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DUAL INTEGRAL EQUATIONS INVOLVING FOURIER
TRANSFORMS WITH INCREASING SYMBOLS

NGUYEN VAN NGOC

Abstract. The aim of the present work is to propose a method for inves-
tigating and solving dual integral equations involving Fourier transfom with
increasing symbols.

1. Introduction

Let R be the real axis, S(R) and S′(R) be the L. Schwartz spaces of test
and generalized functions, respectively (see [8, 15]). Denote by F and F−1 the
direct and inverse Fourier transforms defined on S′(R), respectively. The classical
Fourier transforms F and F−1 are defined by the formulas

F [u](ξ) =
∫ ∞
−∞

u(x)eiξxdx, F−1[v](x) =
1

2π

∫ ∞
−∞

v(x)e−iξxdξ.

The Sobolev-Slobodeskii space Hs(R)(s ∈ R) is defined as the closure of the set
C∞o (R) of infinitely differentiable functions with compact support with respect
to the norm (cf. [8])

||u||s =
[ ∫ ∞
−∞

(1 + ξ2)s|û(ξ)|2dξ
]1/2

<∞, û = F [u].

For a certain bounded interval (a, b) ⊂ R, the subspace of Hs(R) consisting
of functions u(x) with supp u ⊂ [a, b] is denoted by Hs

o(a, b), while the space of
functions v(x) = ru(x), where u ∈ Hs(R) and r is the restriction operator to
(a, b) is denoted by Hs(a, b). The norm in Hs(a, b) is defined by

||v||Hs(a,b) = inf
l
||lv||s,

where the infimum is taken over all possible extentions lv ∈ Hs(R).
Let us consider the dual equation

(1.1)

{
F−1[|ξ|pA(ξ)û(ξ)](x) = f(x), x ∈ (a, b),
F−1[û(ξ)](x) = 0, x ∈ R\(a, b),
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where û ∈ S′(R) ∩ C∞(R) is the unknown function, f(x) is a given function
in H−p/2(a, b), p ≥ 0 is an integer. Concerning the function A(ξ) we make the
following assumptions:

i) A(ξ) ∈ C∞(R), A(−ξ) = A(ξ), ReA(ξ) ≥ 0, ∀ξ ∈ R,
ii) L(ξ) = 1−A(ξ) = O(|ξ|−q), |ξ| → ∞, q � 1.

The dual equation (1.1) is a generalisation of some cases encountered in mixed
boundary value problems of mathematical physics and contact problems of elas-
ticity (see for example, [1, 2, 9, 13, 15]). The case p = 1 was considered in [10]
and the case p = −m, where m is positive number was considered in [12].

The aim of the present work is to propose a method for investigating and
solving the dual equation (1.1) for an arbitrary non-negative integer p. Depending
on whether p is an odd or even number, we shall reduce this dual equation to
equivalent Fredholm integral equations of second type.

We get the following result which has been proved in [11].

Theorem 1.1. If f(x) ∈ H−p/2(a, b), then under asumptions i) and ii) the dual
equation has a unique solution u = F−1[û] ∈ Hp/2

o (a, b).

2. Some preliminary considerations

Let J = (a, b) be a certain bounded interval, ϕ(x) ∈ L1(a, b) and m a posi-
tive integer. The differential operator of negative order D−mJ is defined by the
following formula (see [4]):

(2.1) D−mJ [ϕ](x) :=
1

Γ(m)

∫ x

a
(x− t)m−1ϕ(t)dt, x ∈ J = (a, b),

where Γ(m) is the Gamma-function. It is known that D−mJ [ϕ] ∈ Cm−1[a, b] and

(2.2) DmD−mJ [ϕ](x) = ϕ(x), lim
m→0

D−mJ [ϕ](x) = ϕ(x),

(2.3) D−mJ Dm[ϕ](x) = ϕ(x) + Pm−1(x),

where Dm =
dm

dxm
, Pm−1(x) is an arbitrary polynomial of degree m− 1.

Extensions of the operator D−mJ (m > 0) for generalized functions can be found
in [7, 16].

We introduce the following definition.

