)^m (-i\xi)^{2m}, \quad F^{-1}[(-i\xi)^k \hat{u}](x) = D_x^k F^{-1}[\hat{u}](x)
$$

we can write (1.1) in the form

(3.1)
$$
\begin{cases} D^m F^{-1}[(-i\xi)^m A(\xi) \hat{u}(\xi)](x) = (-1)^m f(x), & x \in (a, b), \\ u(x) := F^{-1}[\hat{u}](x) = 0, & x \notin (a, b). \end{cases}
$$

Note that due to Theorem 1.1 the dual equation (3.1) for $f \in H^{-m}(a, b)$ has a unique solution $u = F^{-1}[\hat{u}] \in H_o^m(a, b)$. According to imbedding theorems [17], we have $u \in \hat{C}_o^m(a, b)$. Then, in virtue of Theorem 2.2 the function $u(x)$ can be represented by the formula (2.10):

$$
u(x) = \frac{1}{2\Gamma(m)} \int_a^b \varphi(t)(x-t)^{m-1} \text{sign}(x-t)dt, \quad \varphi \in \mathcal{O}_m^o(a,b)
$$

and its Fourier transform has the form

(3.2)
$$
\hat{u}(\xi) = F[u](\xi) = \frac{1}{(-i\xi)^m} \int_a^b e^{i\xi t} \varphi(t) dt = \frac{1}{(-i\xi)^m} F[\varphi](\xi).
$$

We shall find the function $\varphi(t)$ in the space $H_o^0(a, b)$. Note that, the space $H_o^0(a, b)$ consists of functions belonging to the space $L^2(\mathbb{R})$, with supports in [a, b]. From Theorem 2.2 we see that, if $\varphi(t) \in H_0^0(a, b) \cap \mathcal{O}_m(a, b)$, then the function $u(x)$ defined by the formula (2.10) belongs to the space $H_o^m(a, b)$.

For convenience, we take the conditions (2.5) in the form

(3.3)
$$
\int_{a}^{b} \varphi(x) P_{k}[\xi(x)] dx = 0, \quad (k = 0, 1, 2, \dots, m - 1),
$$

where $P_k(\xi)$ are Legendre polynomials of order k and

(3.4)
$$
\xi(x) = \frac{2x - (a+b)}{b-a}
$$

We have

(3.5)
$$
\int_{a}^{b} P_{m}[\xi(x)] P_{n}[\xi(x)] dx = 0 \ (m \neq n), \quad \int_{a}^{b} P_{m}^{2}[\xi(x)] dx = \frac{b-a}{2m+1}.
$$

Now we turn to the dual equation (3.1). Since $f \in H^{-m}(a, b)$, there exists D^{-m}_I $J^{m} f$ introduced in the previous section. Note that the function $F^{-1}[(-i\xi)^{m} A(\xi)]$ $\hat{u}(\xi)|(x)$ belongs to $L^2(a,b)$, therefore there exists its extension belonging to the space $S'(\mathbb{R})$ with support in $[a, +\infty)$. Within $J = (a, b)$ the operator D^m can be considered as the operator D_J^m .

.

Now applying the operator D^{-m}_{I} J^m to the both sides of the first equation in (3.1), in view of the formula (2.3) we obtain

(3.6)
$$
F^{-1}[(-i\xi)^m A(\xi)\hat{u}(\xi)](x) = (-1)^m D_J^{-m} f(x) + \sum_{j=0}^{m-1} a_j P_j[\xi(x)],
$$

where a_j are arbitrary constants, $P_j(\xi)$ are Legendre polynomials and the function $\xi(x)$ is defined by the formula (3.4). Now in (3.6) we substitute $A(\xi)$ and $\hat{u}(\xi)$ by using the condition ii) in Section 1 and the formula (3.2) respectively. After some transformations we obtain the following integral equation

(3.7)
$$
\varphi(x) - \int_a^b l(x-t)\varphi(t)dt = g(x) + \sum_{j=0}^{m-1} a_j P_j[\xi(x)],
$$

where

$$
l(x) = \frac{1}{\pi} \int_0^{\infty} L(\xi) \cos(x\xi) d\xi, \quad g(x) = D_J^{-m}[(-1)^m f](x).
$$

