
ACTA MATHEMATICA VIETNAMICA 245
Volume 34, Number 2, 2009, pp. 245–256

QUASI-CONVEX DUALITY FOR A MIXED 0-1 VARIABLE
PROBLEM AND APPLICATIONS IN PRODUCTION

PLANNING WITH SET UP COSTS

P. T. THACH

Abstract. One of the intractable nonlinear structures comes from the 0-1
variables that formulate, for instance, the discontinuity of set up costs. In this
article we consider a mixed 0-1 variable problem that occurs in production
planning. By quasi-convex duality we can solve efficiently the problem by
linear programs.

1. Introduction

A special class of nonlinear mathematical programming problems, that is quasi-
concave maximization, has attracted an increasing attention from practitioners
in both applications and theoretical studies (cf.[1]-[6]). In certain applications,
the discontinuity of set up costs is hardly represented within the framework of
convexity, but it can be well treated by using the extension in quasi-convexity.
In theoretical studies, quasi-concave maximization problems have been equipped
with optimality conditions, in which the supdifferential calculus is carried out
by the quasi-supdifferentials (cf.[5, 6]). The zero gap duality scheme has also
been developed for quasi-concave maximization problems, and on the basis of
this scheme we can obtain appropriate solution methods. In Section 2 a mixed
0-1 variable problem is formulated for an application in production planning. In
Section 3 the mixed 0-1 variable problem is reduced to a quasi-concave max-
imization problem. In Section 4 the reduced problem is converted by duality
into a quasi-affine minimization problem under linear constraints. In Section 5
we present an optimality criterion and a solution method that decomposes the
problem into linear programs. Finally, several concluding remarks are drawn in
Section 6.

2. Problem setting

In the production planning problem of our interest we have to produce a prod-
uct t from (n − 1) resources x1, x2, . . . , xn−1, and a monetary budget xn (n > 1)
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by a production process in which m technologies (m ≥ 1) are performed con-
secutively from the first technology to the m-th technology. In the i-th tech-
nology (i ∈ {1, 2, . . . ,m}) the set up cost is si (si > 0), and in order to pro-
duce one unit of the product we consume ai

j (ai
j ≥ 0) units of the j-th resource

(j ∈ {1, 2, . . . , n − 1}) and ai
n monetary units. However, the i-th technology

has a capacity t∗i (t∗i > 0) of the product, i.e., the i-th technology can produce
at most the value t∗i of the product. A special case, in which ai

j = aj for any
i ∈ {1, 2, . . . ,m} and any j ∈ {1, 2, . . . , n}, refers to a single technology produc-
tion process where t∗i is the capacity of the i-th production level and si is the
capacity improvement cost.

Denote by ti (ti ≥ 0) the value of the product produced by the i-th technology.
Then, the vector (t1, t2, . . . , tm)T is acceptable if

0 ≤ ti ≤ t∗i i = 1, 2, . . . ,m,(1)
δ(ti)(t∗i−1 − ti−1) = 0 i = 2, 3, . . . ,m,(2)

where

δ(ti) =
{

0 if ti = 0,
1 if ti > 0.

The condition (1) tells that ti satisfies the capacity constraint, and the condition
(2) tells that the m technologies are performed consecutively, i.e., the i-th tech-
nology is performed (ti > 0) only if the (i − 1)-th technology was performed in
full capacity.

An acceptable product vector (t1, t2, . . . , tm)T ∈ Rm
+ is called feasible to a

vector x = (x1, x2, . . . , xn)T ∈ Rn
+ of the resources and the monetary budget if

xj ≥
m∑

i=1

ai
jti j = 1, 2, . . . , n − 1,(3)

xn ≥
m∑

i=1

ai
nti +

m∑
i=1

δ(ti)si.(4)

The condition (3) means that the products t1, t2, . . . , tm consume the value
∑m

i=1 ai
jti

of the j-th resource (j ∈ {1, 2, . . . , n−1}) that does not exceed the given value xj

of the j-th resource, and the condition (4) means that the products t1, t2, . . . , tm
consume the monetary value

m∑
i=1

ai
nti +

m∑
i=1

δ(ti)si

that does not exceed the given monetary value xn.
The vector x = (x1, x2, . . . , xn)T ∈ Rn

+ of the resources and the monetary
budget is feasible if it satisfies the following constraint

(5) x ∈ X,
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where X is a bounded polyhedral set with the nonempty interior in Rn
+ satisfying

the free disposal condition:

x ∈ X =⇒ y ∈ X ∀y : 0 ≤ y ≤ x.