Definition 2.1. Denote byOm(a, b) the class of all functions ϕ ∈ L1(a, b), supp(ϕ) ⊂
[a, b], satisfying the conditions

(2.4)
∫ b

a
ϕ(x)xkdx = 0, (k = 0, 1, . . . ,m− 1).
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Obviously, the conditions (2.4) are equivalent to the following

(2.5)
∫ b

a
ϕ(x)Qk(x)dx = 0 (k = 0, 1, . . . ,m− 1),

where Qk(x) are arbitrary polynomials of degree k. As an immediate consequence
of the formula (2.4), we note the following equalities

(2.6)
∫ b

a
ϕ(t)(x− t)kdt = 0 (k = 0, 1, . . . ,m− 1), −∞ < x <∞,

(2.7)
∫ x

a
ϕ(t)(x− t)kdt = −

∫ b

x
ϕ(t)(x− t)kdt (k = 0, 1, ...,m− 1), a 6 x 6 b.

For ϕ ∈ L1(a, b) we introduce the operator

(2.8) Km[ϕ](x) =
1

2Γ(m)

∫ b

a
ϕ(t)(x− t)m−1sign(x− t)dt, x ∈ R.

We get the following result.

Lemma 2.1. If ϕ ∈ Om(a, b), then

1) Km[ϕ](x) = 0 x 6∈ (a, b),
2) Km[ϕ](x) ≡ D−mJ [ϕ](x) a 6 x 6 b,

3) F [ϕ](ξ) ∈ C∞(R), F [ϕ](ξ) = O(|ξ|k) (ξ → 0, k ≥ m),

4) F [Km[ϕ]](ξ) =
1

(−iξ)m
F [ϕ](ξ) (ξ 6= 0),

F [Km[ϕ]](0) =
1

mΓ(m)
∫ b
a ϕ(t)(b− t)mdt.

Proof. The assertions 1)-3) hold in virtue of (2.4), (2.6) and (2.7). We prove the
assertion 4). The cases ξ = 0 is clear. For the cases ξ 6= 0, we have

F [Km[ϕ]](ξ) =
1

Γ(m)

∫ b

a
ϕ(t)eiξtdt

∫ b−t

0
eiξλλm−1dλ.

Using the formula∫ b−t

0
eiξλλm−1dλ =

Γ(m)
(−iξ)m

+ Γ(m)eiξ(b−t)
m−1∑
k=0

(−1)k(b− t)m−1−k

(iξ)k+1(m− 1− k)!
,

we have

F [Km[ϕ]](ξ) =
1

(−iξ)m

∫ b

a
ϕ(t)eiξtdt+(2.9)

+ eiξb
m−1∑
k=0

(−1)k

(iξ)k+1(m− 1− k)!

∫ b

a
ϕ(t)(b− t)m−1−kdt.

Since ϕ ∈ Oom(a, b), from (2.9) the assertion 4) follows. �
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Definition 2.2. Denote by Ĉmo (a, b) the class of continuous functions u(x) ∈
S′(R), such that u(x) ∈ Cm−1[a, b], u(k)(x) = 0 (k = 0, 1, . . . ,m − 1), x 6∈
(a, b), u(m)(x) ∈ L2(a, b).

Theorem 2.2. In order that u(x) belongs to the class Ĉmo (a, b) it is necessary
and sufficient that it is representable in the form (2.8), i.e.

(2.10) u(x) = Km[ϕ](x) =
1

2Γ(m)

∫ b

a
ϕ(t)(x−t)m−1sign(x−t)dt, ϕ ∈ Om(a, b).

