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PERSISTENCE AND GLOBAL ATTRACTIVITY
IN THE MODEL An+1 = AnFn(An, An−1, · · · , An−m)

DANG VU GIANG

Abstract. First, we prove the uniform persistence for discrete model An+1 =
AnFn(An, An−1, · · · , An−m) of population growth, where Fn : (0,∞)m+1 →
(0,∞) are continuous all. Second, we investigation the effect of delay m on
the global attractivity of the unique positive equilibrium.

1. Introduction

Consider the model

(1.1) An+1 = AnFn(An, An−1, · · · , An−m), n = 0, 1, · · · ,
where Fn : (0,∞)m+1 → (0,∞) are continuous all. This model is potentially
appeared in medicine (for example, the population of blood cells) and was inves-
tigated by several authors [Graef, Liz, Tkachenko et al.] with more restrictions
on Fn. If Fn(x, y) = exp(γ−αx−βy) with α, β > 0 we get back a model investi-
gated by Tkachenko et al. (But they found no explicit conditions for the global
attractivity of the positive equilibrium.) A positive solution {An}∞n=−m is called
persistent if

0 < lim inf
n→∞

An 6 lim sup
n→∞

An <∞.

The following theorem gives a sufficient condition for persistent (non-extinctive)
model.

Theorem 1. Assume that

(1.2) Fn(x0, x1, · · · , xm) 6 b <∞
for all n = 0, 1, · · · , and x0, x1, · · · , xm ≥ 0,

(1.3) lim inf
n→∞

min
x0,x1,··· ,xm∈[0,K]

Fn(x0, x1, · · · , xm) > 0

for every K > 0, and

(1.4) lim sup
n,x0,x1,··· ,xm→∞

Fn(x0, x1, · · · , xm) < 1,
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(1.5) lim inf
n→∞,x0,x1,··· ,xm→0+0

Fn(x0, x1, · · · , xm) > 1.

Then every solution {An}∞n=−m of (1.1) is persistent.

Proof. First, we prove that {An}∞n=−m is bounded from above. Assume, for the
sake of a contradiction, that lim supn→∞An = ∞. For each integer n ≥ m, we
define

kn := max{ρ : −m 6 ρ 6 n,Aρ = max
−m6i6n

Ai}.

Observe that k−m 6 k−m+1 6 · · · 6 kn →∞ and that

(1.6) lim
n→∞

Akn =∞.

But Akn 6 bAkn−1, so

(1.7) lim
n→∞

Akn−1 =∞.

Let n0 > 0 such that kn0 > 0. We have for n > n0,

Akn−1Fkn−1(Akn−1, Akn−2, · · · , Akn−1−m) = Akn ≥ Akn−1

and therefore,
Fkn−1(Akn−1, Akn−2, · · · , Akn−1−m) ≥ 1.

By (1.4) and (1.7), this implies that

(1.8) lim sup
n→∞

min{Akn−2, · · · , Akn−1−m} <∞.

On the other hand,

Akn = Akn−1Fkn−1(Akn−1, · · · , Akn−1−m) = · · ·
= Akn−1−mFkn−1−m(Akn−1−m, · · · , Akn−1−2m)× · · · ×
×Fkn−1(Akn−1, · · · , Akn−1−m)

6 min{Akn−2b
2, · · · , Akn−1−mb

m+1}.
Now take lim sup on both sides we have lim supn→∞Akn <∞ which contradicts
(1.6). Thus, {An}∞n=−m is bounded from above. Let K be an upper bound of
{An}∞n=−m.

Next, we prove that lim infn→∞An > 0. Assume, for the sake of a contradic-
tion, that lim infn→∞An = 0. For each integer n ≥ m, we define

sn := max{ρ : −m 6 ρ 6 n,Aρ = min
−m6i6n

Ai}.

Clearly, s−m 6 s−m+1 6 · · · 6 sn →∞ and that

(1.9) lim
n→∞

Asn = 0.

