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GLOBAL ATTRACTORS FOR A CLASS OF DEGENERATE
PARABOLIC EQUATIONS

CUNG THE ANH AND PHAN QUOC HUNG

Abstract. The aim of this paper is to prove the existence of global solutions
and global attractors for a class of semilinear degenerate parabolic equations
in an arbitrary domain.

1. Introduction

The understanding of the asymptotic behavior of dynamical systems is one of
the most important problems of modern mathematical physics. One way to attack
the problem for dissipative dynamical system is to consider its global attractor.
This is an invariant set that attracts all the trajectories of the system. The ex-
istence of the global attractor has been derived for a large class of PDEs (see
[6, 12] and references therein). One of the most studied gradient partial differ-
ential equations is the reaction-diffusion equation, which models several physical
phenomena like heat conduction, population dynamics, etc. There is an exten-
sive literature concerning the existence and asymptotic behavior of solutions of
reaction-diffusion equations and systems, both in bounded and in unbounded do-
mains (see e.g. [2, 3, 6-9, 12, 13, 15, 16]). However, to the best of our knowledge,
little seems to be known for the asymptotic behavior of solutions of degenerate
equations.

In this paper we study the following semilinear degenerate parabolic equation
with variable, nonnegative coefficients, defined on an arbitrary domain (bounded
or unbounded) Ω ⊂ R

N , N � 2,

ut − div(σ(x)∇u) + f(u) + g(x) = 0, x ∈ Ω, t > 0

u(x, 0) = u0, x ∈ Ω(1.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0.

Problem (1.1) can be derived as a simple model for neutron diffusion (feedback
control of nuclear reactor) (see [5]). In this case u and σ stand for the neutron
flux and neutron diffusion respectively.
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The degeneracy of problem (1.1) is considered in the sense that the measurable
nonnegative diffusion coefficient σ(x) is allowed to have at most a finite number
of (essential) zeros at some points. Motivated by [4], where a degenerate elliptic
problem is studied, we assume that the function σ : Ω → R satisfies the following
assumptions

(Hα) σ ∈ L1
loc(Ω) and for some α ∈ (0, 2), lim infx→z |x−z|−ασ(x) > 0 for every

z ∈ Ω, when the domain Ω is bounded.
(H∞

β ) σ satisfies condition (Hα) and lim inf |x|→∞ |x|−βσ(x) > 0 for some β > 2,
when the domain Ω is unbounded.

The physical motivation of the assumption (Hα) is related to the modelling
of reaction diffusion processes in composite materials, occupying the bounded
domain Ω, which at some points behave as perfect insulator. Following [5, p. 79],
when at some points the medium is perfectly insulating, it is natural to assume
that σ(x) vanishes at these points. On the other hand, when condition (H∞

β )
is satisfied, it is easy to see that the diffusion coefficient has to be unbounded.
Physically, this situation corresponds to a nonhomogeneous medium, occupying
the unbounded domain Ω, which behaves as a perfect conductor in Ω\BR(0) (see
[5, p. 79]), and as a perfect insulator in a finite number of points in BR(0). Note
that in various diffusion processes, the equation involves diffusion σ(x) ∼ |x|α, α ∈
(0, 2), in the case of a bounded domain, and σ(x) ∼ |x|α + |x|β , α ∈ (0, 2), β > 2,
in the case of an unbounded domain.

Denote A = −div(σ(x)∇), the positive and self-adjoint operator with domain
of definition

D(A) = {u ∈ D1
0(Ω, σ) : Au ∈ L2(Ω)}

(see Subsection 2.1) and define the corresponding Nemytski map f by

f(u)(x) = f(u(x)), u ∈ D1
0(Ω, σ).

Then, the problem (1.1) can be formulated as an abstract evolutionary equation

(1.2)
du

dt
+Au+ f(u) + g = 0, u(0) = u0.

The main purpose of this paper is to study the existence of a global attractor for
the dynamic system generated by (1.1). We restrict ourselves to the case N � 2
for the coherence of presentation, since the case N = 1 is similar to the higher
dimensional case with respect to the definition and properties of the appropriate
functional setting.

Let us describe the organization and methods used in this paper. For the
clarity, we first consider the case of a bounded domain in Section 3 and Section
4, for the weight function σ(x) satisfying condition (Hα). More precisely, in
Section 3 we consider problem (1.1), where g ∈ L2(Ω), f : R → R satisfies the
following conditions

(1.3) |f(u) − f(v)| � C1|u− v|(1 + |u|ρ + |v|ρ), 0 � ρ � 2 − α

N − 2 + α
,
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(1.4) f(u)u � −μu2 −C2,

(1.5) F (u) � −1
2
μu2 − C2,

where C2 � 0, F is the primitive F (y) =
y∫
0

f(s)ds of f , μ < λ1, λ1 is the first

eigenvalue of the operator A in Ω with homogeneous Dirichlet condition (see Sec.
2.1). The main aim of Section 3 is to prove the existence of a global attractor in
the space D1

0(Ω, σ). Firstly, under the assumption (1.3), one can check that the
Nemytski f is a locally Lipschitzian map from D1

0(Ω, σ) to L2(Ω). This combining
with A being a sectorial operator guarantees the existence and uniqueness of a
local solution. Then, by using the condition (1.5) and the remarkable fact that
the equation admits a natural Lyapunov functional

(1.6) Φ(u) =
1
2
‖u‖2

D1
0

+
∫

Ω
(F (u) + gu)dx,

we are able to prove that the solution exists globally in time. Besides, we also
show that orbits of bounded sets are bounded. Finally, by proving the asymp-
totically compact property of the semigroup S(t) generated by (1.1) and using
the dissipativeness condition (1.4) for proving the boundedness of the set E of
equilibrium points, we obtain the existence of a global attractor A in D1

0(Ω, σ).

