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A METHOD OF EXTENDING RANDOM OPERATORS

DANG HUNG THANG AND TRAN MANH CUONG

Abstract. In this paper, we introduce a method of extending the domain of
a random operator to a class of random inputs. This method is based on the
convergence of certain random series.

1. Introduction

Let (Ω,F , P ) be a probability space and X,Y be separable Banach spaces. By
a random operator A from X into Y we mean a linear continuous mapping from
X into the Frechet space LY

0 (Ω,F , P ) = LY
0 (Ω) of all Y -valued random variables.

Random operators can be regarded as a random generalization of deterministic
linear continuous operators and as well as a natural framework for stochastic
integrals. Some results on random operators can be found in [6, 8, 9, 10].

A random operator A from X into Y may be considered as an action which
transforms linearly and continuously each deterministic input x ∈ X into a ran-
dom output Ax. This original definition of random operator cannot be applied
to X-valued random variables (r.v.’s). Taking into account many circumstances
in which the inputs are also subject to the influence of a random environment,
one needs to define the action of A on some random outputs, i.e. to extend the
domain of A to some classes of X-valued r.v.’s. A method of extending the do-
main of a Gaussian random operator on a Hilbert space H to a class of H-valued
r.v.’s was introduced by Dorogovtsev in [1].

In this paper, we propose another method of extending the domain of A to
some class D(A) of X-valued r.v.’s. This method is based on the convergence of
certain random series provided that X is a Banach space with the Schauder basis.
We shall show that D(A) is a dense linear subspace of LX

0 and D(A) = LX
0 if and

only if A is a bounded random operator. We also determine some conditions for
an X-valued r.v. to be in the D(A).
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2. The domain of extension of a random operator

Let X,Y be separable Banach spaces. LX
0 = LX

0 (Ω) and L0 = LR
0 stand for

the set of all X-valued random variables (r.v.’s) and the set of all real-valued
r.v.’s, respectively. The set LX

0 equipped with the topology of convergence in
probability is a Fréchet space. By a random operator from X into Y we mean a
linear continuous mapping A from X into LY

0 . For examples of random operators,
we refer to [10].

Throughout this paper, X is a Banach space with the Schauder basis e =
(en)∞n=1. The conjugate basis is denoted by e∗ = (e∗n)∞n=1. Then for each x ∈ X
we have

x =
∞∑

n=1

(x, e∗n)en.

Since A is linear and continuous, we get

Ax =
∞∑

n=1

(x, e∗n)Aen,

where the series converges in probability.
Denote by D(A) the set of all X-valued r.v. u for which the series

(1)
∞∑

n=1

(u, e∗n)Aen

converges in probability. Clearly, X ⊂ D(A) ⊂ LX
0 .

Definition 2.1. D(A) is called the domain of extension of A.

If u ∈ D(A) then the sum (1) is denoted by Φu and it is understood as the
action of A on the random variable u.

In general, the domain D(A) as well as the values Φu, u ∈ D(A), depend on
the basis e = (en).

Proposition 2.1. The following properties are valid:

(i) D(A) is a linear subspace of LX
0 and Φ : D(A) → LY

0 is linear.
(ii) If α ∈ L0 and u ∈ D(A) then αu ∈ D(A) and

Φ(αu) = αΦu.

In particular, if u is of the form u =
n∑

i=1
ξixi, xi ∈ X, ξi ∈ L0 then

u ∈ D(A) and

Φ(u) =
n∑

i=1

ξiAxi.
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(iii) If u is a countably-valued r.v.

u =
∞∑
i=1

1Eixi,

then u ∈ D(A) and

Φ(u) =
∞∑
i=1

1EiAxi = A(u(ω))(ω)

which does not depend on the basis (en). In particular, D(A) is dense in
LX

0 .

Proof. (i) The linearity of Φ is obvious.
(ii) We need the following claim, which is easy to prove.

Claim 1. If α ∈ L0,Xn ∈ LX
0 ,Xn

P−→ X then αXn
P−→ αX. If αn ∈ L0,X ∈ LX

0

and αn
P−→ α, then αnX

P−→ αX.

Now put Yn =
∑n

i=1(αu, e∗i )Aei,Xn =
∑n

i=1(u, e∗i )Aei. We have Yn = αXn.

Because Xn
P−→ Φ(u) by the above claim Yn = αnX

P−→ αΦ(u). Hence αu ∈ D(A)
and Φ(αu) = αΦ(u).

