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RELATIVE CAPACITY AND THE RELATIVE EXTREMAL
FUNCTIONS UNDER HOLOMORPHIC COVERINGS

LE MAU HAI AND TANG VAN LONG

Abstract. In this note we establish formulas on the relative capacity of a
subset E in a domain Ω ⊂ C

n for cases either Ω is pseudoconvex or Ω is
hyperconvex and E ⊂ Ω is a closed subset such that ECn ∩ ∂Ω is pluripolar.
Moreover the relation between relative extremal functions in a generalized
holomorphic covering is studied here.

1. Introduction

As well known, pluripolar sets, i.e. sets on which a certain plurisubharmonic
function obtains values −∞, are one of important objects which often are stud-
ied in pluripotential theory. Hence, one of essential problems of pluripotential
theory is to find characterizations of pluripolar sets in C

n. One knew that every
pluripolar set in C

n has the Lebesgue measure equal to 0 but the converse is not
true. For example, the unit circle ∂Δ = {z ∈ C : |z| = 1} has the Lebesgue
measure equal to 0 but it is not polar. This shows that to characterize pluripolar
sets by the Lebesgue measure is impossible. Hence, for a long time, one tries to
find something which characterizes the pluripolarity of sets in C

n (n > 1). In
1982, after construction of the complex Monge-Ampère operator (ddcu)n for u
in the class of locally bounded plurisubharmonic functions, Bedford and Taylor
introduced the notion about the relative capacity of a Borel subset E in a domain
Ω ⊂ C

n. Let E be a Borel subset of a domain Ω ⊂ C
n. The relative capacity of

E to Ω is defined as follows:

(1) C(E) = C(E,Ω) = sup{
∫
E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0},

(see [1]). They proved that if E is a compact set in a hyperconvex domain Ω then
E is pluripolar if and only if C(E,Ω) = 0 (see Proposition 4.7.5 in [3]). However,
it is very difficult to show formulas defining the relative capacity of a Borel subset
E in a domain Ω ⊂ C

n. Under the assumption that Ω is a hyperconvex domain
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in C
n and E ⊂ Ω a relative compact subset one obtained the following formula

(2) C(E) =
∫
Ω

(ddcu∗
E,Ω)n

(see Proposition 4.7.2 in [3]), where u∗
E,Ω is the upper semi-continuous regular-

ization of the relative extremal function uE,Ω of E to Ω. The first aim of this
paper is to improve the formula (2). Namely we prove that (2) is still true under
the assumption that Ω is pseudoconvex (see Theorem 3.1 below). Next we try to
remove the hypothesis on the compactness of E in Ω. In Theorem 3.2 we show
that if E ⊂ Ω is a closed subset and ECn∩∂Ω is a pluripolar subset in C

n then the
formula (2) is still valid. Moreover, in Example 3.3, we show that if we remove
the condition on the pluripolarity of the set ECn ∩ ∂Ω then (2) is not true.

Next, we investigate the invariance of the relative extremal function u∗
E,Ω under

generalized holomorphic coverings (see the detailed definition in Section 2). In
1999, Levenberg and Poletsky proved that if D, G are domains in C

n and h : D →
G is a A-covering then for E ⊂ G the following equality

uh−1(E),D(z) = uE,G(h(z)),∀z ∈ D

holds [4]. Hence,

(3) u∗
h−1(E),D(z) = u∗

E,G(h(z)),∀z ∈ D.

In the case if h is a proper holomorphic mapping of D onto G and E ⊂ G then
we always have

uh−1(E),D(z)uE,G(h(z)), ∀z ∈ D

and hence,
u∗

h−1(E),D(z) = u∗
E,G(h(z)), ∀z ∈ D.

(see Proposition 4.5.14 in [3]).
In Section 4 below we extend the formula (3) to the situation where h : D → G

is a generalized holomorphic covering outside a complex subvariety A ⊂ G.
The paper is organized as follows. In Section 2 we recall some basic notions

and results of pluripotential theory which will be used in the paper. Section 3 is
devoted to prove the improvement of the formula (2) in the cases explained above.
Section 4 deals with the proof of (3) for generalized holomorphic coverings.