An illustration of the constraint (5) can be found in a multiple integrated pro-
duction with a given budgetary constraint that can be interpreted as follows.
There are � plants that integratedly produce the resources x1, x2, . . . , xn−1. In
the k-th plant (k ∈ {1, 2, . . . , �}) one monetary unit integratedly yields bk

j units
of the j-th resource (j = 1, 2, . . . , n − 1), and consequently μk monetary units
integratedly yields μkb

k
j units of the j-th resource (j = 1, 2, . . . , n − 1). For a

given M budgetary units the constraint (5) is represented as follows

xj ≤
�∑

k=1

μkb
k
j j = 1, 2, . . . , n − 1,(6)

xn +
�∑

k=1

μk ≤ M,(7)

xj ≥ 0 j = 1, 2, . . . , n.(8)

In this illustrative example the feasible set X is a bounded polyhedral subset
in Rn

+ defined via (6)-(8). Now our problem is to maximize the product t =
t1 + t2 + · · · + tm, subject to the constraints (1)-(5) :

(9)

max t1 + t2 + · · · + tm,
s.t. 0 ≤ ti ≤ t∗i i = 1, 2, . . . ,m,

δ(ti)(t∗i−1 − ti−1) = 0 i = 2, 3, . . . ,m,

xj ≥
m∑

i=1

ai
jti j = 1, 2, . . . , n − 1,

xn ≥
m∑

i=1

ai
nti +

m∑
i=1

δ(ti)si,

(x1, x2, . . . , xn)T ∈ X.

Since δ(ti) is a 0-1 variable and the constraint (2) is of the complementary type,
the above problem is a nonlinear program.

3. Reduction to a quasi-concave maximization problem

For any acceptable vector (t1, t2, . . . , tm)T we define

(10) t =
m∑

i=1

ti.

Obviously,

0 ≤ t ≤
m∑

i=1

t∗i .
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The acceptable vector (t1, t2, . . . , tm)T can be uniquely defined through the equa-
tion (10) for a given t ∈ [0, t∗] where t∗ =

∑m
i=1 t∗i , i.e., if an acceptable vector

(t′1, t′2, . . . , t′m)T satisfies the condition (10) then t′i = ti for any i = 1, 2, . . . ,m.
Indeed, if there is an index i ∈ {1, 2, . . . ,m} such that ti �= t′i then without loss
of generality we can assume that ti < t′i. So, from the conditions (1) and (2) it
follows that on one hand

tr = 0 ≤ t′r ∀r ∈ {i + 1, i + 2, . . . ,m},
and on the other hand

t′r = t∗r ≥ tr ∀r ∈ {1, 2, . . . , i − 1}.
Consequently, we arrive at a contradiction:

(11) t =
m∑

i=1

ti <
m∑

i=1

t′i = t.

From now on for given t ∈ [0, t∗] we denote by (t1, t2, . . . , tm)T the unique accept-
able vector satisfying the condition (10). It is simple to see that if t′ ∈ [0, t∗] and
t′ ≥ t then t′i ≥ ti for all i = 1, 2, . . . ,m. Let us define

fj(t) =
m∑

i=1

ai
jti j = 1, 2, . . . , n − 1,

fn(t) =
m∑

i=1

ai
nti +

m∑
i=1

δ(ti)si.

Since t′i ≥ ti i = 1, 2, . . . ,m for t′ ≥ t, the functions fj, j = 1, 2, . . . , n, are
nondecreasing on [0, t∗] and

fj(0) = 0 j = 1, 2, . . . , n.