Proof. The sufficiency holds in virtue of Lemma 2.1. Now we prove the neces-
sity. Let u(x) ∈ Ĉmo (a, b). We put ϕ(x) = Dmu(x). Obviously, ϕ ∈ L1(R) and
supp(ϕ) ⊂ [a, b]. Integrating by parts, taking into account that u(x) ∈ Ĉmo (a, b),
we have

(2.11)
∫ b

a
xjϕ(x)dx =

∫ b

a
xjDmu(x)dx = 0 (j = 0, 1, . . . ,m− 1),

it means that ϕ ∈ Oom(a, b). Due to (2.2), (2.3) we have

(2.12) u(x) = D−mJ [ϕ](x) +
m−1∑
j=0

cjx
j , x ∈ [a, b],

where cj are arbitrary constants. Since u(k)(x) and D−(m−k)
J [ϕ](x) (k = 0, 1, . . . ,

m − 1) are equal to zero on a and b, from (2.12) it follows that cj = 0 (j =
0, 1, . . . ,m− 1). Thus we have

(2.13) u(x) = D−mJ [ϕ](x), x ∈ [a, b].

Using (2.1), (2.7) and (2.13) we get (2.10). �

Definition 2.3. By Lp±0(a, b) we denote the classes of functions f belonging to
Lp±ε respectively for sufficiently small ε > 0 (p − ε ≥ 1). If the interval (a, b) is
bounded, then the symbol Lp−0(a, b) denotes the set of functions f belonging to
Lq(a, b), 1 6 q < p.

Definition 2.4. Let ρ(x) =
√

(x− a)(b− x) (a < x < b). We denote by
L2
ρ±1(a, b) the Hilbert spaces of functions with respect to the scalar product and

the norm

(u, v)
Lρ±1 =

∫ b

a
ρ±1(x)u(x)v(x)dx, ||u||Lρ±1 =

√
(u, u)Lρ±1 < +∞.

The following lemma holds.

Lemma 2.3. Let ϕ ∈ L2
ρ(a, b). Denote by ϕ0 the zero-extension of the function

ϕ on R. Then, ϕ0 ∈ H−1/2
o (a, b).
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Proof. Using Holder inequality one can prove that L2
ρ(a, b) ⊂ L4/3−0(a, b). There-

fore, the function ϕ0 ∈ L4/3−0(R). Due to Hausdorff-Young theorem [14 ] we have
ϕ̂0(ξ) := F [ϕo](ξ) ∈ L4+0(R). Hence

(2.14)
∫ ∞
−∞

|ϕ̂o(ξ)|2

1 + |ξ|
dξ 6

(∫ ∞
−∞
|ϕ̂o|2qdξ

)1/q (∫ ∞
−∞

dξ

(1 + |ξ|)q/(q−1)

)(q−1)/q

,

where q = 2 + ε (ε > 0). From (2.14), we have ϕo ∈ H−1/2(R), hence ϕo ∈
H
−1/2
o (a, b). �

In the spaces Lρ
±1

2 (a, b) we consider the singular integral operator

SJ [ϕ](x) =
1
πi

∫ b

a

ϕ(t)
x− t

dt, x ∈ J = (a, b),

where the integral is taken in the sense of Cauchy principal value. The following
theorem is due to Khvedelidze and Duduchava [5].

Theorem 2.4. The operator SJ is bounded in the spaces L2
ρ±1(a, b).

In the sequel we shall need the following inverse formula for the Cauchy integral
[6].

Theorem 2.5. Under the assumption that f(x) ∈ L2
ρ(a, b)∩H1/2(a, b) the integral

equation

(2.15)
1
π

∫ b

a

ϕ(t)
t− x

dt = f(x)

in the L2
ρ(a, b) has the solution

(2.16) ϕ(x) = − 1
πρ(x)

∫ b

a

f(t)ρ(t)
t− x

dt+
C

ρ(x)
,

where C is an arbitrary constant. Besides, if f(x) ∈ L2
ρ−1(a, b) and the following

condition holds

(2.17)
∫ b

a

f(x)dx
ρ(x)

= 0,

then the integral equation (2.15) has a unique solution in L2
ρ−1(a, b), defined by

the formula

(2.18) ϕ(x) = −ρ(x)
π

∫ b

a

f(t)dt
ρ(t)(t− x)

.
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3. Equation with the symbol |ξ|2mA(ξ)

In this section we consider the dual equation (1.1) for the case p = 2m, where
m is a non-negative integer. Using the formulas

|ξ|2m = (−1)m(−iξ)2m, F−1[(−iξ)kû](x) = Dk
xF
−1[û](x)

we can write (1.1) in the form

(3.1)

{
DmF−1[(−iξ)mA(ξ)û(ξ)](x) = (−1)mf(x), x ∈ (a, b),
u(x) := F−1[û](x) = 0, x 6∈ (a, b).

