A METHOD OF EXTENDING RANDOM OPERATORS

DANG HUNG THANG AND TRAN MANH CUONG

ABSTRACT. In this paper, we introduce a method of extending the domain of a random operator to a class of random inputs. This method is based on the convergence of certain random series.

1. INTRODUCTION

Let (Ω, \mathcal{F}, P) be a probability space and X, Y be separable Banach spaces. By a random operator A from X into Y we mean a linear continuous mapping from X into the Frechet space $L_0^Y(\Omega, \mathcal{F}, P) = L_0^Y(\Omega)$ of all Y-valued random variables. Random operators can be regarded as a random generalization of deterministic linear continuous operators and as well as a natural framework for stochastic integrals. Some results on random operators can be found in [6, 8, 9, 10].

A random operator A from X into Y may be considered as an action which transforms linearly and continuously each deterministic input $x \in X$ into a random output Ax. This original definition of random operator cannot be applied to X-valued random variables (r.v.'s). Taking into account many circumstances in which the inputs are also subject to the influence of a random environment, one needs to define the action of A on some random outputs, i.e. to extend the domain of A to some classes of X-valued r.v.'s. A method of extending the domain of a Gaussian random operator on a Hilbert space H to a class of H-valued r.v.'s was introduced by Dorogovtsev in [1].

In this paper, we propose another method of extending the domain of A to some class $\mathcal{D}(A)$ of X-valued r.v.'s. This method is based on the convergence of certain random series provided that X is a Banach space with the Schauder basis. We shall show that $\mathcal{D}(A)$ is a dense linear subspace of L_0^X and $\mathcal{D}(A) = L_0^X$ if and only if A is a bounded random operator. We also determine some conditions for an X-valued r.v. to be in the $\mathcal{D}(A)$.

Received August 17, 2007; in revised form May 5, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60H05; Secondary: 60B11, 60G57, 60K37, 37L55.

Key words and phrases. Random operator, bounded random operator, domain of extension, action on random inputs.

This work was supported in part by the National Basic Research Program.

2. The domain of extension of a random operator

Let X, Y be separable Banach spaces. $L_0^X = L_0^X(\Omega)$ and $L_0 = L_0^R$ stand for the set of all X-valued random variables (r.v.'s) and the set of all real-valued r.v.'s, respectively. The set L_0^X equipped with the topology of convergence in probability is a Fréchet space. By a random operator from X into Y we mean a linear continuous mapping A from X into L_0^Y . For examples of random operators, we refer to [10].

Throughout this paper, X is a Banach space with the Schauder basis $e = (e_n)_{n=1}^{\infty}$. The conjugate basis is denoted by $e^* = (e_n^*)_{n=1}^{\infty}$. Then for each $x \in X$ we have

$$x = \sum_{n=1}^{\infty} (x, e_n^*) e_n.$$

Since A is linear and continuous, we get

$$Ax = \sum_{n=1}^{\infty} (x, e_n^*) Ae_n,$$

where the series converges in probability.

Denote by $\mathcal{D}(A)$ the set of all X-valued r.v. u for which the series

(1)
$$\sum_{n=1}^{\infty} (u, e_n^*) A e_n$$

converges in probability. Clearly, $X \subset \mathcal{D}(A) \subset L_0^X$.

Definition 2.1. $\mathcal{D}(A)$ is called the domain of extension of A.

If $u \in \mathcal{D}(A)$ then the sum (1) is denoted by Φu and it is understood as the action of A on the random variable u.

In general, the domain $\mathcal{D}(A)$ as well as the values $\Phi u, u \in \mathcal{D}(A)$, depend on the basis $e = (e_n)$.