Setting
f∗

j = fj(t∗) j = 1, 2, . . . , n
we can see that the function fj is defined on [0, t∗] with the value in [0, f∗

j ] for
any j = 1, 2, . . . , n. Without loss of generality we can assume that f∗

j > 0 for any
j = 1, 2 . . . , n. Indeed, f∗

j = 0 means that the j-th resource is not consumed in
the production process and therefore it can be excluded from the model of our
consideration. Note that the functions fj, j = 1, 2, . . . , n−1, are continuous while
the function fn is lower semi-continuous but may not be upper-semicontinuous on
[0, t∗]. With the above notations the problem (9) can be reformulated as follows

(12)

max t,
s.t. 0 ≤ t ≤ t∗,

xj ≥ fj(t) j = 1, 2, . . . , n,
x ∈ X.

For any j = 1, 2, . . . , n we define the function f−1
j : [0, f∗

j ] �→ [0, t∗] as follows

(13) f−1
j (θ) = max{t : fj(t) ≤ θ}.
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It is obvious that f−1
j is nondecreasing on [0, f∗

J ] for any j = 1, 2, . . . , n.

Proposition 3.1. For any j = 1, 2, . . . , n, any t ∈ [0, t∗] and any θ ∈ [0, f∗
j ] we

have
fj(t) ≤ θ ⇐⇒ t ≤ f−1

j (θ).

Proof. First suppose t ≤ f−1
j (θ). By the definition (13) this implies

t ≤ max{ξ : fj(ξ) ≤ θ},
and consequently there is ξ such that

fj(ξ) ≤ θ and t ≤ ξ.

Since t ≤ ξ, we have fj(t) ≤ fj(ξ). This together with fj(ξ) ≤ θ implies fj(t) ≤ θ.
Conversely suppose fj(t) ≤ θ. This implies f−1

j fj(t) ≤ f−1
j (θ). So, by the

definition (13) we have

f−1
j (fj(t)) = max{ξ : fj(ξ) ≤ fj(t)} ≥ t,

completing the proof. �

As a consequence of Proposition 3.1 we have Proposition 3.2 as follows.

Proposition 3.2. The function f−1
j is upper semi-continuous on [0, f∗

j ].

Proof. By Proposition 3.1 we can see that (t, θ) belongs to the epigraph of fj if
and only if it belongs to the hypograph of f−1

j . Since fj is lower semi-continuous,
its epigraph is closed. Therefore, the hypograph of f−1

j is also closed. Thus, the
function f−1

j is upper semi-continuous. �

Proposition 3.3. If ai
j > 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, then f−1

j is contin-
uous on [0, f∗

j ] for any j = 1, 2, . . . , n.

Proof. If ai
j > 0, i = 1, 2, . . . ,m j = 1, 2, . . . , n − 1, then it is obvious that

fj, j = 1, 2, . . . , n − 1, are increasing and continuous, and therefore f−1
j , j =

1, 2, . . . , n−1, are their usual inverses, respectively. Hence, f−1
j , j = 1, 2, . . . , n−1,

are continuous. If ai
n > 0, i = 1, 2, . . . ,m, then fn is increasing. By virtue of

Proposition 3.2 it remains to prove that f−1
n is lower semi-continuous. Indeed,

suppose that f−1
n (θ) > t for some θ ∈ [0, f∗

n] and some t ∈ [0, t∗]. Then

max{ξ : fn(ξ) ≤ θ} > t.

So, there is ξ′ ∈ [0, t∗] such that fn(ξ′) ≤ θ and ξ′ > t. Let ξ′′ ∈ (t, ξ′) and
θ′ = fn(ξ′′). Then θ′ = fn(ξ′′) < fn(ξ′) ≤ θ and therefore

f−1
n (θ′) = max{ξ : fn(ξ) ≤ θ′} ≥ ξ′′ > t.