Using (3.7) and (3.5) , fulfiling the conditions (3.3) we have

(3.8)
$$
a_j = -\frac{2j+1}{b-a} \Big(\int_a^b g(y) P_j[\xi(y)] dy + \int_a^b \varphi(t) dt \int_a^b l(y-t) P_j[\xi(y)] dy \Big).
$$

From (3.7) and (3.8) we have the following integral equation

(3.9)
$$
\varphi(x) - \int_a^b K(x, t)\varphi(t)dt = h(x), \quad x \in (a, b),
$$

where

(3.10)
$$
h(x) = g(x) - \sum_{j=0}^{m-1} \left(\frac{2j+1}{b-a} \int_a^b g(y) P_j[\xi(y)] dy \right) P_j[\xi(x)],
$$

(3.11)
$$
K(x,t) = l(x-t) - \sum_{j=0}^{m-1} \left(\frac{2j+1}{b-a} \int_a^b l(y-t) P_j[\xi(y)] dy \right) P_j[\xi(x)].
$$

We now verify that the solution φ of the integral equation (3.9) satisfies the conditions (3.3). Indeed, from (3.9)-(3.11) for $k = 0, 1, ..., m - 1$, we get

$$
\int_{a}^{b} \varphi(x) P_{k}[\xi(x)] dx - \int_{a}^{b} \varphi(t) dt \int_{a}^{b} l(x-t) P_{k}[\xi(x)] dx +
$$

+
$$
\int_{a}^{b} \varphi(t) dt \sum_{j=0}^{m-1} \frac{2j+1}{b-a} \int_{a}^{b} l(y-t) P_{j}[\xi(y)] dy. \int_{a}^{b} P_{j}[\xi(x)] P_{k}[\xi(x)] dx
$$

(3.12)

$$
= \int_{a}^{b} g(x)P_{k}[\xi(x)]dx - \sum_{j=0}^{m-1} \frac{2j+1}{b-a} \int_{a}^{b} g(y)P_{j}[\xi(y)]dy. \int_{a}^{b} P_{j}[\xi(x)]P_{k}[\xi(x)]dx.
$$

Using (3.5) , from (3.12) we have

$$
\int_a^b \varphi(x) P_k[\xi(x)] dx = 0 \ (k = 0, 1, 2, \dots, m - 1),
$$

that is, the conditions (3.3) are fulfilled.

Thus, we have proved the following result.

Theorem 3.1. The dual equation (3.1) considered in $H_o^m(a, b)$ with respect to $u = F^{-1}[\hat{u}]$ is equivalent to the Fredholm integral equation (3.9) with respect to $\varphi(x) \in L^2(a,b)$. Hence, according to the theory of Fredholm equations, this equation has a unique solution in $L^2(a, b)$, if $g(x) = D^{-m}$ $J^{m}[(-1)^{m}f](x) \in L^{2}(a,b).$ In this case, the solution with respect to $u = F^{-1}[\hat{u}]$ of the dual integral equation (3.1) in $H_o^m(a, b)$ is given by the formula (2.10) :

$$
u(x) = \frac{1}{2\Gamma(m)} \int_a^b \varphi(t)(x-t)^{m-1} \operatorname{sign}(x-t)dt, \quad \varphi \in \mathcal{O}_m(a,b).
$$

Let us consider the following example. For simplicity, let $A(\xi) \equiv 1$.

Example 3.1. Let $J = (-1,1)$, $|\xi|^{2m} A(\xi) \equiv |\xi|^4$, $f(x) = Q \delta_J(x)$, where $Q =$ const, $\delta_J(x)$ is the restriction of the δ -function on J. In this case the dual integral equation (3.1) is equivalent to the following boundary value problem