Proposition 2.1. The following properties are valid:

(i) $\mathcal{D}(A)$ is a linear subspace of L_0^X and $\Phi : \mathcal{D}(A) \to L_0^Y$ is linear. (ii) If $\alpha \in L_0$ and $u \in \mathcal{D}(A)$ then $\alpha u \in \mathcal{D}(A)$ and

$$\Phi(\alpha u) = \alpha \Phi u.$$

In particular, if u is of the form $u = \sum_{i=1}^{n} \xi_i x_i, x_i \in X, \xi_i \in L_0$ then $u \in \mathcal{D}(A)$ and

$$\Phi(u) = \sum_{i=1}^{n} \xi_i A x_i.$$

(iii) If u is a countably-valued r.v.

$$u = \sum_{i=1}^{\infty} \mathbf{1}_{E_i} x_i,$$

then $u \in \mathcal{D}(A)$ and

$$\Phi(u) = \sum_{i=1}^{\infty} \mathbb{1}_{E_i} A x_i = A(u(\omega))(\omega)$$

which does not depend on the basis (e_n) . In particular, $\mathcal{D}(A)$ is dense in L_0^X .

Proof. (i) The linearity of Φ is obvious.

(ii) We need the following claim, which is easy to prove.

Claim 1. If $\alpha \in L_0, X_n \in L_0^X, X_n \xrightarrow{P} X$ then $\alpha X_n \xrightarrow{P} \alpha X$. If $\alpha_n \in L_0, X \in L_0^X$ and $\alpha_n \xrightarrow{P} \alpha$, then $\alpha_n X \xrightarrow{P} \alpha X$.

Now put $Y_n = \sum_{i=1}^n (\alpha u, e_i^*) A e_i, X_n = \sum_{i=1}^n (u, e_i^*) A e_i$. We have $Y_n = \alpha X_n$. Because $X_n \xrightarrow{P} \Phi(u)$ by the above claim $Y_n = \alpha_n X \xrightarrow{P} \alpha \Phi(u)$. Hence $\alpha u \in \mathcal{D}(A)$ and $\Phi(\alpha u) = \alpha \Phi(u)$.

(iii) Put

$$Z_n = \sum_{k=1}^n (u, e_k^*) A e_k, \ Z = \sum_{i=1}^\infty \mathbb{1}_{E_i} A x_i = A(u(\omega))(\omega).$$

We want to show that $Z_n \xrightarrow{P} Z$. For each *i* we have $p-\lim_n 1_{E_i} Z_n = 1_{E_i} A x_i = 1_{E_i} Z$. Hence

$$P(||Z_n - Z|| > t) = \sum_{i=1}^{\infty} P(||Z_n - Z|| > t, E_i)$$

$$\leq \sum_{i=1}^{N} P(||1_{E_i} Z_n - 1_{E_i} Z|| > t) + \sum_{i=N+1}^{\infty} P(E_i)$$

Letting $n \to \infty$ and $N \to \infty$ we get $\lim_{n \to \infty} P(||Z_n - Z|| > t) = 0$.

Example 2.1. Let $X = l_p, Y = l_t$ and (α_n) be the standard *r*-stable sequence (1 < r < 2), where $1 and <math>e_n = (0, \dots, 0, 1, \dots)$. We claim that

(a) For each $x \in X$ the series

(2)
$$\sum_{n=1}^{\infty} \alpha_n(x, e_n^*) e_n$$

converges a.s. in $Y = l_t$ and defines a random operator A from X into Y.

(b) For each sequence $c = (c_n) \in l_p$, the series

$$\sum_{n=1}^{\infty} \alpha_n c_n e_n$$

converges in $X = l_p$ and defines an X-valued r.v. u.

(c) $u \in \mathcal{D}(A)$ if and only if $(c_n) \in l_{r/2}$.

(One has $l_{r/2} \subset l_p$ because r < 2p).

We shall need the following lemma due to L. Schwartz, see [5].

Lemma 1. Let (α_n) be the standard r-stable sequence (1 < r < 2), (c_n) be a sequence of real numbers, $1 \leq s < \infty, s \neq r$ and $e_n = (0, \ldots, 0, 1, \ldots)$. For the series

$$\sum_{n=1}^{\infty} \alpha_n c_n e_n$$

to be convergent in l_s , it is necessary and sufficient that

- (i) $(c_n) \in l_s$ for the case s < r,
- (ii) $(c_n) \in l_r$ for the case s > r.

Now we are ready to prove the claims (a)-(c) of Example 2.1.

(a) $\sum |(x, e_n^*)|^p < \infty$ and p < r imply that $\sum |(x, e_n^*)|^r < \infty$. Because t > r by Lemma 1, we see that the series (2) converges a.s. in $Y = l_t$.

