
ACTA MATHEMATICA VIETNAMICA 269
Volume 34, Number 2, 2009, pp. 269–273

ON MINIMAX AND GENERALIZED LOCAL COHOMOLOGY
MODULES

HERO SAREMI

Abstract. Let a be an ideal of a commutative Noetherian ring R and M ,
N be two finitely generated R-modules. Let t be a non-negative integer.
It is shown that if the local cohomology module Hi

a(N) is minimax for all
i < t, then the generalized local cohomology module Hi

a(M, N) is minimax
for all i < t. Also, we prove that if the generalized local cohomology mod-
ule Hi

a(M, N) is minimax for all i < t, then for any minimax module L
the R-module HomR(R/a, Ht

a(M, N)/L) is finitely generated. In particular,
AssR(Ht

a(M, N)/L) is a finite set.

1. Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring
with non-zero identity, a an ideal of R and M , N two R-modules.

If R is local with maximal ideal m and N is a finitely generated R-module,
then it is known that the local cohomology module H i

m(N) is Artinian and so
HomR(R/m,H i

m(N)) is finitely generated for all i (see [11, Remark 1.3]).
Grothendieck [7] proposed the following conjecture: If a is an ideal of R and N

is a finitely generated R-module, then HomR(R/a,H i
a(N)) is finitely generated

for all i.
Hartshorne [8] showed that this conjecture is false in general. However, it is

known that this conjecture is true in many situations, see [5, 11, 13, 16, 20]. On
the other hand, an important problem in commutative algebra is determining
when the set of associated primes of the local cohomology modules H i

a(N) of
N with respect to a is finite (see [10, Problem 4]). Katzman in [12] gives a
counterexample that this is not true in general. However, it is known that this is
true in many situations, for example see [3, 15, 6]. There are some generalizations
of the theory of local cohomology modules. The following generalization of local
cohomology theory was introduced by Herzog [9] (see also [19]), which is defined
as follows:

H i
a(M,N) = lim−→

n

Exti
R(M/anM,N).
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It is clear that H i
a(R,N) is just the ordinary local cohomology module H i

a(N) of
N with respect to a.

The finiteness results of generalized local cohomology modules are not well
understood. Recently, in [1], it is shown that if M , N are two finitely generated
R-modules and the generalized local cohomology module H i

a(M,N) is finitely
generated for all i < t, then HomR(R/a,Ht

a(M,N)) is a finitely generated R-
module.

The purpose of this note is to extend [3, Theorem 2.2], [1, Theorem 1.2] and
[2, Theorem 2.5] to the class of minimax modules. A module is called a minimax
module, when it has a finite submodule, such that the quotient by it is an Artinian
module (see [21]). It is clear that every finitely generated module and every
Artinian module is minimax. We also show that if M , N are two finitely generated
R-modules and the local cohomology module H i

a(N) is minimax for all i < t, then
H i

a(M,N) is minimax for all i < t. For the definition of local cohomology and its
basic properties, we refer the reader to [4].

2. The results

Lemma 2.1. (i) Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of R-
modules. Then M is minimax if and only if L and N are both minimax. Then
any subquotient of a minimax module as well as any finite direct sum of minimax
modules is minimax.
(ii) Let M and N be two R-modules. If M is minimax and N is finitely generated,
then ExtiR(N,M) and TorR

i (N,M) are minimax for all i ≥ 0.

Proof. (i) see ([2, Lemma 2.1]).
(ii) We only prove the assertion for the Ext modules, and the proof for the

Tor modules is similar. Since R is a Noetherian ring and N is finitely generated,
it follows that N possesses a free resolution

F. : . . . −→ Fn
dn−→ Fn−1

dn−1−→ . . . −→ F1
d1−→ F0 −→ 0,

consisting of finitely generated free modules. If Fi = ⊕nR for some integer n,
then ExtiR(N,M) = H i(HomR(F.,M)) is a subquotient of ⊕nM . Therefore, it
follows from (i), that Exti

R(N,M) is minimax for all i ≥ 0. �

Theorem 2.2. Let M , N be two finitely generated R-modules and that Hj
a(N)

be minimax for all j < t. Then Hj
a(M,N) is minimax for all j < t.

Proof. By [18, Theorem 11.38], we consider the Grothendieck spectral sequence

Ep,q
2 := ExtpR(M,Hq

a(N)) =⇒
p

Hp+q
a (M,N).

Since Ep,q
i is a subquotient of Ep,q

2 for all i ≥ 2, by Lemma 2.1 we deduce that
Ep,q

i is minimax for all i ≥ 2, p ≥ 0, and q < t. There is a finite filtration

0 = φj+1Hj ⊆ φjHj ⊆ . . . ⊆ φ1Hj ⊆ φ0Hj = Hj
a(M,N)
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such that Ei,j−i∞ ∼= φiHj/φi+1Hj for all 0 ≤ i ≤ j. Since Ep,q
i

∼= Ep,q∞ for i
sufficiently large, we have that Ep,q∞ is minimax for all q < t. Hence, using the
exact sequence

0 −→ φi+1Hj −→ φiHj −→ Ei,j−i
∞ −→ 0 (0 ≤ i ≤ j)

we get that Hj
a(M,N) is minimax for all j < t. �

Corollary 2.3. Let M , N be two finitely generated R-modules and that Hj
a(N)

be Artinian for all j < t. Then Hj
a(M,N) is Artinian for all j < t.