2. Backgrounds

In this section we recall some elements of pluripotential theory that will be
used throughout the paper. All these can be found in [1, 2, 3].
2.1. In this paper by D, G,Ω we always mean domains in C

n.
2.2. As well known that the Monge-Ampère operator (ddc.)n is well defined on
PSH ∩ L∞

loc(G) and if u ∈ PSH(G) ∩ L∞
loc(G) then (ddcu)n is a positive Borel

measure. Moreover, it is continuous under monotone sequences. Namely, if
{uj}j≥1 ⊂ PSH(G) ∩ L∞

loc(G) is a sequence either increasing or decreasing which



RELATIVE CAPACITY AND THE RELATIVE EXTREMAL FUNCTIONS 277

converges pointwise to a function u ∈ PSH(G) ∩ L∞
loc(G) then (ddcuj)n is weak∗-

convergent to (ddcu)n (see [1]).
2.3. Let Ω be an open subset in C

n and E a Borel subset of Ω. The relative
capacity in the sense of Bedford-Taylor of E to Ω is given by

C(E) = C(E,Ω) = sup
{∫

E
(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0

}
.

Some following results on the relative capacity can be found in [1, 2, 3].
2.3.1. Proposition.

i) If E1 ⊂ E2 ⊂ Ω then C(E1,Ω) ≤ C(E2,Ω).
ii) If E ⊂ Ω ⊂ Ω̃ then C(E,Ω) ≥ C(E, Ω̃).
iii) If Ej ↑ E then lim

j→∞
C(Ej) = C(E).

2.4. Let Ω be a domain in C
n and E a subset of Ω. The relative extremal

function of E in Ω is defined by

uE(z) = uE,Ω(z) = sup
{
v(z) : v ∈ PSH−(Ω), v|E ≤ −1

}
,

where PSH−(Ω) denotes the set of negative plurisubharmonic functions on Ω. By
u∗

E,Ω we denote the upper semi-continuous regularization of uE,Ω. Below we give
its basic properties which can be found in [1, 2] or [3].
2.4.1. Proposition.

i) u∗
E,Ω is maximal in Ω \ E.

ii) u∗
E∪F,Ω = u∗

E,Ω if there exists v ∈ PSH−(Ω) such that F ⊂ {v = −∞}.
iii) If {Kj} is a sequence of compact subsets of Ω decreasing to K then uKj ,Ω ↑

uK,Ω.

The following results which will be used in the proof of Section 3 of this paper
come from Theorem 3.1.7 and Proposition 3.1.9 in [2].
2.4.2. Proposition.

i) Assume that Ej ⊂ Ωj , j = 1, 2, · · · are such that Ej ↑ E, Ωj ↑ Ω and Ω
is bounded. Then u∗

Ej ,Ωj
↓ u∗

E,Ω.
ii) Let Ω be a bounded domain in C

n and E ⊂ Ω a Borel subset. Then there
is an increasing sequence of compact sets Kj ⊂ E such that u∗

Kj ,Ω ↓ u∗
E,Ω.

2.5. Now we give some definitions on generalized holomorphic coverings and the
property (P) on a domain in C

n.
Let D ⊂ C

n and G ⊂ C
m,m ≤ n be domains and h : D → G a holomorphic

surjection. h is said to be a generalized holomorphic covering if for every a ∈ G

there exists a neighborhood Va of a in G and an index set I ( may be, non-
countable) such that

h−1(Va) =
∐
i∈I

Wi,

where Wi ⊂ D are open such that Va
∼= Wi for all i ∈ I.
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The following example shows that there are such generalized holomorphic cov-
erings.

Let D = Δ2 = {(z,w) ∈ C
2 : |z| < 1, |w| < 1} be the bidisc in C

2 and
G = Δ = {z ∈ C : |z| < 1} the unit disc in C. It is easy to check that the map
h : D → G : (z,w) → z is a generalized holomorphic covering.
2.6. Let Ω be a domain in C

n. Ω is said to have the property (P) if for every
pluripolar subset E ⊂ Ω there exists u ∈ PSH−(Ω), u �= −∞ such that E ⊂ {z ∈
Ω : u(z) = −∞}.