The formula

(3)
$$Ax = \sum_{n=1}^{\infty} \alpha_n(x, e_n^*) e_n$$

defines a random operator A from X into Y.

(b) Since p < r, by Lemma 1 the series

$$\sum_{n=1}^{\infty} \alpha_n c_n e_n$$

converges in $X = l_p$.

(c) We have

$$\sum_{n=1}^{\infty} (u, e_n^*) A e_n = \sum_{n=1}^{\infty} \alpha_n^2 c_n e_n.$$

Consequently, $u \in \mathcal{D}(A)$ if and only if $\sum_{n=1}^{\infty} \alpha_n^{2t} |c_n|^t < \infty$, i.e., the series

$$\sum_{n=1}^{\infty} \alpha_n \sqrt{|c_n|} e_n$$

converges in l_{2t} . Since 2t > r, by Lemma 1 we conclude that $u \in \mathcal{D}(A)$ if and only if $(\sqrt{|c_n|}) \in l_r$, that is, $(c_n) \in l_{r/2}$.

204

The following example shows that $\mathcal{D}(A)$ needs not be a closed subspace of L_0^X and the mapping $\Phi : \mathcal{D}(A) \to L_0^Y$ needs not be continuous.

Example 2.2. Let $X = L_2[0;1]$ and A be a random operator from X into R defined by the Wiener stochastic integral

$$Ax = \int_0^1 x(t) dW(t)$$

where W(t) is a Wiener process. Let (e_n) be an orthonormal basis of X. Put $\xi_n = Ae_n$. It is well-known that (ξ_n) is a sequence of Gaussian i.i.d. random variables N(0,1). Put

$$u_n = \sum_{k=1}^n \frac{\xi_k}{k} e_k, \ u = \sum_{k=1}^\infty \frac{\xi_k}{k} e_k.$$

The latter series converges a.s. in the norm of X since

$$\sum_{i=1}^{\infty} \|\frac{e_k}{k}\|^2 = \sum_{i=1}^{\infty} \frac{1}{k^2} < \infty$$

so $u_n \xrightarrow{P} u$. By Proposition 2.1 $u_n \in \mathcal{D}(A)$. We now prove $u \notin \mathcal{D}(A)$ with the help of the following claim.

Claim 2. Let (α_n) be a sequence of real-valued independent Gaussian random variables with $E\alpha_n = 0$. If $\sum_n \alpha_n^2 < \infty$ a.s, then $\sum_n E\alpha_n^2 < \infty$.

Indeed, put $\alpha = (\alpha_n)_{n=1}^{\infty}$. As $\sum_n \alpha_n^2 < \infty$ a.s., α defines a random variable Gaussian with values in the Hilbert space l_2 . By a theorem of Fernique (see [2]) we get $\sum_n E\alpha_n^2 = E ||\alpha||^2 < \infty$ as desired.

Put

$$\alpha_n = \frac{\xi_n}{\sqrt{n}}.$$

Because $\sum_{n} E \alpha_n^2 = \sum_{n} \frac{1}{n} = \infty$, by Claim 2, we infer that

$$\sum_{i=1}^{\infty} (u, e_n) A e_n = \sum_{i=1}^{\infty} \frac{\xi_n^2}{n} = \sum_{i=1}^{\infty} \alpha_n^2 = \infty \quad \text{a.s}$$

Hence $u \notin \mathcal{D}(A)$ as desired. Next, we show that the mapping $\Phi : \mathcal{D}(A) \to L_0$ is not continuous. Put

$$a_{k} = (a_{ki})_{i \ge 1} = \left(\underbrace{\frac{1}{k}, \dots, \frac{1}{k}}_{k}, 0, \dots, 0, \dots\right), \ k \ge 1,$$

$$\xi_{i} = Ae_{i}, \ \alpha_{ki} = a_{ki}\xi_{i}, \ v_{k} = \sum_{i=1}^{\infty} \alpha_{ki}e_{i} = \sum_{i=1}^{k} \alpha_{ki}e_{i}.$$