Since the critical exponent of the embeddingD1
0(Ω, σ) ↪→ Lp(Ω) is 2∗α = 2N

N−2+α ,
condition ρ � 2−α

N−2+α in (1.3) is necessary to ensure that the Nemytski f is a map
from D1

0(Ω, σ) into L2(Ω) and the Lyapunov function Φ(u(t)) is well defined.
These are basic tools for the approach method with respect to gradient systems.
In Section 4, however, in the case f(u) has the following form

(1.7) f(u) = k|u|ρu+ h(u), 0 � ρ � 4 − 2α
N − 2 + α

= 2∗α − 2,

where k > 0 and h ∈ C(R) satisfies |h(u)| � C(1 + |u|γ), γ ∈ [0, ρ + 1), and
some certain conditions (see Sec. 4), we are able to prove the existence of a
global attractor in the space L2(Ω). Here we prove the existence of a global weak
solution in L2(Ω) via the Galerkin method (see [10]). As a result, we obtain the
existence of an absorbing set of the semigroup S(t) in L2(Ω). Then we prove the
asymptotic compactness of S(t) in L2(Ω), and we therefore obtain the existence
of a global attractor of S(t) in L2(Ω). Finally, in Section 5 we give some similar
results on the existence of global attractors in the case of an unbounded domain,
for the weight function σ(x) satisfying the condition (H∞

β ).

2. Preliminary results

2.1. Function spaces. We recall some of the basic results on functional spaces
defined in [4]. Let N � 2, α ∈ (0, 2), and

2∗α =

{
4
α ∈ (2,+∞) if α ∈ (0, 2), N = 2,

2N
N−2+α ∈ (2, 2N

N−2) if α ∈ (0, 2), N � 3.
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The exponent 2∗α has the role of the critical exponent in the classical Sobolev
embedding. We have the following generalized version of Poincaré inequality ([4,
Corollary 2.6]).

Lemma 2.1. Let Ω be a bounded (unbounded) domain of R
N , N � 2, and assume

that condition (Hα) ((H∞
β )) is satisfied. Then there exists a constant c > 0, such

that

(2.1)
∫
Ω

|u|2dx � c

∫
Ω

σ(x)|∇u|2dx, for every u ∈ C∞
0 (Ω).

We emphasize that conditions (Hα), (H∞
β ) are optimal in the following sense:

For α > 2 there exist functions such that (2.1) is not satisfied (see [4]). Note also
that in the case of an unbounded domain, (2.1) does not hold in general, if β � 2
in (H∞

β ). We refer also to the examples of [1].

The natural energy space for the problem (1.1) involves the space D1
0(Ω, σ),

defined as the closure of C∞
0 (Ω) with respect to the norm

‖u‖D1
0

:=
( ∫

Ω

σ(x)|∇u|2dx
)1/2

.

The space D1
0(Ω, σ) is a Hilbert space with respect to the scalar product

(u, v)σ :=
∫
Ω

σ(x)∇u∇vdx.

The two following lemmas refer to the continuous and compact inclusion of
D1

0(Ω, σ) ([4, Propositions 3.3-3.5]).

Lemma 2.2. Assume that Ω is a bounded domain in R
N , N � 2, and σ satisfies

(Hα). Then the following embeddings hold

i) D1
0(Ω, σ) ↪→ L2∗α(Ω) continuously,

ii) D1
0(Ω, σ) ↪→ Lp(Ω) compactly if p ∈ [1, 2∗α).

Lemma 2.3. Assume that Ω is an unbounded domain in R
N , N � 2, and σ

satisfies (H∞
β ). Then the following embeddings hold

i) D1
0(Ω, σ) ↪→ Lp(Ω) continuously for every p ∈ [2∗β , 2

∗
α],

ii) D1
0(Ω, σ) ↪→ Lp(Ω) compactly if p ∈ (2∗β , 2

∗
α).

Assuming condition (Hα) or (H∞
β ), the operator A = −div(σ(x)∇) is positive

and self-adjoint, with domain of definition

D(A) = {u ∈ D1
0(Ω, σ) : Au ∈ L2(Ω)}.

The space D(A) is a Hilbert space endowed with the usual graph scalar product.
Moreover, there exists a complete system of eigensolutions (ej , λj),

−div(σ(x)∇ej) = λjej , j = 1, 2, . . .
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0 < λ1 � λ2 � . . . , λj → ∞, as j → ∞.

The fraction powers are defined as follows: For every s > 0, As is a bounded self-
adjoint operator in L2(Ω), with domain D(As) to be a dense subset in L2(Ω).
The operator As is strictly positive and injective. Also, D(As) endowed with the
scalar product (u, v)D(As) = (Asu,Asv)L2 , becomes a Hilbert space. We write
as usual, Xs = D(As) and we have the following identifications D(A−1/2) =
D−1

0 (Ω, σ) = the dual of D1
0(Ω, σ), D(A0) = L2(Ω) and D(A1/2) = D1

0(Ω, σ).
Moreover, the injection Xs1 ⊂ Xs2 , s1, s2 ∈ R, s1 > s2, is compact and dense.

2.2. Existence of global attractors. For convenience of the readers, we sum-
marize some definitions and results of theory of infinite dimensional dynamical
dissipative systems in [6, 12] which we will use later.

Let X be a metric space (not necessarily complete) with metric d. If C ⊂
X and b ∈ X we set ρ(b, C) := infc∈C d(b, c), and if B ⊂ X,C ⊂ X we set
dist(B,C) := supb∈B ρ(b, C). Let S(t) be a continuous semigroup on the metric
space X.

A set A ⊂ X is invariant if S(t)A = A, for any t � 0.
The positive orbit of x ∈ X is the set γ+(x) = {S(t)x|t � 0}. If B ⊂ X, the

positive orbit of B is the set

γ+(B) = ∪t�0S(t)B = ∪z∈Bγ
+(z).