(3.13)
$$
\frac{d^4u(x)}{dx^4} = Q\delta_J(x), \quad (-1 < x < 1),
$$

(3.14)
$$
u(x) = u'(x) = 0, \quad x \notin (-1, 1).
$$

Note that, in mechanics sense, the problem (3.13)- (3.14) represents the bend equation of a beam with clamped ends, under a force concentrated at center of the beam. We shall find the solution of the problem $(3.13)-(3.14)$ in the space $H_o^2(-1,1)$. It is well-known that $\delta \in H^{-1/2-\varepsilon}(\mathbb{R}) \subset H^{-2}(\mathbb{R}), \ \forall \varepsilon > 0$, therefore $\delta_J \in H^{-2}(-1,1)$ and the function $\delta(x)$ is an extension of the function $\delta_J(x)$. Further, D_I^{-2} $J^{-2}[\delta_J] \in L^2(-1,1).$

According to (2.10) and (3.9) , we have

(3.15)
$$
u(x) = \begin{cases} \int_{-1}^{x} \varphi(t)(x-t)dt, & |x| < 1, \\ 0, & |x| \ge 1, \end{cases}
$$

where

(3.16)
$$
\varphi(t) = QD_J^{-2}[\delta_J(t)] + a_0 + a_1 t = \begin{cases} \frac{-Q}{4} - \frac{Qt}{2}, & -1 < t < 0, \\ \frac{-Q}{4} + \frac{Qt}{2}, & 0 \leq t < 1. \end{cases}
$$

Putting (3.16) into (3.15), after some transforms, we have

(3.17)
$$
u(x) = \begin{cases} \frac{Q}{24}(-2x^3 - 3x^2 + 1), & -1 < x \le 0, \\ \frac{Q}{24}(2x^3 - 3x^2 + 1), & 0 \le x < 1. \end{cases}
$$

It is easy to verify that the function $u(x)$ defined by the formula (3.17) satisfies the differential equation (3.13) and the boundary conditions (3.14).

4. EQUATION WITH THE SYMBOL $|\xi|^{2m+1}A(\xi)$

For the case $p = 2m+1$ the dual equation (1.1) can be written in the following form

(4.1)
$$
\begin{cases} D^m F^{-1}[(-i\xi)^{m+1} i \operatorname{sign}(\xi) A(\xi) \hat{u}(\xi)](x) = (-1)^m f(x), & x \in (a, b), \\ u(x) := F^{-1}[\hat{u}](x) = 0, x \notin (a, b). \end{cases}
$$

Due to Theorem 1.1 the dual equation (4.1) for $f \in H^{-(m+1/2)}(a, b)$ has a unique solution $u = F^{-1}[\hat{u}] \in H_0^{m+1/2}(a, b)$. According to imbedding theorem [17], we have $u(x) \in \hat{C}^{m+1}_{\circ}(a, b)$. In virtue of Theorem 2.1 this function can be represented in the form

(4.2)
$$
u(x) = \frac{1}{2\Gamma(m+1)} \int_{a}^{b} \varphi(t)(x-t)^{m} \text{sign}(x-t) dt,
$$

where $\varphi(t) \in \mathcal{O}_{m+1}(a, b)$. For convenience we take the conditions (2.4) in the form

(4.3)
$$
\int_{a}^{b} \varphi(x) T_{k}[\xi(x)] dx = 0, \quad (k = 0, 1, ..., m),
$$

where $T_k(\xi)$ are Chebyshev polynomials of first order and the function $\xi(x)$ is defined by the formula (3.4). As we know, the Fourier transform $\hat{u}(\xi)$ of the function $u(x)$ is defined by the formula (see (2.10)):

(4.4)
$$
\hat{u}(\xi) = \frac{1}{(-i\xi)^{m+1}} \int_a^b \varphi(t) e^{i\xi t} dt = \frac{1}{(-i\xi)^{m+1}} F[\varphi](\xi).
$$

We shall find the function $\varphi(t)$ in the space $L^2_\rho(a, b)$, $\rho(x) = \sqrt{(x - a)(b - x)}$. Using Lemma 2.4 and the formula (4.4) one can show that the function $u(x)$ belongs to the space $H_0^{m+1/2}(a, b)$. By the same argument as in the previous section we can apply the operator D^{-m}_{I} J^{m} , $J = (a, b)$ to the first equality in (4.1) and get