Then (ξ_i) is a sequence of i.i.d. random variables N(0,1). By Proposition 2.1, $v_k \in \mathcal{D}(A)$. From the law of large numbers it follows that

$$||v_k||^2 = \sum_{i=1}^k \alpha_{ki}^2 = \frac{1}{k^2} \sum_{i=1}^k \xi_i^2 \to 0 \text{ a.s. as } k \to \infty;$$

so $v_k \to 0$ in L_0^X . But, again by the law of large numbers,

$$\Phi(v_k) = \sum_{i=1}^{\infty} (v_k, e_i) A e_i = \sum_{i=1}^{\infty} \alpha_{ki} \xi_i = \frac{1}{k} \sum_{i=1}^{k} \xi_i^2 \to 1 \text{ a.s. as } k \to \infty.$$

Therefore, Φ is not a continuous mapping from $\mathcal{D}(A)$ into L_0 as claimed.

The following theorem characterizes random operators A for which $\mathcal{D}(A) = L_0^X$.

Theorem 2.1. If A is a bounded random operator then $\mathcal{D}(A) = L_0^X$ and Φu does not depend on the basis (e_n) . Conversely, if $\mathcal{D}(A) = L_0^X$ then A must be a bounded random operator.

Proof. Recall (see[10]) that a random operator A is said to be bounded if there exists a positive real-valued random variable $k(\omega)$ such that for each $x \in X$

$$||Ax(\omega)|| \leq k(\omega)||x|| \quad \text{a.s.}$$

Note that the exceptional set may depend on x.

Suppose that A is bounded, by Theorem 3.1 in [10] there exists a mapping

$$T: \Omega \to L(X,Y)$$

such that for each $x \in X$ it holds

$$Ax(\omega) = T(\omega)x$$
 a.s

So there is a set D with P(D) = 1 such that for each $\omega \in D$ and for all n we have

$$Ae_n(\omega) = T(\omega)e_n$$

Thus for each $\omega \in D$,

$$\sum_{n=1}^{\infty} (u(\omega), e_n^*) A e_n(\omega) = \sum_{n=1}^{\infty} (u(\omega), e_n^*) T(\omega) e_n$$
$$= T(\omega) \left(\sum_{n=1}^{\infty} (u(\omega), e_n^*) e_n \right) = T(\omega) (u(\omega)).$$

Hence the series $\sum_{n=1}^{\infty} (u, e_n^*) A e_n$ converges a.s.; so it converges in probability. Consequently, $u \in \mathcal{D}(A)$ and $\Phi u(\omega) = T(\omega)(u(\omega))$ does not depend on the basis $e = (e_n)$.

To prove the second claim of the theorem, suppose that $\mathcal{D}(A) = L_0^X$. Put

$$\Phi_n u = \sum_{i=1}^n (u, e_i^*) A e_i$$

and note that Φ_n is a linear continuous mapping from L_0^X into L_0^Y . By our assumption, $\lim_n \Phi_n u = \Phi u$ for all $u \in L_0^X$. By the Banach-Steinhaus theorem, Φ is a linear continuous mapping from L_0^X into L_0^Y . In addition, we have

$$\Phi(u) = \sum_{i=1}^{n} \mathbb{1}_{E_i} A x_i$$

for $u = \sum_{i=1}^{n} 1_{E_i} x_i$. By Theorem 5.3 in [10] we conclude that A is bounded. \Box

For each random operator A, let $\mathcal{F}(A)$ denote the σ -algebra generated by the family $\{Ax, x \in X\}$. A random variable $u \in L_0^X$ is said to be independent of A if $\mathcal{F}(u)$ and $\mathcal{F}(A)$ are independent.

Theorem 2.2. Suppose that u is independent of A. Then $u \in \mathcal{D}(A)$. Moreover, Φu does not depend on the basis (e_n) .

Proof. Let t > 0. By the independence of u and the sequence (Ae_n) we have

(4)
$$P\left(\|\sum_{i=m}^{n}(u,e_{i}^{*})Ae_{i}\| > t\right) = \int_{X} P\left(\|\sum_{i=m}^{n}(x,e_{i}^{*})Ae_{i}\| > t\right) d\mu(x),$$

where μ is the distribution of u. Because for each $x \in X$ it holds

$$\lim_{m,n\to\infty} P\left(\|\sum_{i=m}^n (x,e_i^*)Ae_i\| > t\right) = 0,$$

by the dominated convergence theorem we infer that the series

$$\sum_{i=1}^{\infty} (u, e_i^*) A e_i$$

converges in L_0^Y , i.e., $u \in \mathcal{D}(A)$.