More generally, for τ � 0, we define the orbit after the time τ of B by

γ+
τ (B) = γ+(S(τ)B).

The subset A ⊂ X attracts a set B if dist(S(t)B,A) → 0 as t → ∞.
The subsetA is a global attractor if A is closed, bounded, invariant, and attracts

all bounded sets.
The semigroup S(t) is asymptotically compact if, for any bounded subset B of

X such that γ+
τ (B) is bounded for some τ � 0, every set of the form {S(tn)zn},

with zn ∈ B and tn � τ, tn → +∞ as n→ ∞, is relatively compact.
The semigroup S(t) is point (bounded) dissipative onX if there exists a bounded

set B0 ⊂ X, which attracts each point (bounded set, respectively) of X.
If the semigroup is bounded dissipative, there exists a bounded set B1 ⊂ X

with the property that, for any bounded set B ⊂ X, there exists τ = τ(B) � 0
such that γ+

τ (B) ⊂ B1. Such a set is called an absorbing set for S(t).
We now state the fundamental theorem of existence of a compact global at-

tractor (see [6, Theorem 3.4.6] or [12, Theorem 2.26]).

Theorem 2.1. If S(t), t � 0, is asymptotically compact, point dissipative, and
orbits of bounded sets are bounded, then there exists a compact global attractor
A. Moreover, if X is a Banach space, then A is connected.

A continuous semigroup S(t) is a continuous gradient system if there exists
a function Φ ∈ C0(X,R) such that Φ(S(t)u) � Φ(u),∀t � 0,∀u ∈ X, and
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Φ(S(t)u) = Φ(u),∀t � 0 implies that u is an equilibrium point, i.e. S(t)u =
u ∀t � 0. The function Φ is called a strict Lyapunov functional.

Let E be the set of equilibrium points for the semigroup S(t). We give the
definition of the unstable set of E by

W u(E) = {y ∈ X : S(−t)y is defined for t � 0 and S(−t)y → E as t→ ∞}.
From Proposition 2.19 and Theorem 4.6 in [12], we have

Theorem 2.2. Let S(t), t � 0, be an asymptotically compact gradient system,
which has the property that, for any bounded set B ⊂ X, there exists τ � 0 such
that γ+

τ (B) is bounded. If the set of equilibrium points E is bounded, then S(t)
has a compact global attractor A and A = W u(E). Moreover, if X is a Banach
space, then A is connected.

2.3. Sectorial evolutionary equations. Assume that A is a sectorial operator
on X and there is an α ∈ [0, 1) such that f : Xα → X is locally Lipschitz
continuous. Consider the equation

(2.2)
du

dt
+Au = f(u), t > 0, u(0) = u0.

A solution of (2.2) on [0, τ) is a continuous function u : [0, τ) → Xα, u(0) = u0,
such that f(u(.)) : [0, τ) → X is a continuous function, u(t) ∈ D(A) and u
satisfies (2.2) on (0, τ). One can show that the solutions of (2.2) coincide with
those solutions of the integral equation

(2.3) u(t) = e−Atu0 +

t∫
0

e−A(t−s)f(u(s))ds, 0 � t < τ,

for which u : [0, τ) → Xα is continuous and f(u(.)) : [0, τ) → X is continuous.
We have the following result ([6, Theorem 4.2.1]).

Theorem 2.3. Under the above hypotheses on A, f , there is a unique classical
solution u ∈ C0([0, tmax);Xα) ∩ C1((0, tmax);X) ∩ C0((0, tmax));D(A)) of (2.2)
on a maximal interval of existence [0, tmax(u0)). If tmax(u0) < ∞, then there is
a sequence tn → t−max(u0) such that ‖u(tn)‖Xα → ∞. If, in addition, f is a Cr-
function in u, then the solution u(t, u0) is a Cr-function in (t, u0) in the domain
of definition of the function.

3. Global attractors in D1
0(Ω, σ)

From now on, for the sake of brevity we denote by ‖.‖ the norm in L2(Ω).

Theorem 3.1. Assume that f satisfies the conditions (1.3), (1.5). Then for
any u0 ∈ D1

0(Ω, σ) given, the problem (1.1) has a unique global solution u ∈
C([0,∞);D1

0(Ω, σ))∩C1((0,∞);L2(Ω))∩C((0,∞);D(A)). Moreover, for the so-
lution u, Φ(u(t)) ∈ C1((0,∞)) with

d

dt
Φ(u(t)) = −‖ut(t)‖2, t ∈ (0,∞).
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Proof. Firstly, we prove that f is a map from D1
0(Ω, σ) to L2(Ω). By (1.3) we

have
|f(s)| � C(1 + |s|ρ+1).

Let u ∈ D1
0(Ω, σ), we have∫

Ω
|f(u(x))|2dx � C

(
1 +

∫
Ω
|u(x)|2ρ+2dx

)
.

Since 2ρ+ 2 � 2∗α, D1
0(Ω, σ) is continuously embedded in L2ρ+2(Ω) and

‖f(u)‖2 � C(1 + ‖u‖2ρ+2
D1

0
).

Therefore f : D1
0(Ω, σ) → L2(Ω) and f maps bounded sets of D1

0(Ω, σ) to bounded
sets of L2(Ω).

Secondly, we prove that f : D1
0(Ω, σ) → L2(Ω) is Lipschitz continuous on every

bounded set of D1
0(Ω, σ). Let u, v ∈ D1

0(Ω, σ), ‖u‖D1
0

� r, ‖u‖D1
0

� r, we have∫
Ω
|f(u(x)) − f(v(x))|2dx � 2C

∫
Ω
|u(x) − v(x)|2(1 + |u(x)|2ρ + |v(x)|2ρ)dx.