So, the subset {θ ∈ [0, f∗
n] : f−1

n (θ) > t} is open in [0, f∗
n] for any t ∈ [0, t∗], i.e.,

f−1
n is lower semi-continuous. �
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By virtue of Proposition 3.1 we can transform the problem (12) into the fol-
lowing problem

max t,

s.t. t ≤ f−1
j (xj) j = 1, 2, . . . , n,

0 ≤ xj ≤ f∗
j j = 1, 2, . . . , n,

x ∈ X,

or equivalently,

(14)
max F (x),
s.t. x ∈ X,

where

F (x) = min{f−1
j (xj) j = 1, 2, . . . , n},

X = {x ≥ 0 : xj ≤ f∗
j j = 1, 2, . . . , n, x ∈ X}.

Since F is a minimum of nondecreasing upper semi-comtinuous functions, F is a
quasi-concave upper semi-continuous function. Therefore, the problem (14) is a
quasi-concave maximization problem.

4. Duality

Set
x∗ = (f∗

1 , f∗
2 , . . . , f∗

n)T .

If x∗ ∈ X then x∗ is an optimal solution of the problem (14). Indeed, since x∗ ≥ x
for any x ∈ X, from the nondecreasing property of F we have

F (x∗) ≥ F (x) ∀x ∈ X,

i.e., x∗ is optimal to (14). For the nontriviality we assume from now on that

(15) x∗ /∈ X.

Define
P = {p ≥ 0 : pT x ≤ 1 ∀x ∈ X}.

The boundedness and the nonempty interior of P follows from the nonempty
interior and the boundedness of X, repectively. It is simple to see that P is a
bounded, closed polyhedral subset with the nonempty interior and satisfying

p ∈ P =⇒ q ∈ P ∀q : 0 ≤ q ≤ p.

In the terminology of Convex Analysis P is called the polar of X, and it has been
known that X is also the polar of P :

X = {x ≥ 0 : pT x ≤ 1 ∀p ∈ P}.
For p ∈ Rn

+ we define

(16) g(p) = max{F (x) : pT x ≤ 1, 0 ≤ x ≤ x∗}.
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Then

g(p) = max{t : t ≤ F (x), pT x ≤ 1, 0 ≤ x ≤ x∗}
= max{t : pT x ≤ 1, t ≤ f−1

j (xj), 0 ≤ xj ≤ f∗
j j = 1, 2, . . . , n}

= max{t : pT x ≤ 1, fj(t) ≤ xj , 0 ≤ xj ≤ f∗
j j = 1, 2, . . . , n}.

Therefore

(17) g(p) = max

⎧⎨
⎩t :

n∑
j=1

pjfj(t) ≤ 1, t ∈ [0, t∗]

⎫⎬
⎭ .

Theorem 4.1. The function g is quasi-affine on Rn
+.

Proof. Let p1 ∈ Rn
+, p2 ∈ Rn

+ and γ ∈ (0, 1). The function g is quasi-convex,
because by virtue of (16) we have

g(γp1 + (1 − γ)p2) = max{F (x) : (γp1 + (1 − γ)p2)T x ≤ 1, 0 ≤ x ≤ x∗}
≤ max{max{F (x) : p1T

x ≤ 1, 0 ≤ x ≤ x∗},
max{F (x) : p2T

x ≤ 1, 0 ≤ x ≤ x∗}}
= max{g(p1), g(p2)}.

It remains to prove the quasi-concavity of g. Let t1 = g(p1), t2 = g(p2). Then by
virtue of (17) we have

(18)

n∑
j=1

p1
jfj(t1) ≤ 1,

n∑
j=1

p2
jfj(t2) ≤ 1.

Let t0 = min{t1, t2}. Then from (18) it follows that
n∑

j=1

p1
jfj(t0) ≤ 1,

n∑
j=1

p2
jfj(t0) ≤ 1.

So,
n∑

j=1

(γp1
j + (1 − γ)p2

j )fj(t0) ≤ 1.