The following proposition gives some results on the property (P).
2.6.1. Proposition. Let G1, G2 be domains in C

n. Then

i) If G1 ⊂ G2 ⊂ C
n and G2 has the property (P) then so is G1.

ii) If h : G1 → G2 is a proper holomorphic map and G1 has the property
(P) then so is G2. In particular, the property (P) is invariant under
biholomorphisms.

iii) If G1 ⊂ C and C\G1 has the non-empty interior then G1 has the property
(P).

iv) If G ⊂ C
n is bounded then G has the property (P).

Proof. i) It is obvious.
ii) Let E ⊂ G2 be a pluripolar set, then so is Fh−1(E) ⊂ G1. Hence, there

exists u ∈ PSH−(G1) such that h−1(E) ⊂ {z : u(z) = −∞}. Put

v(w) = max{u(z) : z ∈ h−1(w)}, w ∈ G2.

Proposition 2.9.26 in [3] implies that v ∈ PSH−(G2). Obviously, E ⊂ {w ∈
G2 : v(w) = −∞} and we are done.

iii) Without loss of generality we may assume that Δ(0, 1) ⊂ (C \ G1) where
Δ(0, 1) = {z ∈ C : |z| ≤ 1}. Thus G1 ⊂ C \ Δ(0, 1). The map f : C \ Δ(0, 1) →
Δ∗(0, 1) given by f(z) = 1

z , is a biholomorphism, where Δ∗(0, 1) = Δ(0, 1) \ {0}.
Since Δ∗(0, 1) has the property (P) then i) and ii) give the desired conclusion.

iv) Obviously. �

2.6.2. Remark. Using the extended maximum principle in [5] it is easy to see
that G = C \ P , where P ⊂ C is a closed polar set, has not the property (P).

3. Capacity and relative extremal functions

We begin this section with the following result.
3.1. Theorem. Let Ω be a pseudoconvex domain in C

n with the property (P)
and E a relatively compact Borel subset in Ω. Then

(4) C(E,Ω) =
∫
Ω

(ddcu∗
E,Ω)n.
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Proof. First we show that

(5) C(E,Ω) ≤
∫
Ω

(ddcu∗
E,Ω)n.

Indeed, suppose that {Ωj}j≥1 is an exhaustion increasing sequence of hyperconvex

domains in Ω satisfying: E ⊂ Ω1, Ωj ⊂ int(Ωj+1), j ≥ 1,
∞⋃

j=1
Ωj = Ω. Theorem

3.1.4 in [2] implies that for every j ≥ 1 the equality

C(E,Ωj) =
∫
Ωj

(ddcu∗
E,Ωj

)n

holds. Since Ωj ↑ Ω and Ω has the property (P), Proposition 2.4.2 i) implies that

u∗
E,Ωj

↓ u∗
E,Ω.

Hence, (ddcu∗
E,Ωj

)n is weakly convergent to (ddcu∗
E,Ω)n. Now we have

C(E,Ω) ≤ C(E,Ωj) =
∫
Ωj

(ddcu∗
E,Ωj

)n =
∫
E

(ddcu∗
E,Ωj

)n, for j ≥ 1

because supp(ddcu∗
E,Ωj

)n ⊂ E.

Thus

C(E,Ω) ≤ lim sup
j

C(E,Ωj) = lim sup
j

∫
E

(ddcu∗
E,Ωj

)n

≤
∫
E

(ddcu∗
E,Ω)n =

∫
Ω

(ddcu∗
E,Ω)n

and (5) follows.
It remains to prove that

(6)
∫
Ω

(ddcu∗
E,Ω)n ≤ C(E,Ω).