Using Hölder inequality with p =
2∗α
2
, q =

2∗α
2∗α − 2

, we get

‖f(u) − f(v)‖2 � C‖u− v‖2
L2∗α (C1 + ‖u‖2ρ

L2ρq + ‖v‖2ρ
L2ρq ).

Since 2ρq � 2∗α, D1
0(Ω, σ) is continuously embedded in L2ρq(Ω),

‖f(u) − f(v)‖2 � C‖u− v‖2
D1

0
(C1 + ‖u‖2ρ

D1
0

+ ‖v‖2ρ
D1

0
).

Therefore

‖f(u) − f(v)‖ � M(r)‖u− v‖D1
0
, if ‖u‖D1

0
� r, ‖v‖D1

0
� r.

Now, applying Theorem 2.3, the problem (1.1) has a unique local solution u ∈
C([0, tmax);D1

0(Ω, σ)) ∩C1((0, tmax);L2(Ω)) ∩ C((0, tmax);D(A)).
We now prove that the solution exists globally. Putting

Φ(u) =
1
2
‖u‖2

D1
0

+
∫

Ω
(F (u) + gu)dx,

where F (y) =
y∫
0

f(s)ds. It is easy to check that

d

dt
Φ(u(t)) = −‖ut(t)‖2, t ∈ (0, tmax).

Using hypothesis (1.5) and Cauchy inequality we get

Φ(u(t)) � 1
2
‖u(t)‖2

D1
0
− μ

2
‖u(t)‖2 −C(Ω) − ε‖u(t)‖2 − 1

4ε
‖g‖2.

By choosing ε small enough such that μ+ 2ε < λ1 we obtain

Φ(u(0)) � Φ(u(t)) � 1
2
(1 − μ+ 2ε

λ1
)‖u‖2

D1
0
− C.
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Hence
‖u(t)‖D1

0
� M, ∀t ∈ [0, tmax).

This implies that tmax = +∞. Indeed, let tmax < +∞ and lim sup
t→t−max

‖u(t)‖D1
0
<

+∞. Then there exist a sequence (tn)n�1 and a constant K such that tn → t−max,
as n→ +∞ and ‖u(tn)‖D1

0
< K, n = 1, 2, . . .. As we have already shown above,

for each n ∈ N there exists a unique solution of the problem (1.1) with initial
data u(tn) on [tn, tn + T ∗], where T ∗ > 0 depending on K and independent of
n ∈ N. Thus, we can get tmax < tn +T ∗, for n ∈ N large enough. This contradicts
the maximality of tmax and the proof of Theorem 3.1 is complete. �

In order to prove the asymptotic compactness of the semigroup S(t), we first
note that A = −div(σ(x)∇) is a sectorial operator in the space X = L2(Ω) with
the fractional power spaces Xα. From the fact that X1/2 = D1

0(Ω, σ), X0 =
L2(Ω) (see Sec. 2.1) and the properties of the sectorial operator (see e.g. [7])
we have the analytic semigroup e−tA generated by the operator A satisfying the
following estimates

‖e−Atu‖ � Meat‖u‖, for all u ∈ L2(Ω) and all t > 0,(3.1)

‖e−Atu‖D1
0

� Meatt−1/2‖u‖, for all u ∈ L2(Ω) and all t > 0,(3.2)

where M and a are two positive constants. Furthermore, we need the following
lemma (see [7, Chapter 7]).

Lemma 3.1. Assume that ϕ(t) is a continuous nonnegative function on the in-
terval (0, T ) such that

ϕ(t) � c0t
−γ0 + c1

t∫
0

(t− s)−γ1ϕ(s)ds, t ∈ (0, T ),

where c0, c1 � 0 and 0 � γ0, γ1 < 1. Then there exists a constant K =
K(γ1, c1, T ) such that

ϕ(t) � c0
1 − γ0

t−γ0K(γ1, c1, T ), t ∈ (0, T ).

Theorem 3.2. Under the conditions (1.3) − (1.5), the semigroup S(t) generated
by (1.1) has a compact connected global attractor A = W u(E) in D1

0(Ω, σ).

Proof. Firstly, from the proof of Theorem 3.1 we see that γ+(B) is bounded for
any bounded subset B of D1

0(Ω, σ) and the function Φ defined by (1.6) is a strict
Lyapunov functional.

Notice that the set of equilibrium points

E = {z|Az + f(z) + g = 0}.
Let z ∈ E, we have

0 = ‖z‖2
D1

0
+

∫
Ω
(f(z)z + gz)dx.



GLOBAL ATTRACTORS FOR A CLASS OF DEGENERATE PARABOLIC EQUATIONS 221

Using hypothesis (1.4) and Cauchy inequality we obtain that

‖z‖D1
0

� M, for all z ∈ E,

i.e. E is bounded in D1
0(Ω, σ). Thus, in order to prove the existence of the global

attractor, we only need to prove that S(t) is asymptotically compact in D1
0(Ω, σ).

Let (un)n�1 be a bounded sequence in D1
0(Ω, σ) and tn → +∞. Fix T > 0,

since {un} is bounded and orbits of bounded sets are bounded, {S(tn − T )un}
is bounded in D1

0(Ω, σ). Because D1
0(Ω, σ) is compactly embedded in L2(Ω),

there are subsequence {S(tnk
− T )unk

} and v ∈ D1
0(Ω, σ) such that vk = S(tnk

−
T )unk

⇀ v weakly in D1
0(Ω, σ) and vk → v strongly in L2(Ω) as k → ∞. We

will prove that S(tnk
)unk

= S(T )vk converges strongly to S(T )v in D1
0(Ω, σ), and

thus S(t) is asymptotically compact.
Denote vk(t) = S(t)vk, v(t) = S(t)v, we have

vk(t) = e−Atvk +

t∫
0

e−A(t−s)(−f(vk(s)) − g)ds,

v(t) = e−Atv +

t∫
0

e−A(t−s)(−f(v(s)) − g)ds.