(4.5)
$$
F^{-1}[(-i\xi)^{m+1} i \operatorname{sign}(\xi) A(\xi) \hat{u}(\xi)](x) = g(x) + \sum_{j=0}^{m-1} c_j U_j[\xi(x)], x \in (a, b),
$$

where $c_j = const, g(x) = (-1)^m D_J^{-m}$ $J^{m} f(x)$, $U_{j}(\xi)$ are Chebyshev polynomials of second order. Now in (4.5) we substitute $A(\xi)$ and $\hat{u}(\xi)$ by using the condition ii) in section 1 and the formula (4.4) respectively. Using the formula

$$
F^{-1}[\text{sign}(\xi)F[\varphi](\xi)](x) = \frac{1}{\pi i} \int_a^b \frac{\varphi(t)dt}{x-t}, \quad \varphi \in L^2_{\rho_{\pm 1}}(a,b),
$$

after some transformations we have

(4.6)
$$
\frac{1}{\pi} \int_{a}^{b} \varphi(t) \frac{dt}{t-x} = -\frac{1}{\pi} \int_{a}^{b} \varphi(\tau) k(x-\tau) d\tau - g(x) - \sum_{j=0}^{m-1} c_j U_j[\xi(x)],
$$

where

$$
k(x) = \int_0^{+\infty} L(\xi) \sin(x\xi) d\xi = \int_0^{+\infty} [1 - A(\xi)] \sin(x\xi) d\xi.
$$

Applying the formula (2.16) to the equation (4.6) , we have the following integral equation of second kind

$$
\varphi(x) = \frac{1}{\pi^2 \rho(x)} \int_a^b \varphi(\tau) d\tau \int_a^b \rho(t) k(t - \tau) \frac{dt}{t - x} + \frac{1}{\pi \rho(x)} \int_a^b \rho(t) g(t) \frac{dt}{t - x}
$$

(4.7)
$$
+ \frac{1}{\pi \rho(x)} \sum_{j=0}^{m-1} c_j \int_a^b \rho(t) U_j[\xi(t)] \frac{dt}{t - x} + \frac{C}{\rho(x)}, \quad a < x < b,
$$

where C is an arbitrary constant. Using the condition

$$
\int_{a}^{b} \varphi(t)T_0[\xi(t)]dt = \int_{a}^{b} \varphi(t)dt = 0
$$

and the formula

$$
\int_{a}^{b} \frac{1}{\rho(t)} \frac{dt}{t-x} = 0
$$

from (4.7) we obtain $C = 0$.

For the determination of the coefficients c_j , $(j = 0, 1, \ldots, m - 1)$ we shall use the following formulas which were obtained from [13] by the corresponding substitutions of variables:

(4.8)
$$
\frac{1}{\pi} \int_{a}^{b} \rho(t) U_{j}[\xi(t)] \frac{dt}{t-x} = -\frac{b-a}{2} T_{j+1}[\xi(x)],
$$

(4.9)
$$
\frac{1}{\pi} \int_{a}^{b} \frac{T_{j}[\xi(x)]dx}{\rho(x)(t-x)} = -\frac{2}{b-a} U_{j-1}[\xi(t)],
$$

$$
(4.10) \qquad \frac{1}{\pi} \int_a^b T_k[\xi(x)] T_j[\xi(x)] \frac{dx}{\rho(x)} = \sigma_k \delta_{kj}, \ \ (\sigma_0 = 1, \ \sigma_k = \frac{1}{2}, k = 1, 2, \ldots),
$$

where δ_{kj} is the Kronecker symbol. Thus, from (4.7) and (4.8) we have

$$
\varphi(x) = \frac{1}{\pi^2 \rho(x)} \int_a^b \varphi(\tau) d\tau \int_a^b \rho(t) k(t - \tau) \frac{dt}{t - x} + \frac{1}{\pi \rho(x)} \int_a^b \rho(t) g(t) \frac{dt}{t - x}
$$

(4.11)
$$
- \frac{b - a}{2\pi \rho(x)} \sum_{j=1}^m c_j^* T_j[\xi(x)], \quad c_j^* = c_{j-1}, \quad a < x < b.
$$

For the determination of coefficients c_j^* in (4.11) we shall use the conditions (4.3) and the formula (4.4). We have