If E is compact then (6) follows from the definition of C(E,Ω). From the
hypothesis and Proposition 2.4.2 ii) it follows that there is an increasing sequence
of compact subsets Kj � E such that u∗

Kj ,Ω ↓ u∗
E,Ω. Consequently, (ddcu∗

Kj ,Ω)n

weakly converges to (ddcu∗
E,Ω)n. Therefore,∫

Ω

(ddcu∗
E,Ω)n ≤ lim inf

j

∫
Ω

(ddcu∗
Kj ,Ω)n = lim inf

j

∫
Kj

(ddcu∗
Kj ,Ω)n

≤ lim inf
j

C(Kj ,Ω) ≤ C(E,Ω)

and we are done. �
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Next we prove the equality (2) without the assumption on the relative com-
pactness of E in Ω. Namely, we give the following
3.2. Theorem. Let Ω be a bounded hyperconvex domain, E ⊂ Ω a closed subset
such that ECn ∩ ∂Ω = K is pluripolar. Then

(7) C(E,Ω) =
∫
E

(ddcu∗
E,Ω)n.

Proof. We have to show that if C(K,Ω) > α then
∫
E

(ddcu∗
E,Ω)n > α, where α > 0

is arbitrary. Fix ε > 0 such that C(E,Ω) > α > ε > 0. Choose u ∈ PSH(Ω),−1 ≤
u ≤ 0 such that

∫
E

(ddcu)n ≥ α. Put

Uε =
{

z ∈ Ω : u∗
E,Ω(z) < −1 + ε

}
.

Then Uε is open in Ω. Theorem 7.1 in [1] implies that E \ Uε is pluripolar.
Since E ⊂ Uε ∪ (E \ Uε) it follows that∫

Uε

(ddcu)n =
∫

Uε∪(E\Uε)

(ddcu)n ≥
∫
E

(ddcu)n ≥ α.

Pick Eε � Uε such that

(8)
∫
Eε

(ddcu)n > α − ε

2
.

Assume that ϕ ∈ PSH(Ω) such that K ⊂ {ϕ = −∞}. Since Ω is bounded then
we may assume that ϕ < 0 on Ω. We prove that for m ≥ 1 sufficiently large the
inequality

(9)
∫
Lε

(ddcu)n ≥
∫
Eε

(ddcu)n > α − ε

holds, where Lε = Eε ∩ {ϕ ≥ −m}. Indeed, take Eε � ω � Uε. Then∫
Eε∩{ϕ<−m}

(ddcu)n ≤ 1
m

∫
Eε

(−ϕ)(ddcu)n ≤ CEε,ω

m
‖ϕ‖L1(ω) −→ 0

as m → +∞, where the second inequality follows from Theorem 2.1.7 in [2].
Hence, for m large enough we have

(10)
∫

Eε∩{ϕ<−m}
(ddcu)n <

ε

2
.

From (10) it follows that∫
Eε

(ddcu)n =
∫
Lε

(ddcu)n +
∫

Eε\Lε

(ddcu)n ≤
∫
Lε

(ddcu)n +
ε

2
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and hence, (8) implies that (9) is true. Fix m such that (9) is true. We claim
that there exists ε

′
> 0 so small that the function

vε′ = max
{

u∗
E,Ω, (1 − 6ε)u − 3ε +

εϕ ∗ �ε′

m

}
satisfies

(a) vε′ = u∗
E,Ω on a neighborhood of ∂Ω.

(b) vε
′ = (1 − 6ε)u − 3ε +

εϕ∗�
ε
′

m on a neighborhood V of Lε.

For a moment assume that (a) and (b) are satisfied. Then by the Stoke’s theorem
we have ∫

Ω

(ddcu∗
E,Ω)n =

∫
Ω

(ddcvε′ )
n

≥
∫
V

(ddcvε
′ )n

= (1 − 6ε)n
∫
V

(ddcu)n +
εn

mn

∫
V

(ddcϕ ∗ �ε
′ )n

≥ (1 − 6ε)n
∫
V

(ddcu)n

≥ (1 − 6ε)n
∫
Lε

(ddcu)n

> (1 − 6ε)n(α − ε).(11)