Note that due to Theorem 1.1 the dual equation (3.1) for f ∈ H−m(a, b) has a
unique solution u = F−1[û] ∈ Hm

o (a, b). According to imbedding theorems [17],
we have u ∈ Ĉmo (a, b). Then, in virtue of Theorem 2.2 the function u(x) can be
represented by the formula (2.10):

u(x) =
1

2Γ(m)

∫ b

a
ϕ(t)(x− t)m−1sign(x− t)dt, ϕ ∈ Oom(a, b)

and its Fourier transform has the form

(3.2) û(ξ) = F [u](ξ) =
1

(−iξ)m

∫ b

a
eiξtϕ(t)dt =

1
(−iξ)m

F [ϕ](ξ).

We shall find the function ϕ(t) in the space H0
o (a, b). Note that, the space

H0
o (a, b) consists of functions belonging to the space L2(R), with supports in

[a, b]. From Theorem 2.2 we see that, if ϕ(t) ∈ H0
o (a, b) ∩ Om(a, b), then the

function u(x) defined by the formula (2.10) belongs to the space Hm
o (a, b).

For convenience, we take the conditions (2.5) in the form

(3.3)
∫ b

a
ϕ(x)Pk[ξ(x)]dx = 0, (k = 0, 1, 2, . . . ,m− 1),

where Pk(ξ) are Legendre polynomials of order k and

(3.4) ξ(x) =
2x− (a+ b)

b− a
.

We have

(3.5)
∫ b

a
Pm[ξ(x)]Pn[ξ(x)]dx = 0 (m 6= n),

∫ b

a
P 2
m[ξ(x)]dx =

b− a
2m+ 1

.

Now we turn to the dual equation (3.1). Since f ∈ H−m(a, b), there exists
D−mJ f introduced in the previous section. Note that the function F−1[(−iξ)mA(ξ)
û(ξ)](x) belongs to L2(a, b), therefore there exists its extension belonging to the
space S′(R) with support in [a,+∞). Within J = (a, b) the operator Dm can be
considered as the operator Dm

J .
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Now applying the operator D−mJ to the both sides of the first equation in (3.1),
in view of the formula (2.3) we obtain

(3.6) F−1[(−iξ)mA(ξ)û(ξ)](x) = (−1)mD−mJ f(x) +
m−1∑
j=0

ajPj [ξ(x)],

where aj are arbitrary constants, Pj(ξ) are Legendre polynomials and the function
ξ(x) is defined by the formula (3.4). Now in (3.6) we substitute A(ξ) and û(ξ)
by using the condition ii) in Section 1 and the formula (3.2) respectively. After
some transformations we obtain the following integral equation

(3.7) ϕ(x)−
∫ b

a
l(x− t)ϕ(t)dt = g(x) +

m−1∑
j=0

ajPj [ξ(x)],

where

l(x) =
1
π

∫ ∞
0

L(ξ) cos(xξ)dξ, g(x) = D−mJ [(−1)mf ](x).

Using (3.7) and (3.5), fulfiling the conditions (3.3) we have

(3.8) aj = −2j + 1
b− a

(∫ b

a
g(y)Pj [ξ(y)]dy +

∫ b

a
ϕ(t)dt

∫ b

a
l(y − t)Pj [ξ(y)]dy

)
.

From (3.7) and (3.8) we have the following integral equation

(3.9) ϕ(x)−
∫ b

a
K(x, t)ϕ(t)dt = h(x), x ∈ (a, b),

where

(3.10) h(x) = g(x)−
m−1∑
j=0

(2j + 1
b− a

∫ b

a
g(y)Pj [ξ(y)]dy

)
Pj [ξ(x)],

(3.11) K(x, t) = l(x− t)−
m−1∑
j=0

(2j + 1
b− a

∫ b

a
l(y − t)Pj [ξ(y)]dy

)
Pj [ξ(x)].