But Asn ≥ aAsn−1, where

a = inf
N≥sn−1−m

min
x0,x1,··· ,xm∈[0,K]

FN (x0, · · · , xm) > 0,

so

(1.10) lim
n→∞

Asn−1 = 0.
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Let n0 > 0 such that sn0 > 0. We have for any n > n0,

Asn = Asn−1Fsn−1(Asn−1, · · · , Asn−1−m) ≥ AsnFsn−1(Asn−1, · · · , Asn−1−m)

and therefore,
Fsn−1(Asn−1, · · · , Asn−1−m) 6 1.

By (1.5) and (1.10), this implies that

lim inf
n→∞

max{Asn−2, · · · , Asn−1−m} > 0.

On the other hand,

Asn = Asn−1Fsn−1(Asn−1, · · · , Asn−1−m) = · · ·
= Asn−1−mFsn−1−m(Asn−1−m, · · · , Asn−1−2m)× · · · ×
× · · ·Fsn−1(Asn−1, · · · , Asn−1−m)

≥ max{Asn−2a
2, · · · , Asn−1−ma

m+1}.
Now take lim inf as n → ∞ on both sides we have lim infn→∞Asn > 0 which
contradicts (1.9) The proof is complete. �

2. The global attractivity

In this section we assume that there is a unique positive equilibrium x̄ of (1.1)
and

(2.1) 1 = Fn(x̄, · · · , x̄),

for every n = 0, 1, 2, · · · . Suppose further that if

Fn(x0, x1, · · · , xm) < 1,

then max{x0, x1, · · · , xm} > x̄, and if

Fn(x0, x1, · · · , xm) > 1,

then min{x0, x1, · · · , xm} < x̄.
A solution {An}∞n=−m is called nonoscillated, if

lim sup
n→∞

An 6 x̄ or lim inf
n→∞

An ≥ x̄.

Lemma. Every nonoscillated solution of (1.1) converges to x̄.

Proof. Without loss of generality we assume that

An0 , An0+1, · · · ≥ x̄
all. Then Fn0(An0 , An0−m+1, ·, An0) 6 1, so An0+1 6 An0 . Similarly, An+1 6 An
for all n ≥ n0, · · · . Therefore, there is a limit of {An}∞n=−m. This limit is exactly
x̄.

To investigate the effect of delay, we suppose further that

(2.2) lim sup
n→∞

| lnFn(x0, x1, · · · , xm)| 6 Lmax
{∣∣ln x0

x̄

∣∣, ∣∣ln x1

x̄

∣∣, · · · , ∣∣ln xm
x̄

∣∣}
for all x0, x1, · · · , xm > 0. �
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Theorem 2. Assume that (1.2) − (1.5), (2.1) and (2.2) hold. Suppose further
that

(m+
3
2

)L <
3
2
.

Then every solution {An}∞n=−m of (1.1) converges to x̄.

Proof. Without loss of generality we assume that L(m+ 3
2) ≥ 1 (if L is small, we

can replace it by 1/(m+ 3
2)) and {An}∞n=−m is an oscillated solution. This means

that there is a sequence tn → ∞ of integers such that Atn 6 x̄, Atn+1 > x̄ and
tn+1 − tn > 2m for every n = 1, 2, · · · . Let

ρn ≥
∣∣ln At

x̄

∣∣ for every t ≥ tn − 2m.

Then∣∣∣ln At+1

At

∣∣∣ = | lnFt(At, · · · , At−m)| 6 Lmax
{∣∣ln At

x̄

∣∣, · · · , ∣∣ln At−m
x̄

∣∣} 6 Lρ1

for all t ≥ t1 −m. Indeed, by our assumption, we have for every ε > 0,

| lnFt(At, · · · , At−m)| 6 (L+ ε) max
{∣∣ln At

x̄

∣∣, · · · , ∣∣ln At−m
x̄

∣∣}
if t is large enough. Here, we use L instead of L + ε legally. Let At∗ 6 x̄ with
t∗ ≥ t1. It follows that