It follows from (3.1) and (3.2) that for t ∈ (0, T ], we have

‖vk(t) − v(t)‖D1
0

� MeaT t−1/2‖vk − v‖ +MC

∫ t

0
(t− s)−1/2‖vk(s) − v(s)‖D1

0
ds.

By the singular Gronwall inequality (see Lemma 3.1), there is a constant C1 such
that, for t ∈ (0, T ],

‖vk(t) − v(t)‖D1
0

� C1MeaT t−1/2‖vk − v‖,
in particular,

‖vk(T ) − v(T )‖D1
0

� C2T
−1/2‖vk − v‖.

Since vk → v in L2(Ω), vk(T ) → v(T ) in D1
0(Ω, σ) as k → +∞. This implies that

S(t) is asymptotically compact. Applying Theorem 2.2, we obtain the conclusion
of the theorem. �

4. Global attractors in L2(Ω)

If the exponent ρ in (1.3) is larger than 2−α
N−2+α , we now no longer have that

f : D1
0(Ω, σ) → L2(Ω), so the methods of Section 3 do not apply. In this section,

we prove the existence of a global attractor in L2(Ω) in the case f has the following
form

(4.1) f(u) = k|u|ρu+ h(u), 0 � ρ � 4 − 2α
N − 2 + α

,



222 CUNG THE ANH AND PHAN QUOC HUNG

where k > 0 and h ∈ C(R) with |h(u)| � C(1+ |u|γ) for γ ∈ [0, ρ+ 1). Moreover,
we assume that

(4.2) (f(u) − f(v))(u− v) � −C(u− v)2, C > 0.

From Hölder inequality |h(u)u| � C(ε) + ε|u|ρ+2, by choosing ε small enough we
see that f satisfies the dissipativeness condition

(4.3) f(u)u � −C.
In Section 3, the local in time solvability was discussed via the semigroup

method. This method does not work in this case. However, we may use the
Galerkin method to prove the existence of a global weak solution. Firstly, we
introduce the definition of weak solutions of problem (1.1).

Definition 4.1. For a given u0 ∈ L2(Ω) and T > 0, a weak solution on (0, T )
for the problem (1.1) is a function

u ∈ L2(0, T ;D1
0(Ω, σ)) ∩ Lρ+2(0, T ;Lρ+2(Ω))

satisfying for every η ∈ C∞
0 ((0, T ) × Ω) the weak formula〈

∂tu, η
〉

+
∫

Ω
σ(x)∇u∇ηdx+

〈
f(u) + g, η

〉
= 0,(4.4)

u(x, 0) = u0.

Here the symbol
〈
,
〉

denotes the pairing between D−1
0 (Ω, σ) and D1

0(Ω, σ).

The weak form (4.4) is also equivalent to the following initial value problem

ut +Au+ f(u) + g = 0,(4.5)

u(0) = u0.

Theorem 4.1. Let u0 ∈ L2(Ω) and the conditions (4.1)− (4.2) be fulfilled. Then
the problem (1.1) has a unique global in time weak solution u(t) satisfying

u ∈ C([0,∞);L2(Ω)) ∩ L2
loc(0,∞;D1

0(Ω, σ)) ∩ Lp
loc(0,∞;Lp(Ω)),

with u(0) = u0 and p = ρ+ 2.

Proof. Firstly, we prove the uniqueness of solutions. If u and v are two solutions
of (1.1) with the same intial data u0 ∈ L2(Ω), then ω = u−v satisfies the equation

ωt +Aω + f(u) − f(v) = 0,(4.6)

ω(0) = 0.

Multiplying (4.6) by ω and intergrating over Ω we obtain
d

dt
‖ω(t)‖2 + 2‖ω(t)‖2

D1
0

+ 2
∫

Ω
(f(u) − f(v))(u − v)dx = 0.

Using (4.2) we get
d

dt
‖ω(t)‖2 � C‖ω(t)‖2.

By Gronwall inequality we obtain ‖ω(t)‖ = 0,∀t � 0, i.e. u = v.
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Let {ei} be the complete set of orthonormal eigenvectors of the operator A =
−div(σ(x)∇) with eigenvalues {λi}, where {λi} is increasing. For each integer
m � 1, let Hm = span{e1, . . . , em}. Choose a sequence {u0m} in Hm such that

u0m → u0 in L2(Ω) as m→ ∞.

We look for an approximate solution of the form um(t) =
m∑

n=1
bim(t)ei in Hm,

where coefficients bim(t) satisfy

(4.7)
∫

Ω

d

dt
um(t)eidx+

∫
Ω
σ(x)∇um(t)∇eidx+

∫
Ω
(f(um(t)) + g)eidx = 0,

where i = 1, . . . ,m

(4.8) um(0) = u0m.

According to the theory of ODEs, there is a unique solution bim(t) satisfying
(4.7) - (4.8) on [0, τm). Therefore, we obtain a sequence of approximate solutions
um(t).

In (4.7), replacing ei by um(t) we have
1
2
d

dt
‖um(t)‖2 + ‖um(t)‖2

D1
0

+ k

∫
Ω
|um(t)|pdx

+
∫

Ω
(h(um(t))um(t) + gum(t))dx = 0.

By Cauchy inequality we have
1
2
d

dt
‖um(t)‖2 + ‖um(t)‖2

D1
0

+ k

∫
Ω
|um(t)|pdx

�
∫

Ω
[−h(um(t))um(t) + u2

m(t)]dx+ ‖g‖2.

It follows from (4.1) and Hölder inequality that

(−h(um(t))um(t) + u2
m(t)) � C(ε) + ε|um(t)|p.