We now verify that the solution ϕ of the integral equation (3.9) satisfies the
conditions (3.3). Indeed, from (3.9)-(3.11) for k = 0, 1, . . . ,m− 1, we get∫ b

a
ϕ(x)Pk[ξ(x)]dx−

∫ b

a
ϕ(t)dt

∫ b

a
l(x− t)Pk[ξ(x)]dx+

+
∫ b

a
ϕ(t)dt

m−1∑
j=0

2j + 1
b− a

∫ b

a
l(y − t)Pj [ξ(y)]dy.

∫ b

a
Pj [ξ(x)]Pk[ξ(x)]dx

=
∫ b

a
g(x)Pk[ξ(x)]dx−

m−1∑
j=0

2j + 1
b− a

∫ b

a
g(y)Pj [ξ(y)]dy.

∫ b

a
Pj [ξ(x)]Pk[ξ(x)]dx.

(3.12)
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Using (3.5), from (3.12) we have∫ b

a
ϕ(x)Pk[ξ(x)]dx = 0 (k = 0, 1, 2, . . . ,m− 1),

that is, the conditions (3.3) are fulfilled.
Thus, we have proved the following result.

Theorem 3.1. The dual equation (3.1) considered in Hm
o (a, b) with respect to

u = F−1[û] is equivalent to the Fredholm integral equation (3.9) with respect
to ϕ(x) ∈ L2(a, b). Hence, according to the theory of Fredholm equations, this
equation has a unique solution in L2(a, b), if g(x) = D−mJ [(−1)mf ](x) ∈ L2(a, b).
In this case, the solution with respect to u = F−1[û] of the dual integral equation
(3.1) in Hm

o (a, b) is given by the formula (2.10):

u(x) =
1

2Γ(m)

∫ b

a
ϕ(t)(x− t)m−1sign(x− t)dt, ϕ ∈ Om(a, b).

Let us consider the following example. For simplicity, let A(ξ) ≡ 1.

Example 3.1. Let J = (−1, 1), |ξ|2mA(ξ) ≡ |ξ|4, f(x) = QδJ(x), where Q =
const, δJ(x) is the restriction of the δ-function on J. In this case the dual integral
equation (3.1) is equivalent to the following boundary value problem

(3.13)
d4u(x)
dx4

= QδJ(x), (−1 < x < 1),

(3.14) u(x) = u′(x) = 0, x 6∈ (−1, 1).

Note that, in mechanics sense, the problem (3.13)- (3.14) represents the bend
equation of a beam with clamped ends, under a force concentrated at center of
the beam. We shall find the solution of the problem (3.13)-(3.14) in the space
H2
o (−1, 1). It is well-known that δ ∈ H−1/2−ε(R) ⊂ H−2(R), ∀ε > 0, therefore

δJ ∈ H−2(−1, 1) and the function δ(x) is an extension of the function δJ(x).
Further, D−2

J [δJ ] ∈ L2(−1, 1).
According to (2.10) and (3.9), we have

(3.15) u(x) =

{∫ x
−1 ϕ(t)(x− t)dt, |x| < 1,

0, |x| ≥ 1,

where

(3.16) ϕ(t) = QD−2
J [δJ(t)] + a0 + a1t =


−Q
4
− Qt

2
, −1 < t < 0,

−Q
4

+
Qt

2
, 0 6 t < 1.

Putting (3.16) into (3.15), after some transforms, we have

(3.17) u(x) =


Q

24
(−2x3 − 3x2 + 1), −1 < x 6 0,

Q

24
(2x3 − 3x2 + 1), 0 6 x < 1.
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It is easy to verify that the function u(x) defined by the formula (3.17) satisfies
the differential equation (3.13) and the boundary conditions (3.14).

4. Equation with the symbol |ξ|2m+1A(ξ)

For the case p = 2m+1 the dual equation (1.1) can be written in the following
form

(4.1)

{
DmF−1[(−iξ)m+1isign(ξ)A(ξ)û(ξ)](x) = (−1)mf(x), x ∈ (a, b),
u(x) := F−1[û](x) = 0, x 6∈ (a, b).