∣∣∣ln As
x̄

∣∣∣ 6 t∗−1∑
t=s

∣∣ln At
At+1

∣∣ 6 t∗∑
t=s

∣∣ln At+1

At

∣∣ 6 Lρ1(t∗ + 1− s)

for all s ∈ [t1 −m, t∗]. This is right because the last sum is of (t∗ + 1− s) terms
and each of them is 6 Lρ1. Furthermore,∣∣∣ln At+1

At

∣∣∣ = | lnFt(At, · · · , At−m)| 6 Lmax
{∣∣ln At

x̄

∣∣, · · · , ∣∣ln At−m
x̄

∣∣}
6 L2ρ1(t∗ +m+ 1− t)

for all t ∈ [t1, t∗ +m]. First, we prove that∣∣ln At
x̄

∣∣ 6 ρ1

(
L(m+

3
2

)− 1
2
)

for all t > t1 +m.

If this were not so, let

T = min
{
t > t1 +m : At > x̄,

∣∣ln At
x̄

∣∣ > ρ1

(
L(m+

3
2

)− 1
2

)}
.
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If At∗ := min{AT−1, · · · , AT−(m+1)} 6 x̄ then t∗ +m+ 1 ≥ T > t1 +m and

|ρ1

(
L(m+

3
2

)− 1
2
)
| <

∣∣ln AT
x̄

∣∣ 6 T−1∑
t=t∗

∣∣∣ln At+1

At

∣∣∣ 6 t∗+m∑
t=t∗

∣∣∣ln At+1

At

∣∣∣
6

t∗+m−[ 1
L

]∑
t=t∗

Lρ1 +
t∗+m∑

t=t∗+m−[ 1
L

]+1

L2ρ1(t∗ +m+ 1− t)

= Lρ1

(
m+ 1− [

1
L

]
) +

1
2
ρ1L

2[
1
L

]([
1
L

] + 1)

6 ρ1

(
L(m+

3
2

)− 1
2
)
.

([a] denotes the largest integer 6 a). This is a contradiction, so we have

min{AT−1, · · · , AT−(m+1)} > x̄

and consequently,

(2.3) FT−1(AT−1, · · · , AT−(m+1)) < 1.

Hence, AT−1 > AT . By the minimality of T we should have T = t1 + m + 1.
Therefore,

|ρ1

(
L(m+

3
2

)− 1
2
)
| <

∣∣ln AT
x̄

∣∣ 6 T−1∑
t=t1

∣∣∣ln At+1

At

∣∣∣ 6 t1+m∑
t=t1

∣∣∣ln At+1

At

∣∣∣
6

t1+m−[ 1
L

]∑
t=t1

Lρ1 +
t1+m∑

t=t1+m−[ 1
L

]+1

L2ρ1(t1 +m+ 1− t)

= Lρ1

(
m+ 1− [

1
L

]
) +

1
2
ρ1L

2[
1
L

]([
1
L

] + 1)

6 ρ1

(
L(m+

3
2

)− 1
2
)
.

This is a contradiction, so we have∣∣ln At
x̄

∣∣ 6 ρ1

(
L(m+

3
2

)− 1
2
)

for all t > t1 +m.

This result permits us to choose

ρ2 = ρ1

(
L(m+

3
2

)− 1
2
)
.

Repeat the above argument (with t1 and ρ1 replaced by t2 and ρ2) we have∣∣ln At
x̄

∣∣ 6 ρ2

(
L(m+

3
2

)− 1
2
)

for all t > t2 +m.

Using the assumption
(
L(m+ 3

2)− 1
2

)
< 1, we complete the proof. �
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3. Application

A tipical example is the equation

An+1 = An exp(γ − αAn − βAn−1).

Here m = 1 and we easily compute

x̄ =
γ

α+ β
, L = γe2γ .

Hence, if γe2γ < 3
5 the positive equilibrium is globally attractive.

Another example is the model of blood cells

An+1 =
λAn

1 +
∑m

j=1 αj,nAn−j

where

λ > 1 and
m∑
j=1

αj,n = α is fixed.

We easily compute

x̄ =
λ− 1
α

, L =
λ− 1
λ

.

Hence, if (m+ 3
2)λ−1

λ < 3
2 the positive equilibrium is globally attractive.
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