Next, let V be the subset of L_0^X consisting of r.v.'s independent of A and let $V_0 \subset V$ be the linear subspace of simple r.v.'s. It is easy to see that V is a closed subspace of L_0^X and V_0 is dense in V equipped with the topology of L_0^X . For each n we define a mapping $\Phi_n : V \to L_0^Y$ by setting

$$\Phi_n u = \sum_{i=1}^n (u, e_i^*) A e_i$$

It is easy to see that Φ_n is a linear continuous mapping from V into L_0^Y and $\lim_n \Phi_n u = \Phi u$ for all $u \in V$. By the Banach-Steinhaus theorem, $\Phi : V \to L_0^Y$ is again a linear continuous mapping. On the other hand, by Proposition 2.1, if $u \in V_0$ then Φu takes the same values for all the basis e. Since Φ is continuous

on V and V_0 is dense in V we conclude that Φu also takes the same values for all the basis e.

3. The case where Ae_i 's are independent

In this section A is always assumed to be a random operator from X into Y such that the sequence of Y-valued r.v.'s (Ae_i) is independent. For example, if A is a random operator from $L_2[0;1]$ into R defined by the Wiener stochastic integral

$$Ax = \int_0^1 x(t) dW(t)$$

then the sequence (Ae_i) is independent, provided that (e_n) is an orthonormal basis of $L_2[0;1]$ (see Example 2.2.)

Theorem 3.1. Let Y be a Hilbert space. Denote by \mathcal{F}_n the σ -algebra generated by $(Ae_1, ..., Ae_n)$. Then for each $u \in L_0^X$ the condition

$$(u, e_n^*)$$
 is \mathcal{F}_{n-1} -measurable, for each $n > 1$,

is sufficient for $u \in \mathcal{D}(A)$.

The proof is based on the following lemma

Lemma 2. Let Y be a Hilbert space and (z_n) be a sequence of r.v.'s taking values in Y. Denote by \mathcal{F}_n the σ -algebra generated by (z_1, \ldots, z_n) , and by $\mu_n(\omega)$ the regular conditional distribution of z_n given \mathcal{F}_{n-1} . Suppose that for almost ω the sequence (μ_n) is summable in the following sense: If (ξ_n) is a sequence of Y-valued independent r.v.'s defined on another probability space such that the distribution of ξ_n is $\mu_n(\omega)$, then the series $\sum \xi_n$ converges in L_0^Y . Under this condition, the series $\sum_n z_n$ converges in L_0^Y .

Lemma 2 can be proved by the same argument as given in the proof of Theorem 2 in [3] by using the Kolmogorov three-series theorem for independent r.v.'s taking values in Hilbert spaces (see [7]).

Proof of Theorem 3.1. Let $\mu_n(\omega)$ be the regular conditional distribution of $z_n = (u, e_n^*)Ae_n$ given by \mathcal{F}_{n-1} . Since (u, e_n^*) is \mathcal{F}_{n-1} - measurable and Ae_n is independent of \mathcal{F}_{n-1} , we have

(5)
$$\mu_n(\omega)(E) = P\left\{(u, e_n^*)Ae_n \in E | \mathcal{F}_{n-1}\right\}$$
$$= P\left\{\omega' : (u(\omega), e_n^*)Ae_n(\omega') \in E\right\}.$$

Let $\nu_n(x)$ be the distribution of the r.v. $(x, e_n^*)Ae_n$. From (5) we get

(6)
$$\mu_n(\omega) = \nu_n[u(\omega)].$$

As for each $x \in X$ the sequence $\{(x, e_n^*)Ae_n\}$ are independent and the series $\sum_n (x, e_n^*)Ae_n$ converges in L_0^Y , from (6) it follows that the sequence (μ_n) is summable. By Lemma 2, we conclude that the series $\sum_n (u, e_n^*)Ae_n$ converges in L_0^Y , i.e., $u \in \mathcal{D}(A)$.