Due to Theorem 1.1 the dual equation (4.1) for f ∈ H−(m+1/2)(a, b) has a unique
solution u = F−1[û] ∈ Hm+1/2

◦ (a, b). According to imbedding theorem [17], we
have u(x) ∈ Ĉm+1

◦ (a, b). In virtue of Theorem 2.1 this function can be represented
in the form

(4.2) u(x) =
1

2Γ(m+ 1)

∫ b

a
ϕ(t)(x− t)msign(x− t)dt,

where ϕ(t) ∈ Om+1(a, b). For convenience we take the conditions (2.4) in the
form

(4.3)
∫ b

a
ϕ(x)Tk[ξ(x)]dx = 0, (k = 0, 1, . . . ,m),

where Tk(ξ) are Chebyshev polynomials of first order and the function ξ(x) is
defined by the formula (3.4). As we know, the Fourier transform û(ξ) of the
function u(x) is defined by the formula (see (2.10)):

(4.4) û(ξ) =
1

(−iξ)m+1

∫ b

a
ϕ(t)eiξtdt =

1
(−iξ)m+1

F [ϕ](ξ).

We shall find the function ϕ(t) in the space L2
ρ(a, b), ρ(x) =

√
(x− a)(b− x).

Using Lemma 2.4 and the formula (4.4) one can show that the function u(x)
belongs to the space H

m+1/2
◦ (a, b). By the same argument as in the previous

section we can apply the operator D−mJ , J = (a, b) to the first equality in (4.1)
and get

(4.5) F−1[(−iξ)m+1i sign(ξ)A(ξ)û(ξ)](x) = g(x) +
m−1∑
j=0

cjUj [ξ(x)], x ∈ (a, b),

where cj = const, g(x) = (−1)mD−mJ f(x), Uj(ξ) are Chebyshev polynomials of
second order. Now in (4.5) we substitute A(ξ) and û(ξ) by using the condition
ii) in section 1 and the formula (4.4) respectively. Using the formula

F−1[sign(ξ)F [ϕ](ξ)](x) =
1
πi

∫ b

a

ϕ(t)dt
x− t

, ϕ ∈ L2
ρ±1

(a, b),
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after some transformations we have

(4.6)
1
π

∫ b

a
ϕ(t)

dt

t− x
= − 1

π

∫ b

a
ϕ(τ)k(x− τ)dτ − g(x)−

m−1∑
j=0

cjUj [ξ(x)],

where

k(x) =
∫ +∞

0
L(ξ) sin(xξ)dξ =

∫ +∞

0
[1−A(ξ)] sin(xξ)dξ.

Applying the formula (2.16) to the equation (4.6), we have the following inte-
gral equation of second kind

ϕ(x) =
1

π2ρ(x)

∫ b

a
ϕ(τ)dτ

∫ b

a
ρ(t)k(t− τ)

dt

t− x
+

1
πρ(x)

∫ b

a
ρ(t)g(t)

dt

t− x

+
1

πρ(x)

m−1∑
j=0

cj

∫ b

a
ρ(t)Uj [ξ(t)]

dt

t− x
+

C

ρ(x)
, a < x < b,(4.7)

where C is an arbitrary constant. Using the condition∫ b

a
ϕ(t)T0[ξ(t)]dt =

∫ b

a
ϕ(t)dt = 0

and the formula ∫ b

a

1
ρ(t)

dt

t− x
= 0

from (4.7) we obtain C = 0.
For the determination of the coefficients cj , (j = 0, 1, . . . ,m − 1) we shall

use the following formulas which were obtained from [13] by the corresponding
substitutions of variables:

1
π

∫ b

a
ρ(t)Uj [ξ(t)]

dt

t− x
= −b− a

2
Tj+1[ξ(x)],(4.8)

1
π

∫ b

a

Tj [ξ(x)]dx
ρ(x)(t− x)

= − 2
b− a

Uj−1[ξ(t)],(4.9)