(4.12)
$$
c_j^* = -\frac{8}{(b-a)^2 \pi} \int_a^b \varphi(\tau) d\tau \int_a^b \rho(t) k(t-\tau) U_{j-1}[\xi(t)] dt - \frac{8}{(b-a)^2} \int_a^b \rho(t) g(t) U_{j-1}[\xi(t)] dt, \quad (j = 1, 2, ..., m).
$$

From (4.11) and (4.12) we have the integral equation with respect to $\sqrt{\rho(x)}\varphi(x) \in$ $L^2(a,b):$

(4.13)
$$
\sqrt{\rho(x)}\varphi(x) - \int_a^b H(x,\tau)\sqrt{\rho(\tau)}\varphi(\tau)d\tau = h(x), \quad a < x < b,
$$

where (4.14)

$$
H(x,\tau) = \frac{1}{\sqrt{\rho(x)}\sqrt{\rho(\tau)}\pi^2} \int_a^b \rho(t)k(t-\tau) \left\{ \frac{1}{t-x} + \frac{4}{b-a} \sum_{j=1}^m T_j[\xi(x)]U_{j-1}[\xi(t)] \right\} dt,
$$

(4.15)
$$
h(x) = \frac{1}{\sqrt{\rho(x)}\pi} \int_a^b \rho(t)g(t) \left\{ \frac{1}{t-x} + \frac{4}{b-a} \sum_{j=1}^m T_j[\xi(x)]U_{j-1}[\xi(t)] \right\} dt.
$$

Note that, under the condition ii) in the section 1 for the function $A(\xi)$, in virtue of Theorem 2.5, from (4.14) we have $H(x, \tau) \in L^2((a, b) \times (a, b))$. Analogously, if $g(x) = (-1)^m D^{-m}_1$ $J^m f(x) \in L^2_{\rho}(a, b)$, then the function $h(x)$ given by the formula (4.15) belongs to $L^2(a, b)$.

We now verify that the solution φ of the integral equation (4.13) satisfies the conditions (4.3). Indeed, from (4.13) - (4.15) for $k = 0, 1, ..., m$, it follows that

$$
\int_{a}^{b} \varphi(x) T_{k}[\xi(x)] dx = \int_{a}^{b} \varphi(\tau) d\tau \int_{a}^{b} H(x, \tau) \sqrt{\rho(\tau)} T_{k}[\xi(x)] \frac{dx}{\sqrt{\rho(x)}}
$$

$$
= \int_{a}^{b} h(x) T_{k}[\xi(x)] \frac{dx}{\sqrt{\rho(x)}}.
$$

By virtue of (4.9) - (4.10) , we have

$$
\int_{a}^{b} H(x,\tau)\sqrt{\rho(\tau)}T_{k}[\xi(x)]\frac{dx}{\sqrt{\rho(x)}}
$$
\n
$$
= \frac{1}{\pi^{2}}\int_{a}^{b} k(t-\tau)\rho(t)dt \Big\{\int_{a}^{b} \frac{T_{k}[\xi(x)]dx}{\rho(x)(t-x)} + \frac{4}{b-a}\sum_{j=1}^{m} U_{j-1}[\xi(t)]\int_{a}^{b} T_{j}[\xi(x)]T_{k}[\xi(x)]\frac{dx}{\rho(x)}\Big\}
$$
\n(4.17)
$$
= \frac{1}{\pi^{2}}\int_{a}^{b} k(t-\tau)\rho(t)dt \Big\{-\frac{2\pi}{b-a}U_{k-1}[\xi(t)] + \frac{4}{b-a}U_{k-1}[\xi(t)]\cdot\frac{\pi}{2}\Big\} \equiv 0.
$$

Analogously, we have

$$
\int_{a}^{b} h(x)T_{k}[\xi(x)] \frac{dx}{\sqrt{\rho(x)}} = \frac{1}{\pi} \int_{a}^{b} \rho(t)g(t)dt \Big\{ \int_{a}^{b} \frac{T_{k}[\xi(x)]dx}{\rho(x)(t-x)} + \frac{4}{b-a} \sum_{j=1}^{m} U_{j-1}[\xi(t)] \int_{a}^{b} T_{j}[\xi(x)]T_{k}[\xi(x)] \frac{dx}{\rho(x)} \Big\}
$$
\n(4.18)\n
$$
= 0.
$$

From (4.16) - (4.18) it follows that the conditions (4.3) are fulfilled.