Thus, by choosing ε = k/2 we get
d

dt
‖um(t)‖2 + 2‖um(t)‖2

D1
0

+ k

∫
Ω
|um(t)|pdx � R.(4.9)

Integrating the above inequality over [0, t] ⊂ [0, τm) we get

‖um(t)‖2 + 2
∫ t

0
‖um(t)‖2

D1
0
dt+ k

∫ t

0

∫
Ω
|um(t)|pdxdt � ‖u0m‖2 + Ct.

This implies that the solution um(t) can be extended to [0, T ) for T > 0 and we
have the priori estimates

‖um‖L∞(0,T ;L2(Ω)) � R, ‖um‖L2(0,T ;D1
0) � R, ‖um‖Lp(0,T ;Lp(Ω)) � R.(4.10)

It follows from (4.10) that

‖f(um)‖Lq(0,T ;Lq(Ω)) � R, where q =
p

p− 1
.
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Therefore

‖∂tum‖Y � R,Y = L2(0, T ;D−1
0 (Ω, σ)) + Lq(0, T ;Lq(Ω)).

D1
0(Ω, σ) is continuously embedded in Lp(Ω), so Lq(Ω) is continuously embed-

ded in D−1
0 (Ω, σ). Thus, Lq(0, T ;Lq(Ω)) ↪→ Lq(0, T ;D−1

0 (Ω, σ)) is continuous.
Therefore we have

(4.11) ‖∂tum‖Lq(0,T,D−1
0 ) � R.

Now we may apply the results of [14] to obtain that {um} is relatively compact
in L2(0, T ;L2(Ω)). Therefore we may extract a subsequence, still denoted by um,
such that

um
∗
⇀ u in L∞(0, T ;L2(Ω))

um −→ u in L2(0, T ;L2(Ω))

um ⇀ u in L2(0, T ;D1
0(Ω, σ)) ∩ Lp(0, T ;Lp(Ω))

∂tum ⇀ ∂tu in Lq(0, T ;D−1
0 (Ω, σ)).(4.12)

By passing to the limit in the weak form, we obtain the solution u of the
problem. Because u ∈ L2(0, T ;D1

0(Ω, σ)) and ut ∈ Lq(0, T ;D−1
0 (Ω, σ)), u ∈

C([0, T ];D−1
0 (Ω, σ)). In addition, since u ∈ L∞(0, T ;L2(Ω)), we have

u ∈ L∞(0, T ;L2(Ω)) ∩ C([0, T ];D−1
0 (Ω, σ)) = Cw([0, T ];L2(Ω)]

(see [11, Lemma 8.1, p. 275]). This and the continuity of the L2-norm, imply
that u ∈ C([0, T ];L2(Ω)).

We now prove the global existence of the solution. Analogously to (4.9) we
have

d

dt
‖u(t)‖2 + 2‖u(t)‖2

D1
0

+ k

∫
Ω
|u(t)|pdx � R.

Therefore
d

dt
‖u(t)‖2 + 2λ1‖u(t)‖2 � R.

By Gronwall inequality we get

‖u(t)‖2 � e−2λ1t‖u0‖2 +
R

2λ1
(1 − e−2λ1t).(4.13)

This implies that the solution u exists globally. �

Let S(t) be the semigroup in L2(Ω) generated by (1.1). From (4.13), by choos-
ing R1 >

R
2λ1

, the ball B0 = BL2(0, R1) is an absorbing set of S(t) in L2(Ω). This
implies that the semigroup S(t) is dissipative and eventually bounded. Therefore,
in order to prove the existence of a global attractor of S(t) in L2(Ω), we only
have to prove that S(t) is asymptotically compact in L2(Ω). Firstly, we need the
following lemma.

Lemma 4.1. The semigroup S(t) associated to the problem (1.1) is weakly con-
tinuous on L2(Ω).
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Proof. Assume that u0m is a sequence in L2(Ω) such that u0m ⇀ u0 in L2(Ω).
Let um(t) = S(t)u0m and ũ(t) = S(t)u0. By the similar argument in (4.10) and
(4.12), we may extract a subsequence (still denoted by) um such that

um ⇀ u in L2(0, T ;D1
0(Ω, σ)) ∩ Lp(0, T ;Lp(Ω))

um → u in L2(0, T ;L2(Ω))

∂tum ⇀ ∂tu in Lq(0, T ;D−1
0 (Ω, σ))

A(um) ⇀ z in L2(0, T ;D−1
0 (Ω, σ))

f(um) ⇀ ω in Lq(0, T ;Lq(Ω)),(4.14)

and the weak limit u satisfies the equation

(4.15) ∂tu = −z − ω − g.

Putting

Im =
∫ t

0
s
〈
Aum + f(um) −Aψ − f(ψ), um − ψ

〉
ds

for any ψ ∈ L2(0, T ;D1
0(Ω, σ))∩Lp(0, T ;Lp(Ω)), it follows from the strong mono-

tonicity of A and (4.2) that

Im �
∫ t

0
s
〈
f(um) − f(ψ), um − ψ

〉
� −C

∫ t

0
s‖um − ψ‖2ds.

Since ∂tum = −Aum − f(um) − g then

Im =
∫ t

0
s
〈
Aum + f(um), um

〉
ds−

∫ t

0
s
〈
Aum + f(um), ψ

〉
ds

−
∫ t

0
s
〈
Aψ + f(ψ), um − ψ

〉
ds

= −1
2
t‖um(t)‖2 +

1
2

∫ t

0
‖um(s)‖2ds−

∫ t

0
s
〈
g, um

〉
ds

−
∫ t

0
s
〈
Aum + f(um), ψ

〉
ds−

∫ t

0
s
〈
Aψ + f(ψ), um − ψ

〉
ds.