(iii) Put

Zn =
n∑

k=1

(u, e∗k)Aek, Z =
∞∑
i=1

1EiAxi = A(u(ω))(ω).

We want to show that Zn
P−→ Z. For each i we have p-limn 1EiZn = 1EiAxi =

1EiZ. Hence

P (‖Zn − Z‖ > t) =
∞∑
i=1

P (‖Zn − Z‖ > t,Ei)

�
N∑

i=1

P (‖1EiZn − 1EiZ‖ > t) +
∞∑

i=N+1

P (Ei)

Letting n → ∞ and N → ∞ we get limn P (‖Zn − Z‖ > t) = 0. �

Example 2.1. Let X = lp, Y = lt and (αn) be the standard r-stable sequence
(1 < r < 2), where 1 < p < r < t < 2p and en = (0, . . . , 0, 1, . . .). We claim that

(a) For each x ∈ X the series

(2)
∞∑

n=1

αn(x, e∗n)en

converges a.s. in Y = lt and defines a random operator A from X into Y .
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(b) For each sequence c = (cn) ∈ lp, the series
∞∑

n=1

αncnen

converges in X = lp and defines an X-valued r.v. u.
(c) u ∈ D(A) if and only if (cn) ∈ lr/2.
(One has lr/2 ⊂ lp because r < 2p).

We shall need the following lemma due to L. Schwartz, see [5].

Lemma 1. Let (αn) be the standard r-stable sequence (1 < r < 2), (cn) be a
sequence of real numbers, 1 � s < ∞, s �= r and en = (0, . . . , 0, 1, . . .). For the
series ∞∑

n=1

αncnen

to be convergent in ls, it is necessary and sufficient that
(i) (cn) ∈ ls for the case s < r,
(ii) (cn) ∈ lr for the case s > r.

Now we are ready to prove the claims (a)-(c) of Example 2.1.
(a)

∑ |(x, e∗n)|p < ∞ and p < r imply that
∑ |(x, e∗n)|r < ∞. Because t > r by

Lemma 1, we see that the series (2) converges a.s. in Y = lt.
The formula

(3) Ax =
∞∑

n=1

αn(x, e∗n)en

defines a random operator A from X into Y .
(b) Since p < r, by Lemma 1 the series

∞∑
n=1

αncnen

converges in X = lp.
(c) We have

∞∑
n=1

(u, e∗n)Aen =
∞∑

n=1

α2
ncnen.

Consequently, u ∈ D(A) if and only if
∞∑

n=1
α2t

n |cn|t < ∞, i.e., the series

∞∑
n=1

αn

√
|cn|en

converges in l2t. Since 2t > r, by Lemma 1 we conclude that u ∈ D(A) if and
only if (

√|cn|) ∈ lr, that is, (cn) ∈ lr/2.
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The following example shows that D(A) needs not be a closed subspace of LX
0

and the mapping Φ : D(A) → LY
0 needs not be continuous.

Example 2.2. Let X = L2[0; 1] and A be a random operator from X into R
defined by the Wiener stochastic integral

Ax =
∫ 1

0
x(t)dW (t),

where W (t) is a Wiener process. Let (en) be an orthonormal basis of X. Put
ξn = Aen. It is well-known that (ξn) is a sequence of Gaussian i.i.d. random
variables N(0, 1). Put

un =
n∑

k=1

ξk

k
ek, u =

∞∑
k=1

ξk

k
ek.

The latter series converges a.s. in the norm of X since
∞∑
i=1

‖ek

k
‖2 =

∞∑
i=1

1
k2

< ∞

so un
P−→ u. By Proposition 2.1 un ∈ D(A). We now prove u /∈ D(A) with the

help of the following claim.

Claim 2. Let (αn) be a sequence of real-valued independent Gaussian random
variables with Eαn = 0. If

∑
n α2

n < ∞ a.s, then
∑

n Eα2
n < ∞.

Indeed, put α = (αn)∞n=1. As
∑

n α2
n < ∞ a.s, α defines a random variable

Gaussian with values in the Hilbert space l2. By a theorem of Fernique (see [2])
we get

∑
n Eα2

n = E‖α‖2 < ∞ as desired.
Put

αn =
ξn√
n

.

Because
∑

n Eα2
n =

∑
n

1
n = ∞, by Claim 2, we infer that

∞∑
i=1

(u, en)Aen =
∞∑
i=1

ξ2
n

n
=

∞∑
i=1

α2
n = ∞ a.s.