Tending ε to 0 in (11) we get ∫
Ω

(ddcu∗
E,Ω)n ≥ α

and the desired conclusion follows. Thus it remains to prove (a) and (b). First
we prove (b). Pick ε

′
> 0 so small and set

V = {z ∈ Uε : ϕ ∗ �ε′ (z) > −m}
where �ε′ is the canonical smooth kernel. Then V is an open neighborhood of
Lε. Indeed, if z ∈ Lε then −m ≤ ϕ(z) < ϕ ∗ �ε′ (z). Hence, z ∈ V . On the other
hand, on Ω we have

(12) (1 − 6ε)u − 3ε +
εϕ ∗ �ε′

m
≥ −1 + 3ε +

εϕ ∗ �ε′

m
.

From the definition of V it follows that

−1 + 3ε +
εϕ ∗ �ε′

m
≥ −1 + 3ε − ε = −1 + 2ε > −1 + ε > u∗

E,Ω

on V . Hence, (b) is satisfied.
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Now we show that (a) is valid. Assume that (a) is false. Then there exist
sequences {xj} ⊂ Ω and {εj}, εj ↓ 0 such that

(i) xj → ξ ∈ ∂Ω.

(ii)u∗
E,Ω(xj) < (1 − 6ε)u(xj) − 3ε +

εϕ∗�εj (xj)

m .

Since the right hand side of (ii) < −3ε and, by the hypothesis on the hypercon-
vexity of Ω it is easy to see that u∗

E,Ω(ξ) = 0 if ϕ(ξ) > −∞, then we must have
ϕ(ξ) = −∞. Hence, lim sup

j→∞
ϕ∗�εj(xj) = −∞ and we get a contradiction because

the left hand side ≥ −1. �

3.3. Example. Now we give an example which shows that if the hypothesis on
the pluripolarity of the set ECn ∩∂Ω is removed then the formula (7) in Theorem
3.2 is not true.

Let Δ = {z ∈ C : |z| < 1} be the unit disc in C.For each r > 0 we denote
Δ(0, r) = {z ∈ C : |z| < r} and Δ(0, r) = {z ∈ C : |z| ≤ r}. Let Ω = Δ2 =
{(z,w) ∈ C

2 : |z| < 1, |w| < 1} be the bidisc in C
2 and E = Δ(0, 1

2 ) × Δ ⊂ Ω.
It is easy to see that E is closed in Ω and E ∩ ∂Ω = Δ(0, 1

2) × ∂Δ, where
∂Δ = {z ∈ C : |z| = 1}. First we prove E ∩ ∂Ω is not pluripolar in C

2. To
get a contradiction we assume that E ∩ ∂Ω is pluripolar. Then there exists
ϕ(z,w) ∈ PSH(C2), ϕ �= −∞ and ϕ|Δ(0, 1

2
)×∂Δ = −∞. For each w ∈ ∂Δ,

the function z → ϕ(z,w) is subharmonic on C and = −∞ on Δ(0, 1
2). Hence,

ϕ(z,w) = −∞ on C. Thus ϕ|C×∂Δ = −∞. By the maximum principle it follows
that ϕ = −∞ on C × Δ which is impossible. Now for each j ≥ 2 set

Ej = Δ
(

0,
1
2

)
× Δ

(
0, 1 − 1

j

)
.

Notice that {Ej} is an increasing sequence of subsets of E and
∞⋃

j≥2
Ej = E.

Proposition 2.2.1 in [2] implies that

C(E,Ω) = lim
j→∞

C(Ej ,Ω) = lim
j→∞

2π
log 2

.
2π

− log(1 − 1
j )