1
π

∫ b

a
Tk[ξ(x)]Tj [ξ(x)]

dx

ρ(x)
= σkδkj , (σ0 = 1, σk =

1
2
, k = 1, 2, . . .),(4.10)

where δkj is the Kronecker symbol. Thus, from (4.7) and (4.8) we have

ϕ(x) =
1

π2ρ(x)

∫ b

a
ϕ(τ)dτ

∫ b

a
ρ(t)k(t− τ)

dt

t− x
+

1
πρ(x)

∫ b

a
ρ(t)g(t)

dt

t− x

− b− a
2πρ(x)

m∑
j=1

c∗jTj [ξ(x)], c∗j = cj−1, a < x < b.(4.11)
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For the determination of coefficients c∗j in (4.11) we shall use the conditions
(4.3) and the formula (4.4). We have

c∗j = − 8
(b− a)2π

∫ b

a
ϕ(τ)dτ

∫ b

a
ρ(t)k(t− τ)Uj−1[ξ(t)]dt

− 8
(b− a)2

∫ b

a
ρ(t)g(t)Uj−1[ξ(t)]dt, (j = 1, 2, ...,m).(4.12)

From (4.11) and (4.12) we have the integral equation with respect to
√
ρ(x)ϕ(x) ∈

L2(a, b) :

(4.13)
√
ρ(x)ϕ(x)−

∫ b

a
H(x, τ)

√
ρ(τ)ϕ(τ)dτ = h(x), a < x < b,

where
(4.14)

H(x, τ) =
1√

ρ(x)
√
ρ(τ)π2

∫ b

a
ρ(t)k(t−τ)

{ 1
t− x

+
4

b− a

m∑
j=1

Tj [ξ(x)]Uj−1[ξ(t)]
}
dt,

(4.15) h(x) =
1√
ρ(x)π

∫ b

a
ρ(t)g(t)

{ 1
t− x

+
4

b− a

m∑
j=1

Tj [ξ(x)]Uj−1[ξ(t)]
}
dt.

Note that, under the condition ii) in the section 1 for the function A(ξ), in
virtue of Theorem 2.5, from (4.14) we have H(x, τ) ∈ L2((a, b) × (a, b)). Analo-
gously, if g(x) = (−1)mD−mJ f(x) ∈ L2

ρ(a, b), then the function h(x) given by the
formula (4.15) belongs to L2(a, b).

We now verify that the solution ϕ of the integral equation (4.13) satisfies the
conditions (4.3). Indeed, from (4.13) - (4.15) for k = 0, 1, ...,m, it follows that∫ b

a
ϕ(x)Tk[ξ(x)]dx =

∫ b

a
ϕ(τ)dτ

∫ b

a
H(x, τ)

√
ρ(τ)Tk[ξ(x)]

dx√
ρ(x)

=
∫ b

a
h(x)Tk[ξ(x)]

dx√
ρ(x)

.(4.16)

By virtue of (4.9) - (4.10), we have∫ b

a
H(x, τ)

√
ρ(τ)Tk[ξ(x)]

dx√
ρ(x)

=
1
π2

∫ b

a
k(t− τ)ρ(t)dt

{∫ b

a

Tk[ξ(x)]dx
ρ(x)(t− x)

+
4

b− a

m∑
j=1

Uj−1[ξ(t)]
∫ b

a
Tj [ξ(x)]Tk[ξ(x)]

dx

ρ(x)

}
=

1
π2

∫ b

a
k(t− τ)ρ(t)dt

{
− 2π
b− a

Uk−1[ξ(t)] +
4

b− a
Uk−1[ξ(t)].