208

Recall that a Banach space is said to be *p*-uniformly smooth (1 if the modulus of smoothness defined by

$$\rho(t) = \sup_{\|x\|=1, \|y\|=t} \left\{ \frac{\|x+y\| + \|x-y\| - 2}{2} \right\}$$

satisfies the condition $\rho(t) = 0(t^p)$.

A Banach space is called *p*-smoothable if it is isomorphic to a *p*-uniformly smooth space (see [11]). The spaces L_p, l_p are min(2, p)-smoothable spaces.

Theorem 3.2. Let $X = l_p$ and Y be a Banach space of p-smoothable (1 $and <math>(e_i)$ be the standard basis in l_p . Suppose that $E||Ax||^p < \infty$ for all $x \in X$ and $EAe_i = 0$ for all i. Then for each $u \in L_0^X$ the condition

(7)
$$(u, e_n^*)$$
 is \mathcal{F}_{n-1} -measurable, for each $n > 1$

is sufficient for $u \in \mathcal{D}(A)$.

Proof. Let $t, \epsilon > 0$ be given. Put

$$u_{mn} = \sum_{i=m}^{n} \alpha_i e_i, \quad \alpha_i = (u, e_i^*),$$
$$C_i = \{\omega : \sum_{k=m}^{i} |\alpha_k|^p \leq \epsilon^p\}, \quad \xi_i = \alpha_i 1_{C_i}$$

and

(8)

$$u_{\epsilon} = \sum_{i=m}^{n} \xi_i e_i.$$

We have

$$P\{\|\Phi u_{mn}\| > t; \|u_{mn}\| \leq \epsilon\} = P\{\|\sum_{k=m}^{n} \alpha_k A e_k\| > t, \|u_{mn}\| \leq \epsilon\}$$
$$= P\{\|\sum_{k=m}^{n} \xi_k A e_k\| > t, \|u_{mn}\| \leq \epsilon\}$$
$$\leq P\{\|\Phi u_{\epsilon}\| > t\},$$

because the inequality $||u_{mn}|| \leq \epsilon$ implies that $\alpha_i = \xi_i$ for all $m \leq i \leq n$.

The assumption that α_i is \mathcal{F}_{i-1} -measurable implies that ξ_i is \mathcal{F}_{i-1} -measurable. Since $EAe_i = 0$, the sequence $(\xi_i Ae_i, \mathcal{F}_i)_{i=m}^n$ constitutes an Y-valued martingale difference. As Y is p-smoothable by the Assoad-Pisier inequality (see [11]) there exists a constant $C_1 > 0$ such that

$$E\|\Phi u_{\epsilon}\|^{p} = E\left\|\sum_{i=m}^{n} \xi_{i} A e_{i}\right\|^{p} \leqslant C_{1} \sum_{i=m}^{n} E\|\xi_{i} A e_{i}\|^{p}.$$

Since $E||Ax||^p < \infty$, the random operator A is a mapping from X into L_p^Y . By the closed graph theorem, A is continuous. Hence there is a constant $C_2 > 0$

such that for all $x \in X E ||Ax||^p \leq C_2 ||x||^p$. In particular, $E ||Ae_k||^p \leq C_2$ for all k. Hence

(9) $E \|\xi_i A e_i\|^p = E \{ |\xi_i|^p E \{ \|A e_i\|^p |\mathcal{F}_{i-1} \} \} = E |\xi_i|^p E \|A e_i\|^p \leqslant C_2 E \|\xi_i\|^p.$ Therefore,

$$E\|\Phi u_{\epsilon}\|^{p} \leqslant C_{1}C_{2}\sum_{i=m}^{n} E\|\xi_{i}\|^{p} = CE\|u_{\epsilon}\|^{p}, \quad \text{where } C = C_{1}C_{2}.$$