Hence u /∈ D(A) as desired. Next, we show that the mapping Φ : D(A) → L0 is
not continuous. Put

ak = (aki)i≥1 =
(1

k
, ...,

1
k︸ ︷︷ ︸

k

, 0, ..., 0, ...
)
, k ≥ 1,

ξi = Aei, αki = akiξi, vk =
∞∑
i=1

αkiei =
k∑

i=1

αkiei.
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Then (ξi) is a sequence of i.i.d. random variables N(0, 1). By Proposition 2.1,
vk ∈ D(A). From the law of large numbers it follows that

‖vk‖2 =
k∑

i=1

α2
ki =

1
k2

k∑
i=1

ξ2
i → 0 a.s. as k → ∞;

so vk → 0 in LX
0 . But, again by the law of large numbers,

Φ(vk) =
∞∑
i=1

(vk, ei)Aei =
∞∑
i=1

αkiξi =
1
k

k∑
i=1

ξ2
i → 1 a.s. as k → ∞.

Therefore, Φ is not a continuous mapping from D(A) into L0 as claimed.
The following theorem characterizes random operators A for which D(A) =

LX
0 .

Theorem 2.1. If A is a bounded random operator then D(A) = LX
0 and Φu

does not depend on the basis (en). Conversely, if D(A) = LX
0 then A must be a

bounded random operator.

Proof. Recall (see[10]) that a random operator A is said to be bounded if there
exists a positive real-valued random variable k(ω) such that for each x ∈ X

‖Ax(ω)‖ � k(ω)‖x‖ a.s.

Note that the exceptional set may depend on x.
Suppose that A is bounded, by Theorem 3.1 in [10] there exists a mapping

T : Ω → L(X,Y )

such that for each x ∈ X it holds

Ax(ω) = T (ω)x a.s.

So there is a set D with P (D) = 1 such that for each ω ∈ D and for all n we have

Aen(ω) = T (ω)en.

Thus for each ω ∈ D,
∞∑

n=1

(u(ω), e∗n)Aen(ω) =
∞∑

n=1

(u(ω), e∗n)T (ω)en

= T (ω)

( ∞∑
n=1

(u(ω), e∗n)en

)
= T (ω)(u(ω)).

Hence the series
∞∑

n=1
(u, e∗n)Aen converges a.s.; so it converges in probability. Con-

sequently, u ∈ D(A) and Φu(ω) = T (ω)(u(ω)) does not depend on the basis
e = (en).
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To prove the second claim of the theorem, suppose that D(A) = LX
0 . Put

Φnu =
n∑

i=1

(u, e∗i )Aei

and note that Φn is a linear continuous mapping from LX
0 into LY

0 . By our
assumption, limn Φnu = Φu for all u ∈ LX

0 . By the Banach-Steinhaus theorem,
Φ is a linear continuous mapping from LX

0 into LY
0 . In addition, we have

Φ(u) =
n∑

i=1

1EiAxi

for u =
n∑

i=1
1Eixi. By Theorem 5.3 in [10] we conclude that A is bounded. �

For each random operator A, let F(A) denote the σ-algebra generated by the
family {Ax, x ∈ X}. A random variable u ∈ LX

0 is said to be independent of A
if F(u) and F(A) are independent.

Theorem 2.2. Suppose that u is independent of A. Then u ∈ D(A). Moreover,
Φu does not depend on the basis (en).

Proof. Let t > 0. By the independence of u and the sequence (Aen) we have

(4) P

(
‖

n∑
i=m

(u, e∗i )Aei‖ > t

)
=
∫

X
P

(
‖

n∑
i=m

(x, e∗i )Aei‖ > t

)
dμ(x),

where μ is the distribution of u. Because for each x ∈ X it holds

lim
m,n→∞P

(
‖

n∑
i=m

(x, e∗i )Aei‖ > t

)
= 0,

by the dominated convergence theorem we infer that the series
∞∑
i=1

(u, e∗i )Aei

converges in LY
0 ,i.e., u ∈ D(A).

Next, let V be the subset of LX
0 consisting of r.v.’s independent of A and let

V0 ⊂ V be the linear subspace of simple r.v.’s. It is easy to see that V is a closed
subspace of LX

0 and V0 is dense in V equipped with the topology of LX
0 . For each

n we define a mapping Φn : V → LY
0 by setting

Φnu =
n∑

i=1

(u, e∗i )Aei.