= +∞

where the second equality follows from Theorem 3.1.11 in [2] and the formula
C(Δ(0, r),Δ(0, R)) = 2π

log R−log r . On the other hand, Theorem 3.1.11 in [2] shows
that

u∗
E,Ω = max{u∗

Δ(0, 1
2
),Δ

, u∗
Δ,Δ} = max{u∗

Δ(0, 1
2
),Δ

,−1}

= u∗
Δ(0, 1

2
),Δ

= max{ log |z|
log 2

,−1}

Thus
∫
E

(ddcu∗
E,Ω)2 = 2π

log 2 and the desired conclusion follows.
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4. Relative extremal functions and generalized holomorphic

coverings

In the end of this paper we investigate the relation between the relative ex-
tremal functions through generalized holomorphic coverings. Namely, we prove
the following.
4.1. Theorem. Let D ⊂ C

n and G ⊂ C
m be domains, m ≤ n and h : D → G be

a generalized holomorphic covering outside a complex subvariety A of G. Assume
that G has the property (P). Then for every subset F ⊂ G we have

(13) u∗
h−1(F ),D(z) = u∗

F,G(h(z)), ∀z ∈ D.

Proof. Put E = h−1(F ). First we show that

(14) u∗
F,G(h(z)) ≤ u∗

E,D(z), ∀z ∈ D.

Indeed, it is easy to see that h(E) = F . Let v ∈ PSH−(G), v|F ≤ −1. Then
v ◦ h ∈ PSH−(D), v ◦ h|E ≤ −1. This implies that

(v ◦ h)(z) ≤ u∗
E,D(z), ∀z ∈ D.

Hence,

sup{v(h(z)) : v ∈ PSH−(G), v|F ≤ −1} ≤ u∗
E,D(z), z ∈ D.

Consequently,
u∗

F,G(h(z)) ≤ u∗
E,D(z), z ∈ D

and (14) is proved. Now we show that the reverse inequality

u∗
E,D(z) ≤ u∗

F,G(h(z)), ∀z ∈ D

holds. Assume that v ∈ PSH−(D), v|E ≤ −1. For each a ∈ (G \ A) we can find a
neighborhood Va ⊂ (G \ A) of a such that

h−1(Va) =
∐
α

Uα

where Uα is a neighborhood of xα with h(xα) = a and hα = h|Va : Va → Uα is
biholomorphism for all α ∈ I. Then v ◦ hα ∈ PSH(Va) for all α ∈ I. For x ∈ Va,
set

ṽ(x) =
(
sup{v ◦ hα(x) : α ∈ I}

)∗
.

Then ṽ ∈ PSH(Va). Thus we may define a plurisubharmonic function ṽ ∈
PSH−(G \ A) given by

ṽ(w) =
(
sup{v(t) : t ∈ h−1(w)}

)∗

for all w ∈ (G \ A). Since A is a closed pluripolar set in G, Theorem 2.7.1 in
[3] implies that there exists ũ ∈ PSH−(G) such that ũ|(G\A) = ṽ. We show that
ũ|(h(E)\A)\Z ≤ −1, where Z ⊂ G is a pluripolar set. Indeed, let x ∈ (E \h−1(A)).
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Then h(x) ∈ (F \ A) and for all t ∈ h−1(h(x)) we observe that v(t) ≤ −1. Thus
ũ(w) ≤ −1 for w ∈ (h(E) \ A) \ Z, Z ⊂ G is pluripolar. It follows that

ũ(h(z)) ≤ u∗
(h(E)\A)\Z,G(h(z)), z ∈ D.

Since G has the property (P) then by repeating the arguments presented in
the proof of Theorem 3.1.7 in [2] we deduce that

u∗
(h(E)\A)\Z,G(w) = u∗

h(E),G(w), w ∈ G.

Therefore,
ũ(h(z)) ≤ u∗

h(E),G(h(z))u∗
F,G(h(z)), z ∈ D.

Obviously,
ũ(h(z)) ≥ v(z), z ∈ D \ h−1(A).

However, h−1(A) is a complex subvariety of D and hence, it is a pluripolar set in
D. Hence,

ũ(h(z)) ≥ v(z), z ∈ D.

From the above arguments we arrive at

v(z) ≤ u∗
F,G(h(z)), z ∈ D

and consequently,
u∗

E,D(z) ≤ u∗
F,G(h(z)), z ∈ D.

Thus (13) follows and the proof of Theorem 4.1 is complete. �
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