Thus, we obtain the following result

Theorem 4.1. The dual equation (4.1) with respect to

$$
u(x) = F[\hat{u}](x) \in H_0^{m+1/2}(a, b)
$$

is equivalent to the Fredholm integral equation (4.13) with respect to $\sqrt{\rho(x)}\varphi(x) \in$ $L^2(a, b)$. If $g(x) = (-1)^m D^{-m}_1$ $\int_J^{-m} f(x) \in L^2_\rho(a, b)$, then the equation (4.13) has a unique solution in $L^2(a, b)$. In this case, the solution with respect to $u(x) =$ $F[\hat{u}](x) \in H_0^{m+1/2}(a, b)$ of the dual equation (4.1) is given by the formula:

(4.19)
$$
u(x) = \frac{1}{2\Gamma(m+1)} \int_a^b (x-t)^m \operatorname{sign}(x-t) \varphi(t) dt, \quad x \in \mathbb{R}.
$$

Example 4.1. As an illustration of the proposed method we consider the following dual equation

$$
\begin{cases} F^{-1}[|\xi|^3 \hat{u}(\xi)](x) = f_0 = const, & x \in (-1, 1), \\ u(x) := F^{-1}[\hat{u}(\xi)](x) = 0, & x \notin (-1, 1). \end{cases}
$$

This equation can be written in the form

(4.20)
$$
\begin{cases} \frac{d}{dx} F^{-1}[(-i\xi)^2 i \operatorname{sign}(\xi) \hat{u}(\xi)](x) = -f_0, & x \in (-1, 1), \\ u(x) = 0, & x \notin (-1, 1). \end{cases}
$$

In this case we have

(4.21)
$$
u(x) = \begin{cases} \int_{-1}^{x} (x - t) \varphi(t) dt, \ |x| < 1, \\ 0, \ |x| \ge 1, \end{cases}
$$

(4.22)

$$
\varphi(x) = \frac{1}{\sqrt{1-x^2}} \int_{-1}^1 \sqrt{1-t^2} \left[-f_0(t+1)\right] \left\{\frac{1}{t-x} + 2T_1(x)U_o(t)\right\} dt, \quad -1 < x < 1.
$$

Using formulas (4.8), (4.9) and taking into account that

$$
T_o(x) = 1
$$
, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$,
 $U_o(x) = 1$, $U_1(x) = 2x$, $U_2(x) = 4x^2 - 1$

we can reduce the formula (4.22) to the following one

(4.23)
$$
\varphi(x) = \frac{f_0}{2\sqrt{1-x^2}} - f_0\sqrt{1-x^2}, \quad |x| < 1.
$$

Putting (4.23) into (4.21) , we have

(4.24)
$$
u(x) = \begin{cases} \frac{f_0}{6} (1 - x^2)^{3/2}, & |x| < 1. \\ 0, & |x| \ge 1. \end{cases}
$$

Putting $\varphi(x) = 0$ when $|x| \ge 1$ we have the following formulas for Fourier transforms of $\varphi(x)$ and $u(x)$ [3]:

(4.25)
$$
\hat{\varphi}(\xi) = F[\varphi](\xi) = -\frac{\pi f_0}{2}J_2(\xi), \quad \hat{u}(\xi) = F[u](\xi) = \frac{\pi f_0}{2}\frac{J_2(\xi)}{\xi^2},
$$

where $J_n(\xi)$ is the Bessel function of first kind:

$$
J_n(\xi) = \left(\frac{\xi}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{\xi}{2}\right)^{2k}.
$$

From (4.25) it is clear that

(4.26)
$$
\hat{u}(\xi) = \frac{1}{(-i\xi)^2} \hat{\varphi}(\xi).
$$

Using the asymptotic expansion of Bessel functions

$$
J_n(\xi) = O\left(\frac{1}{\sqrt{|\xi|}}\right), \quad \xi \to \infty
$$

we can show that $u(x) \in H^{3/2}_{0}(-1, 1)$.