π

2

}
≡ 0.(4.17)
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Analogously, we have∫ b

a
h(x)Tk[ξ(x)]

dx√
ρ(x)

=
1
π

∫ b

a
ρ(t)g(t)dt

{∫ b

a

Tk[ξ(x)]dx
ρ(x)(t− x)

+
4

b− a

m∑
j=1

Uj−1[ξ(t)]
∫ b

a
Tj [ξ(x)]Tk[ξ(x)]

dx

ρ(x)

}
= 0.(4.18)

From (4.16) - (4.18) it follows that the conditions (4.3) are fulfilled.
Thus, we obtain the following result

Theorem 4.1. The dual equation (4.1) with respect to

u(x) = F [û](x) ∈ Hm+1/2
◦ (a, b)

is equivalent to the Fredholm integral equation (4.13) with respect to
√
ρ(x)ϕ(x) ∈

L2(a, b). If g(x) = (−1)mD−mJ f(x) ∈ L2
ρ(a, b), then the equation (4.13) has a

unique solution in L2(a, b). In this case, the solution with respect to u(x) =
F [û](x) ∈ Hm+1/2

◦ (a, b) of the dual equation (4.1) is given by the formula:

(4.19) u(x) =
1

2Γ(m+ 1)

∫ b

a
(x− t)msign(x− t)ϕ(t)dt, x ∈ R.

Example 4.1. As an illustration of the proposed method we consider the fol-
lowing dual equation{

F−1[|ξ|3û(ξ)](x) = f0 = const, x ∈ (−1, 1),
u(x) := F−1[û(ξ)](x) = 0, x 6∈ (−1, 1).

This equation can be written in the form

(4.20)


d

dx
F−1[(−iξ)2i.sign(ξ)û(ξ)](x) = −f0, x ∈ (−1, 1),

u(x) = 0, x 6∈ (−1, 1).

In this case we have

(4.21) u(x) =

{∫ x
−1(x− t)ϕ(t)dt, |x| < 1,

0, |x| ≥ 1,

(4.22)

ϕ(x) =
1√

1− x2

∫ 1

−1

√
1− t2[−f0(t+ 1)]

{ 1
t− x

+ 2T1(x)Uo(t)
}
dt, −1 < x < 1.

Using formulas (4.8), (4.9) and taking into account that

To(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

Uo(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1
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we can reduce the formula (4.22) to the following one

(4.23) ϕ(x) =
f0

2
√

1− x2
− f0

√
1− x2, |x| < 1.

Putting (4.23) into (4.21), we have

(4.24) u(x) =


f0

6
(1− x2)3/2, |x| < 1.

0, |x| ≥ 1.

Putting ϕ(x) = 0 when |x| ≥ 1 we have the following formulas for Fourier
transforms of ϕ(x) and u(x) [3]:

(4.25) ϕ̂(ξ) = F [ϕ](ξ) = −πf0

2
J2(ξ), û(ξ) = F [u](ξ) =

πf0

2
J2(ξ)
ξ2

,

where Jn(ξ) is the Bessel function of first kind:

Jn(ξ) =
(ξ

2

)n ∞∑
k=0

(−1)k

k!(n+ k)!

(ξ
2

)2k
.

From (4.25) it is clear that

(4.26) û(ξ) =
1

(−iξ)2
ϕ̂(ξ).

Using the asymptotic expansion of Bessel functions

Jn(ξ) = O
( 1√
|ξ|

)
, ξ →∞

we can show that u(x) ∈ H3/2
◦ (−1, 1).

Now we verify the fulfilment of the dual equation (4.20). Putting (4.25) into
(4.20) and taking into account (4.26), we have

d

dx
F−1[(−iξ)2û(ξ)i sign(ξ)](x) =

d

dx
F−1[ϕ̂(ξ)i.sign(ξ)](x)

= −f0

2
d

dx

∫ ∞
0

J2(ξ) sin(xξ)dξ

= −f0

2
d

dx

∫ ∞
0

[2J1(ξ)
ξ
− J0(ξ)

]
sin(xξ)dξ.

Using the identities (cf. [15]):∫ ∞
0

J0(ξ) sin(xξ)dξ =

0, |x| 6 1,
±1√
x2 − 1

, ±x > 1,

∫ ∞
0

J1(ξ)
ξ

sin(xξ)dξ =

0, |x| < 1,
±1

|x|+
√
x2 − 1

, ±x ≥ 1,
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when |x| < 1 we have
d

dx
F−1[(−iξ)2û(ξ)isign(ξ)](x) = F−1[|ξ|3û(ξ)](x) = − f0, |x| < 1.

Thus the given dual integral equation is fulfilled.
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