It is easy to see that Φn is a linear continuous mapping from V into LY
0 and

limn Φnu = Φu for all u ∈ V . By the Banach-Steinhaus theorem, Φ : V → LY
0

is again a linear continuous mapping. On the other hand, by Proposition 2.1, if
u ∈ V0 then Φu takes the same values for all the basis e. Since Φ is continuous
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on V and V0 is dense in V we conclude that Φu also takes the same values for all
the basis e. �

3. The case where Aei’s are independent

In this section A is always assumed to be a random operator from X into Y
such that the sequence of Y -valued r.v.’s (Aei) is independent. For example, if
A is a random operator from L2[0; 1] into R defined by the Wiener stochastic
integral

Ax =
∫ 1

0
x(t)dW (t)

then the sequence (Aei) is independent, provided that (en) is an orthonormal
basis of L2[0; 1] (see Example 2.2.)

Theorem 3.1. Let Y be a Hilbert space. Denote by Fn the σ-algebra generated
by (Ae1, ..., Aen). Then for each u ∈ LX

0 the condition

(u, e∗n) is Fn−1-measurable, for each n > 1,

is sufficient for u ∈ D(A).

The proof is based on the following lemma

Lemma 2. Let Y be a Hilbert space and (zn) be a sequence of r.v.’s taking values
in Y . Denote by Fn the σ-algebra generated by (z1, . . . , zn), and by μn(ω) the
regular conditional distribution of zn given Fn−1. Suppose that for almost ω the
sequence (μn) is summable in the following sense: If (ξn) is a sequence of Y -valued
independent r.v.’s defined on another probability space such that the distribution
of ξn is μn(ω), then the series

∑
ξn converges in LY

0 . Under this condition, the
series

∑
n zn converges in LY

0 .

Lemma 2 can be proved by the same argument as given in the proof of Theorem
2 in [3] by using the Kolmogorov three-series theorem for independent r.v.’s taking
values in Hilbert spaces (see [7]).

Proof of Theorem 3.1. Let μn(ω) be the regular conditional distribution of zn =
(u, e∗n)Aen given by Fn−1. Since (u, e∗n) is Fn−1- measurable and Aen is indepen-
dent of Fn−1, we have

μn(ω)(E) = P {(u, e∗n)Aen ∈ E|Fn−1}
= P

{
ω′ : (u(ω), e∗n)Aen(ω′) ∈ E

}
.(5)

Let νn(x) be the distribution of the r.v. (x, e∗n)Aen. From (5) we get

(6) μn(ω) = νn[u(ω)].

As for each x ∈ X the sequence {(x, e∗n)Aen} are independent and the series∑
n(x, e∗n)Aen converges in LY

0 , from (6) it follows that the sequence (μn) is
summable. By Lemma 2, we conclude that the series

∑
n(u, e∗n)Aen converges in

LY
0 , i.e., u ∈ D(A). �
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Recall that a Banach space is said to be p-uniformly smooth (1 < p � 2) if the
modulus of smoothness defined by

ρ(t) = sup
‖x‖=1,‖y‖=t

{‖x + y‖ + ‖x − y‖ − 2
2

}
satisfies the condition ρ(t) = 0(tp).

A Banach space is called p-smoothable if it is isomorphic to a p-uniformly
smooth space (see [11]). The spaces Lp, lp are min(2, p)-smoothable spaces.

Theorem 3.2. Let X = lp and Y be a Banach space of p-smoothable (1 < p � 2)
and (ei) be the standard basis in lp. Suppose that E‖Ax‖p < ∞ for all x ∈ X
and EAei = 0 for all i. Then for each u ∈ LX

0 the condition

(7) (u, e∗n) is Fn−1-measurable, for each n > 1

is sufficient for u ∈ D(A).

Proof. Let t, ε > 0 be given. Put

umn =
n∑

i=m

αiei, αi = (u, e∗i ),

Ci = {ω :
i∑

k=m

|αk|p � εp}, ξi = αi1Ci

and

uε =
n∑

i=m

ξiei.

We have

P{‖Φumn‖ > t; ‖umn‖ � ε} = P{‖
n∑

k=m

αkAek‖ > t, ‖umn‖ � ε}

= P{‖
n∑

k=m

ξkAek‖ > t, ‖umn‖ � ε}

� P{‖Φuε‖ > t},(8)

because the inequality‖umn‖ � ε implies that αi = ξi for all m � i � n.
The assumption that αi is Fi−1-measurable implies that ξi is Fi−1-measurable.