Now we verify the fulfilment of the dual equation (4.20). Putting (4.25) into (4.20) and taking into account (4.26), we have

$$
\frac{d}{dx}F^{-1}[(-i\xi)^2\hat{u}(\xi)i\operatorname{sign}(\xi)](x) = \frac{d}{dx}F^{-1}[\hat{\varphi}(\xi)i\operatorname{sign}(\xi)](x)
$$

$$
= -\frac{f_0}{2}\frac{d}{dx}\int_0^\infty J_2(\xi)\operatorname{sin}(x\xi)d\xi
$$

$$
= -\frac{f_0}{2}\frac{d}{dx}\int_0^\infty \left[\frac{2J_1(\xi)}{\xi} - J_0(\xi)\right]\sin(x\xi)d\xi.
$$

Using the identities (cf. [15]):

$$
\int_0^\infty J_0(\xi) \sin(x\xi) d\xi = \begin{cases} 0, & |x| \le 1, \\ \frac{\pm 1}{\sqrt{x^2 - 1}}, & \pm x > 1, \end{cases}
$$

$$
\int_0^\infty \frac{J_1(\xi)}{\xi} \sin(x\xi) d\xi = \begin{cases} 0, & |x| < 1, \\ \frac{\pm 1}{|x| + \sqrt{x^2 - 1}}, & \pm x \ge 1, \end{cases}
$$

when $|x| < 1$ we have

$$
\frac{d}{dx}F^{-1}[(-i\xi)^2\hat{u}(\xi)i\text{sign}(\xi)](x) = F^{-1}[|\xi|^3\hat{u}(\xi)](x) = -f_0, \quad |x| < 1.
$$

Thus the given dual integral equation is fulfilled.

REFERENCES

- [1] V. A. Alecsandrov and E. V. Kovalenko, Stamp motion on the surface of a thin covering on a hydraulic foundation, J. Appl. Math. Mech. 45 (1981) (4), 734–744 (in Russian).
- [2] B . I. Avilkin and E.V. Kovalenko, On a dynamic contact problem for a compound foundation, (Russian) J. Appl. Math. Mech. 46 (1983) (5), 847–856.
- [3] U. A. Brichkov and A. P. Prudnikov, Generalized Integral Transformations, Nauka, Moscow, 1977 (in Russian).
- [4] M. M. Djrbashian, Integral Transforms and Representations of Functions in the Complex Region, Nauka, Moscow, 1966 (in Russian).
- [5] R. Duduchava, Integral Equations with Fixed Singularities, Teubner Verlagsgesellschaft, Leipzig, 1979.
- [6] F. D. Gakhov, Boundary Value Problems, Nauka, Moscow, 1978 (in Russian).
- I. M. Genfand and G. E. Shilov, *Generalized Functions*, Issue 1, Moscow, 1959 (in Russian). [8] G. I. Eskin, Boundary Value Problems for Elliptic Pseudo-Differential Equations, Nauka,
- Moscow, 1973 (in Russian).
- [9] B. N. Mandal, Advances in Dual Integral Equations, Chapman & Hall / CRC Press, Boca Raton, 1998.
- [10] N. V. Ngoc and G. Ia. Popov, On the dual integral equations connected with Fourier transforms, Ukrain. Math. Zh. 38 (2) (1986), 188–195 (in Russian).
- [11] N. V. Ngoc, On the solvability of dual integral equations involving Fourier transform, Acta Math. Vietnam. 13 (2) (1988), 21–30.
- [12] N. V. Ngoc, Dual integral equations involving Fourier Transform, Methods of Complex and Clifford Analysis, SAS Int. Publ. Deli (2004), 153–160.
- [13] G. Ia. Popov, Contact Problems for a Linearly Deformed Base, Vishcha Shkola, Kiev, 1982.
- [14] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, New York, 1957.
- [15] Ia. S. Ufliand, Method of Dual Equations in Problems of Mathematical Physics, Nauka, Leningrad, 1977 (in Russian).
- [16] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow, 1979.
- [17] L. R. Volevich and B. P. Paneyakh, Some spaces of generalized functions and imbedding theorems, Uspekhii Math. Nauk 20 (1) (1965), 3-74 (in Russian).

Hanoi Institute of Mathematics 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam

 $E-mail$ $address:$ nvngoc@math.ac.vn