Using (4.14) to pass to the limit, we obtain

− 1
2
t‖u(t)‖2 +

1
2

∫ t

0
‖u(s)‖2ds−

∫ t

0
s
〈
g, u

〉
ds

−
∫ t

0
s
〈
z + ω,ψ

〉
ds −

∫ t

0
s
〈
Aψ + f(ψ), u− ψ

〉
ds � −C

∫ t

0
s‖u− ψ‖2ds.
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Hence
1
2
t‖u(t)‖2 − 1

2

∫ t

0
‖u(s)‖2ds

� −
∫ t

0
s
〈
g, u

〉
ds−

∫ t

0
s
〈
z + ω,ψ

〉
ds −

∫ t

0
s
〈
Aψ + f(ψ), u− ψ

〉
ds

+ C

∫ t

0
s‖u− ψ‖2ds.(4.16)

It follows from (4.15) that

−
∫ t

0
s
〈
z + ω + g, u

〉
ds =

∫ t

0
s
〈
∂su, u

〉
ds =

1
2
t‖u(t)‖2 − 1

2

∫ t

0
‖u(s)‖2ds.(4.17)

Combining (4.16) and (4.17) we get∫ t

0
s
〈
z + ω −Aψ − f(ψ), u− ψ

〉
ds � −C

∫ t

0
s‖u− ψ‖2ds.

Choosing ψ = u− θv, for some θ ∈ (0, 1] and

v ∈ L2(0, T ;D1
0(Ω, σ)) ∩ Lp(0, T ;Lp(Ω)),

we have ∫ t

0
s
〈
z + ω −A(u− θv) − f(u− θv), v

〉
ds � −Cθ

∫ t

0
s‖v‖2ds.

Using Lebesgue dominated convergence theorem, let θ → 0 we obtain∫ t

0
s
〈
z + ω −A(u) − f(u), v

〉
ds � 0.(4.18)

Since (4.18) holds for any v ∈ L2(0, T ;D1
0(Ω, σ)) ∩ Lp(0, T ;Lp(Ω)), we have

z + ω = A(u) + f(u).

Hence and from (4.15) it follows that

∂tu = −A(u) − f(u) − g.

Therefore u is a solution of the problem (1.1) with u(0) = u0. By the uniqueness
of solutions we have u = ũ.

For any subsequence S(t)umk
of the sequence S(t)um, which converges weakly

in L2(Ω), we have S(t)umk
⇀ S(t)u in L2(Ω) as k → ∞. Therefore, by Propo-

sition 21.23 in [17, p. 258], the whole sequence S(t)um ⇀ S(t)u in L2(Ω). This
completes the proof. �

Lemma 4.2. The semigroup S(t) associated to the problem (1.1) is asymptoti-
cally compact on L2(Ω).

Proof. Let (um) be a sequence such that ‖um‖2 � M , and tn → +∞. Since S(t)
is dissipative, there exists t(M) such that {S(t)um} ⊂ B0 = BL2(0, R1), for every
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t � t(M). Let T > 0 we can extract a subsequence (still denoted by) um such
that

S(tm)um ⇀ ψ for some ψ ∈ B0 in L2(Ω),

S(tm − T )um ⇀ ψ∗ for some ψ∗ ∈ B0 in L2(Ω).

It follows from the weak continuity of S(t) that

(4.19) S(T )ψ∗ = ψ,

and we get

(4.20) lim inf
m→∞ ‖S(tm)um‖ � ‖ψ‖.

For any solution u(t) = S(t)u0 we have

1
2
d

dt
‖u‖2 + ‖u‖2

D1
0

+ γ‖u‖2 = −I1(u) − I2(u),(4.21)

where I1(u) :=
∫
Ω(f(u) + C)udx, I2(u) :=

∫
Ω(g − γu− C)udx, γ > 0, C is the

constant in (4.3) (f(u)u � −C). By the variation of constants formula and (4.21)
we get

‖S(t)u0‖2 = ‖u0‖2e−2γt − 2
∫ t

0
e−2γ(t−s)‖u(s)‖2

D1
0
ds

− 2
∫ t

0
e−2γ(t−s)I1(u(s))ds − 2

∫ t

0
e−2γ(t−s)I2(u(s))ds.(4.22)

Hence

‖S(tm)um‖2 = ‖S(T )S(tm − T )um‖2

= e−2γT ‖S(tm − T )um‖2 − 2
∫ T

0
e−2γ(T−s)‖S(s)S(tm − T )um‖2

D1
0
ds

− 2
∫ T

0
e−2γ(T−s)I1(S(s)S(tm − T )um)ds

− 2
∫ T

0
e−2γ(T−s)I2(S(s)S(tm − T )um)ds.(4.23)

For m large enough, the first term on the right hand side of (4.23) can be esti-
mated as

(4.24) e−2γT ‖S(tm − T )um‖2 � R2
1e

−2γT .

For every s ∈ [0, T ], since S(s) is weakly continuous in L2(Ω), we have

S(s)(S(tm − T )um) ⇀ S(s)ψ∗ in L2(Ω).
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Analogously to (4.14) and by the uniqueness of weak convergence we can assume
that

S(t)S(tm − T )um ⇀ S(t)ψ∗ in Lp(0, T ;Lp(Ω)),(4.25)

S(t)S(tm − T )um ⇀ S(t)ψ∗ in L2(0, T ;D1
0(Ω, σ)),(4.26)

S(t)S(tm − T )um → S(t)ψ∗ in L2(0, T ;L2(Ω)),(4.27)

S(t)S(tm − T )um → S(t)ψ∗ a.e. in QT .(4.28)

Since the norm ( ∫ T

0
e−2γ(T−s)‖u(s)‖2

D1
0
ds

)1/2

is equivalent to the norm in L2(0, T ;D1
0(Ω, σ)), from (4.26) we have∫ T

0
e−2γ(T−s)‖S(s)ψ∗‖2

D1
0
ds � lim inf

m→∞

∫ T

0
e−2γ(T−s)‖S(s)S(tm − T )um)‖2

D1
0
ds.