Since EAei = 0, the sequence (ξiAei,Fi)ni=m constitutes an Y -valued martingale
difference. As Y is p-smoothable by the Assoad-Pisier inequality (see [11]) there
exists a constant C1 > 0 such that

E‖Φuε‖p = E

∥∥∥∥∥
n∑

i=m

ξiAei

∥∥∥∥∥
p

� C1

n∑
i=m

E‖ξiAei‖p.

Since E‖Ax‖p < ∞, the random operator A is a mapping from X into LY
p . By

the closed graph theorem, A is continuous. Hence there is a constant C2 > 0



210 DANG HUNG THANG AND TRAN MANH CUONG

such that for all x ∈ X E‖Ax||p � C2||x||p. In particular, E‖Aek||p � C2 for all
k. Hence

(9) E‖ξiAei‖p = E {|ξi|pE{‖Aei‖p|Fi−1}} = E|ξi|pE‖Aei‖p � C2E‖ξi‖p.

Therefore,

E‖Φuε‖p � C1C2

n∑
i=m

E‖ξi‖p = CE‖uε‖p, where C = C1C2.

We have ‖uε‖p =
n∑

k=m

|αk|p1Ck
. For each fixed ω, if |αm(ω)|p > εp then uε(ω) = 0.

Otherwise, let i(ω) be the largest index such that
i(ω)∑
k=m

|αk(ω)|p � εp. Then

‖uε(ω)‖p =
i(ω)∑
k=1

|αk(ω)|p � εp. Hence, we always have ‖uε‖p � εp which implies

that

(10) E‖Φuε‖p � Cεp.

By Chebyshev’s inequality, we have

(11) P{‖Φuε‖ > t} � E‖Φuε‖p

tp
.

From (8)-(11) we get

(12) P{‖Φumn‖ > t; ‖umn‖ � ε} � Cεp

tp
.

Consequently,

P{‖Φumn‖ > t} � P{‖Φumn‖ > t; ‖umn‖ � ε} + P{‖umn‖ > ε}
� Cεp

tp
+ P{‖umn‖ > ε}.

Letting m,n → ∞ we get

lim sup
m,n→∞

P{‖Φumn‖ > t} � Cεp

tp
.

Taking the limit as ε → 0 we get limm,n→∞ P{‖Φumn‖ > t} = 0, i.e.,

lim
m,n→∞P

{
‖

n∑
i=m

(u, e∗i )Aei‖ > t

}
= 0,

that is u ∈ D(A). �

Theorem 3.3. Let Y be a Banach space which is p-smoothable (1 < p � 2).
Suppose that E‖Ax‖p < ∞ for all x ∈ X and EAei = 0 for all i. Then for each
u ∈ LX

0 , the conditions

(13) (u, e∗n) is Fn−1-measurable for each n > 1
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and

(14)
∑

n

E|(u, e∗n)|p < ∞

imply that u ∈ D(A).

Proof. Put αi = (u, e∗k). From (13), the independence of (Aei), and equalities
EAei = 0 it follows that (αiAei,Fi) forms a Y -valued martingale difference.
Since Y is p-smoothable by the Assoad-Pisier inequality (see [11]), there exists a
constant C1 > 0 such that

(15) E‖
n∑

i=m

αiAei‖p � C1

n∑
i=m

E‖αiAei‖p.

As E‖Ax‖p < ∞, the random operator A is a mapping from X into LY
p . By the

closed graph theorem, A is continuous. Hence there is a constant C2 > 0 such
that for all x ∈ X it holds E‖Ax||p < C2||x||p. In particular, E‖Aek||p < C2 for
all k. Therefore,

(16) E‖αiAei‖p = E {|αi|pE{‖Aei‖p|Fi−1}} = E|αi|pE‖Aei‖p � C2E‖αi‖p.

From (15) and (16) we get

(17) E‖
n∑

i=m

αiAei‖p � C1C2

n∑
i=m

E‖αi‖p.

From (14) and (17) we conclude that the series
∞∑
i=1

αiAei converges in LY
p so in

LY
0 . �

Remark. Without condition (13), condition (14) does not imply that u ∈ D(A).
Indeed, in Example 2.2, p = 2 and the random operator A satisfying E|Ax|2 <
∞, EAei = 0 and Y = R is 2 - smoothable. Condition (14) holds for the random
variable u because ∑

k

E|(u, e∗k)|2 =
∑

k

1
k2

< ∞,

but u /∈ D(A).
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