This together with (17) implies

g(γp1 + (1 − γ)p2) ≥ t0 = min{g(p1), g(p2)},
proving the quasi-concavity of g. �
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Theorem 4.2. For any p ∈ Rn
+ and q ∈ Rn

+ we have the following equivalence

(19) g(p) > g(q) ⇐⇒
n∑

j=1

qjfj(g(p)) > 1.

Proof. Suppose
n∑

j=1

qjfj(g(p)) ≤ 1.

By virtue of (17) we have g(q) ≥ g(p). Conversely suppose
n∑

j=1

qjfj(g(p)) > 1.

Since fj, j = 1, 2, . . . , n, are lower semi-continuous, there is α < g(p) such that
n∑

j=1

qjfj(α) > 1.

By virtue of (17) we have g(q) ≤ α < g(p). �

Now a dual problem of the primal problem (14) can be stated as follows

(20)
min g(p),
s.t. p ∈ P.

The duality between the primal problem and the dual problem is presented in
the following theorem.

Theorem 4.3. We have the following assertions.
(i) Both the primal problem and the dual problem are solvable, and their optimal

values are equal;
(ii) If p is an optimal solution of the dual problem then x = (x1, x2, . . . , xn)T is

an optimal solution of the primal problem, where xj = fj(g(p)), j = 1, 2, . . . , n.

Proof. Let x ∈ X and p ∈ P . Then we have pT x ≤ 1. From (16) it follows that

g(p) = max{F (x′) : pT x′ ≤ 1, 0 ≤ x′ ≤ x∗} ≥ F (x).

Thus,

(21) g(p) ≥ F (x) ∀x ∈ X ∀p ∈ P.

Since g is quasi-affine and P is a polytope, the dual problem (20) achieves an
optimal solution at a vertex of P . In particular, the dual problem is solvable.
Let p be an optimal solution of the dual problem. Set

xj = fj(g(p)) j = 1, 2, . . . , n,

x = (x1, x2, . . . , xn)T .
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If there is p ∈ P such that pTx > 1 then
n∑

j=1

pjfj(g(p)) > 1

and consequently by virtue of Theorem 4.2 we have g(p) > g(p), contradictory
with the optimality of p. So, pTx ≤ 1 for any p ∈ P . This implies x ∈ X.
Moreover,

F (x) = min{f−1
j (xj) j = 1, 2, . . . ,m}

= min{f−1
j fj(g(p)) j = 1, 2, . . . , n}

= min{max{t : fj(t) ≤ fj(g(p))} j = 1, 2, . . . , n}
≥ g(p).

This together with (21) implies that x is optimal to the primal problem, and the
optimal value F (x) of the primal problem and the optimal value g(p) of the dual
problem are equal. �

5. Optimality criterion and solution method

The following theorem gives us an optimality criterion in the dual program.

Theorem 5.1. Let p ∈ P . A sufficient and necessary condition for the optimality
of p in the dual problem is as follows

(22) max

⎧⎨
⎩

n∑
j=1

pjfj(g(p)) : p ∈ P

⎫⎬
⎭ ≤ 1.

If the above condition does not hold then q will be a feasible solution of the dual
problem that is better than p : g(q) < g(p), where q is an optimal solution of the
following linear program

(23) max
n∑

j=1

pjfj(g(p)), s.t. p ∈ P.

Proof. Suppose that the condition (22) holds at p ∈ P . Then
n∑

j=1

pjfj(g(p)) ≤ 1 ∀p ∈ P.

By Theorem 4.2 this implies

g(p) ≤ g(p) ∀p ∈ P,

i.e., p is optimal to the dual problem. If the condition (22) does not hold at p ∈ P
and q is an optimal solution of the linear program (23), then

n∑
j=1

qjfj(g(p)) > 1.
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Again by Theorem 4.2 this implies g(q) < g(p), and consequently p is not optimal
to the dual problem. �
Theorem 5.2. The subset ⎧⎨

⎩p ∈ P :
n∑

j=1

pjf
∗
j > 1

⎫⎬
⎭

is nonempty. Moreover, for any vector p in this subset we have

(24) g(p) < t∗.