Proof. Apply Theorem 2.2 and the fact that the class of minimax modules in-
cludes all Artinian modules. �

The following theorem extends [1, Theorem 1.2], [2, Theorem 2.3] and [14,
Corollary 2.4].

Theorem 2.4. Let M , N be two finitely generated R-modules such that H i
a(M,N)

is a minimax R-module for all i < t. Then HomR(R/a,Ht
a(M,N)) is finitely gen-

erated. In particular, AssR(Ht
a(M,N)) is finite.

Proof. We will induct on t. The case t = 0 is obvious, because H0
a(M,N) ∼=

HomR(M,Γa(N)) is finitely generated and so is HomR(R/a,H0
a(M,N)).

Assume inductively that t ≥ 1 and the result has been proved for all i < t. The
exact sequence

0 −→ Γa(N) −→ N −→ N/Γa(N) −→ 0
induces the long exact sequence

. . . −→ H i
a(M,Γa(N)) α−→ H i

a(M,N)
β−→ H i

a(M,N/Γa(N)) −→ . . . .

By [1, Lemma 1.1], H i
a(M,Γa(N)) is finitely generated and so is Im(α). By using

the left exact functor HomR(R/a,−) on the following exact sequences

0 −→ Im(α) −→ H i
a(M,N) −→ Im(β) −→ 0

and
0 −→ Im(β) −→ H i

a(M,N/Γa(N)),
it is enough for us to show that HomR(R/a,Ht

a(M,N/Γa(N))) is finitely gener-
ated. Hence, we can assume that N is an a-torsion-free R-module and so there
exists an element x ∈ a which is N -regular.

Now the exact sequence

0 −→ N
x−→ N −→ N/xN −→ 0

induces the long exact sequence
. . . −→ H i

a(M,N) x−→ H i
a(M,N) −→ H i

a(M,N/xN) −→ H i+1
a (M,N) x−→

H i+1
a (M,N) −→ . . . .

Therefore we deduce the exact sequence

0 −→ H i−1
a (M,N)/xH i−1

a (M,N) −→ H i−1
a (M,N/xN) −→ 0 :Hi

a(M,N) x −→ 0.
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By Lemma 2.1(i) and the hypothesis, H i−1
a (M,N/xN) is minimax for all i < t,

so that, by the inductive hypothesis, HomR(R/a,Ht−1
a (M,N/xN)) is finitely

generated.
On the other hand, the exact sequence

0 −→ Ht−1
a (M,N)/xHt−1

a (M,N) −→ Ht−1
a (M,N/xN) −→ 0 :Ht

a(M,N) x −→ 0

induces the long exact sequence
0 −→ HomR(R/a,Ht−1

a (M,N)/xHt−1
a (M,N)) −→ HomR(R/a,Ht−1

a (M,N/xN))
−→ HomR(R/a, 0 :Ht

a(M,N) x) −→ Ext1R(R/a,Ht−1
a (M,N)/xHt−1

a (M,N)).

HomR(R/a,Ht−1
a (M,N)/xHt−1

a (M,N)) is finitely generated, since HomR(R/a,
Ht−1

a (M,N/xN)) is finitely generated.
Also, by [17, Proposition 4.3] Ext1R(R/a,Ht−1

a (M,N)/xHt−1
a (M,N)) is finitely

generated. Therefore HomR(R/a, 0 :Ht
a(M,N) x) is finitely generated. Now, as

x ∈ a the result follows. �

Corollary 2.5. Let N be a finitely generated R-module and let t be a non-negative
integer such that H i

a(N) is minimax for all i < t. Then H i
a(N) is a-cofinite for

all i < t, that is, ExtjR(R/a,H i
a(N)) is finitely generated for all j and all i < t.

Proof. We proceed by induction on i. The case i = 0 is obvious as H0
a(N) is

finitely generated. So, let i > 0 and the result has been proved for smaller values
of i. By induction assumption, Hj

a(N) is a-cofinite for j = 0, . . . , i− 1. Hence by
Theorem 2.4, HomR(R/a,H i

a(N)) is finitely generated and by [17, Proposition
4.3] the result follows. �

The following corollary immediately follows by Corollary 2.5.

Corollary 2.6. Let N be a finitely generated R-module. Then

inf{i | H i
a(N) is not minimax} ≤ inf{i | H i

a(N) is not a-cofinite}.
The following theorem extends [2, Theorem 2.5] and [3, Theorem 2.2].

Theorem 2.7. Let t be a non-negative integer such that H i
a(M,N) is mini-

max for all i < t and let L be a minimax submodule of Ht
a(M,N). Then

HomR(R/a,Ht
a(M,N)/L) is finitely generated. In particular, the set AssR(Ht

a(M,
N)/L) is finite.

Proof. By Theorem 2.4, HomR(R/a,Ht
a(M,N)) is finitely generated. On the

other hand, according to [17, Proposition 4.3], L is a-cofinite. Now, the exact
sequence

0 −→ L −→ Ht
a(M,N) −→ Ht

a(M,N)/L −→ 0

induces the following exact sequence

HomR(R/a,Ht
a(M,N)) −→ HomR(R/a,Ht

a(M,N)/L) −→ Ext1R(R/a, L).

Consequently HomR(R/a,Ht
a(M,N)/L) is finitely generated. �
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