Therefore

lim sup
m→∞

(
−2

∫ T

0
e−2γ(T−s)‖S(s)S(tm − T )um)‖2

D1
0
ds

)
� −2

∫ T

0
e−2γ(T−s)‖S(s)ψ∗‖2

D1
0
ds.(4.29)

Putting

vm(s) = e−γ(T−s) ((f(S(s)S(tm − T )um)S(s)S(tm − T )um + C)1/2 ,

v(s) = e−γ(T−s) ((f(S(s)ψ∗)S(s)ψ∗ +C)1/2 ,

it follows from (4.25) and (4.28) that (vm) is bounded in L2(0, T ;L2(Ω)), v ∈
L2(0, T ;L2(Ω)) and vm converges almost everywhere to v in QT . Thus, by Lemma
1.3 [10, p. 25] , vm ⇀ v ∈ L2(0, T ;L2(Ω)). Hence

lim inf
m→∞ ‖vm‖2

L2(0,T ;L2(Ω)) � ‖v‖2
L2(0,T ;L2(Ω)).

Therefore

lim sup
m→∞

(
−2

∫ T

0
e−2γ(T−s)I1(S(s)S(tm − T )um)ds

)
� −2

∫ T

0
e−2γ(T−s)I1(S(s)ψ∗)ds.(4.30)

From (4.27) we have

lim
m→∞

(
−2

∫ T

0
e−2γ(T−s)I2(S(s)S(tm − T )um)ds

)
= −2

∫ T

0
e−2γ(T−s)I2(S(s)ψ∗)ds.(4.31)
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It follows from (4.23), (4.24), (4.29), (4.30) and (4.31) that

lim sup
m→∞

‖S(tm)um‖2

� R2
1e

−2γT − 2
∫ T

0
e−2γ(T−s)‖S(s)ψ∗‖2

D1
0
ds

− 2
∫ T

0
e−2γ(T−s)I1(S(s)ψ∗)ds − 2

∫ T

0
e−2γ(T−s)I2(S(s)ψ∗)ds.(4.32)

Applying (4.22) with ψ = S(T )ψ∗ we have

‖ψ‖2 = ‖S(T )ψ∗‖2

= ‖ψ∗‖2e−2γT − 2
∫ T

0
e−2γ(T−s)‖S(s)ψ∗‖2

D1
0
ds

− 2
∫ T

0
e−2γ(T−s)I1(S(s)ψ∗)ds − 2

∫ T

0
e−2γ(T−s)I2(S(s)ψ∗)ds.(4.33)

Combining (4.32) with (4.33) we get

lim sup
m→∞

‖S(tm)um‖2 � ‖ψ‖2 +R2
1e

−2γT − ‖ψ∗‖2e−2γT

� ‖ψ‖2 +R2
1e

−2γT .

Letting T → ∞ we have

lim sup
m→∞

‖S(tm)um‖2 � ‖ψ‖2.(4.34)

From (4.20) and (4.34) we get

lim
m→∞ ‖S(tm)um‖2 = ‖ψ‖2.

This together with the fact that S(tm)um ⇀ ψ, implies that S(tm)um → ψ
strongly in L2(Ω), i.e. S(t) is asymptotically compact. Lemma 4.2 is proved. �

Combining the above results, by Theorem 2.1, we have the following

Theorem 4.2. Under the conditions (4.1) − (4.2), the semigroup associated to
(1.1) possesses a compact connected global attractor A = ω(B0) in L2(Ω).

5. Remarks on the case of an unbounded domain

In this section we discuss the case of an unbounded domain Ω ⊂ R
N , N � 2,

for the weight function σ(x) we assume that it satisfies the condition (H∞
β ). From

Subsection 2.1 we see that, for condition (H∞
β ), the operator A = −div(σ(x)∇)

has the same properties as in the case of a bounded domain (in particular, A
is still a sectorial operator in L2(Ω)). On the other hand, we still have the
continuous embedding D1

0(Ω, σ) ↪→ L2∗α(Ω), and in particular the embedding
D1

0(Ω, σ) ↪→ L2(Ω) is compact. Therefore, we may apply the methods used in the
case of a bounded domain to this case with some small changes on the conditions
of the nonlinear term f(u).
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More precisely, in order to prove the existence of global attractors in D1
0(Ω, σ),

we assume that the nonlinear term f(u) satisfies the following conditions

(5.1) |f(u) − f(v)| � C|u− v|(1 + |u|ρ + |v|ρ), 0 � ρ � 2 − α

N − 2 + α
,

(5.2) f(0) = 0, f(u)u � −μu2, F (u) � −1
2
μu2, μ < λ1.

We may now repeat the arguments used in Section 3 to conclude the following

Theorem 5.1. Under the conditions (H∞
β ) and (5.1) − (5.2), problem (1.1) de-

fines a semigroup S(t) : D1
0(Ω, σ) → D1

0(Ω, σ), which possesses a compact con-
nected global attractor A = W u(E) in D1

0(Ω, σ).

In the case

(5.3) f(u) = k|u|ρu+ h(u), 0 � ρ � 4 − 2α
N − 2 + α

,

where k > 0 and h ∈ C(R) with |h(u)| � C(1 + |u|γ) for γ ∈ [0, ρ + 1), and f
satisfies the condition

(f(u) − f(v))(u− v) � −C(u− v)2, C > 0,(5.4)

we can repeat the arguments in Section 4 to obtain

Theorem 5.2. Under the conditions (H∞
β ) and (5.3) − (5.4), problem (1.1) de-

fines a semigroup S(t) : L2(Ω) → L2(Ω), which possesses a compact connected
global attractor A = ω(B0) in L2(Ω).
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