Proof. Since x∗ = (f∗
1 , f∗

2 , . . . , f∗
n)T /∈ X and P is the polar of X , the subset⎧⎨

⎩p ∈ P :
n∑

j=1

pjf
∗
j > 1

⎫⎬
⎭

is nonempty. Let p belong to this subset. Then

1 <

n∑
j=1

pjf
∗
j =

n∑
j=1

pjfj(t∗).

Therefore

g(p) = max

⎧⎨
⎩t :

n∑
j=1

pjfj(t) ≤ 1, 0 ≤ t ≤ t∗

⎫⎬
⎭ < t∗,

proving (24). �

On the basis of the above theorems we obtain the following algorithm to solve
both the primal problem and the dual problem.
Algorithm
Initialization. Let p0 be an optimal basic solution of the following linear program

max
n∑

j=1

pjf
∗
j , s.t. p ∈ P.

Set k = 0.
Iteration k (k = 0, 1, 2, . . .)

• Step 1. Compute g(pk) :

g(pk) = max

⎧⎨
⎩t :

n∑
j=1

pk
j fj(t) ≤ 1, t ∈ [0, t∗]

⎫⎬
⎭ .

• Step 2. Solve the following linear program

(25) max
n∑

j=1

pjfj(g(pk)), s.t. p ∈ P,

obtaining its optimal basic solution qk.
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• Step 3. If

(26)
n∑

j=1

qk
j fj(g(pk)) ≤ 1,

then stop: pk is an optimal solution of the dual problem and xk =
(xk

1 , x
k
2 , . . . , x

k
n)T , where xk

j = fj(g(pk)), j = 1, 2, . . . , n, is an optimal
solution of the primal problem, otherwise set pk+1 = qk and go to itera-
tion k + 1.

For the convergence of the algorithm we have the following theorems.

Theorem 5.3. If the algorithm does not stop at iteration k (k ≥ 0) then

(27) g(pk+1) < g(pk).

Proof. Suppose that the algorithm does not stop at iteration k. Then
n∑

j=1

qk
j fj(g(pk)) > 1.

By Theorem 4.2 this implies g(qk) < g(pk). So, we have (27). �
Theorem 5.4. The algorithm stops after finitely many iterations, yielding opti-
mal solutions of the primal and dual problems, respectively.

Proof. If the algorithm does not stop after finitely many iterations, then it gen-
erates an infinite sequence {pk k = 1, 2, 3, . . .}, where pk is a basic solution and
g(pk+1) < g(pk) for any k. So, pk′ �= pk for any k′ �= k. Thus, we arrive at a
contradiction with the fact that the number of basic solutions is finite. Suppose
now that the algorithm stops at iteration k. Then, since qk solves (25), we have

1 ≥
n∑

j=1

qk
j fj(g(pk)) = max

⎧⎨
⎩

n∑
j=1

pjfj(g(pk)) : p ∈ P

⎫⎬
⎭ .

By Theorem 5.1 this implies that pk solves the dual problem, and therefore by
Theorem 4.3 xk solves the primal problem. �

6. Concluding remarks

In this article we are concerned with a problem of maximizing the production
under the conditions of limited resources, a monetary budget and a consecutive
multiple technology performance. The set up costs involved in the production
create the 0-1 variables indicating the technology complex. Using the acceptabil-
ity of the productions we reduce the mixed 0-1 variable production problem to
a quasi-concave maximization problem. By duality the reduced problem can be
converted into a quasi-affine minimization under linear constraints in the dual
space. On the basis of strong duality we can obtain an optimal solution of the
primal problem from an optimal solution of the dual problem. The optimality
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test in the dual problem can be realized at the cost of a linear program. Thus,
we are able to construct an algorithm to decompose the dual problem into a fi-
nite sequence of linear programs. The algorithm is efficient because all the linear
programs have the same set of linear constraints.
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