We have $||u_{\epsilon}||^{p} = \sum_{k=m}^{n} |\alpha_{k}|^{p} \mathbf{1}_{C_{k}}$. For each fixed ω , if $|\alpha_{m}(\omega)|^{p} > \epsilon^{p}$ then $u_{\epsilon}(\omega) = 0$. Otherwise, let $i(\omega)$ be the largest index such that $\sum_{k=m}^{i(\omega)} |\alpha_{k}(\omega)|^{p} \leq \epsilon^{p}$. Then $||u_{\epsilon}(\omega)||^{p} = \sum_{k=1}^{i(\omega)} |\alpha_{k}(\omega)|^{p} \leq \epsilon^{p}$. Hence, we always have $||u_{\epsilon}||^{p} \leq \epsilon^{p}$ which implies

that

(10)
$$E \| \Phi u_{\epsilon} \|^{p} \leqslant C \epsilon^{p}$$

By Chebyshev's inequality, we have

(11)
$$P\{\|\Phi u_{\epsilon}\| > t\} \leqslant \frac{E\|\Phi u_{\epsilon}\|^{p}}{t^{p}}$$

From (8)-(11) we get

(12)
$$P\{\|\Phi u_{mn}\| > t; \|u_{mn}\| \leq \epsilon\} \leq \frac{C\epsilon^p}{t^p}$$

Consequently,

$$P\{\|\Phi u_{mn}\| > t\} \leq P\{\|\Phi u_{mn}\| > t; \|u_{mn}\| \leq \epsilon\} + P\{\|u_{mn}\| > \epsilon\}$$
$$\leq \frac{C\epsilon^p}{t^p} + P\{\|u_{mn}\| > \epsilon\}.$$

Letting $m, n \to \infty$ we get

$$\limsup_{m,n\to\infty} P\{\|\Phi u_{mn}\| > t\} \leqslant \frac{C\epsilon^p}{t^p}.$$

Taking the limit as $\epsilon \to 0$ we get $\lim_{m,n\to\infty} P\{\|\Phi u_{mn}\| > t\} = 0$, i.e.,

$$\lim_{m,n\to\infty} P\left\{ \|\sum_{i=m}^n (u,e_i^*)Ae_i\| > t \right\} = 0,$$

that is $u \in \mathcal{D}(A)$.

Theorem 3.3. Let Y be a Banach space which is p-smoothable (1 . $Suppose that <math>E ||Ax||^p < \infty$ for all $x \in X$ and $EAe_i = 0$ for all i. Then for each $u \in L_0^X$, the conditions

(13)
$$(u, e_n^*)$$
 is \mathcal{F}_{n-1} -measurable for each $n > 1$

and

(14)
$$\sum_{n} E|(u, e_n^*)|^p < \infty$$

imply that $u \in \mathcal{D}(A)$.

Proof. Put $\alpha_i = (u, e_k^*)$. From (13), the independence of (Ae_i) , and equalities $EAe_i = 0$ it follows that $(\alpha_i Ae_i, \mathcal{F}_i)$ forms a Y-valued martingale difference. Since Y is p-smoothable by the Assoad-Pisier inequality (see [11]), there exists a constant $C_1 > 0$ such that

(15)
$$E \| \sum_{i=m}^{n} \alpha_i A e_i \|^p \leqslant C_1 \sum_{i=m}^{n} E \| \alpha_i A e_i \|^p.$$

As $E||Ax||^p < \infty$, the random operator A is a mapping from X into L_p^Y . By the closed graph theorem, A is continuous. Hence there is a constant $C_2 > 0$ such that for all $x \in X$ it holds $E||Ax||^p < C_2||x||^p$. In particular, $E||Ae_k||^p < C_2$ for all k. Therefore,

(16)
$$E \|\alpha_i A e_i\|^p = E \{ |\alpha_i|^p E \{ \|A e_i\|^p | \mathcal{F}_{i-1} \} \} = E |\alpha_i|^p E \|A e_i\|^p \leqslant C_2 E \|\alpha_i\|^p.$$

From (15) and (16) we get

(17)
$$E \| \sum_{i=m}^{n} \alpha_i A e_i \|^p \leqslant C_1 C_2 \sum_{i=m}^{n} E \| \alpha_i \|^p$$

From (14) and (17) we conclude that the series $\sum_{i=1}^{\infty} \alpha_i A e_i$ converges in L_p^Y so in L_0^Y .

Remark. Without condition (13), condition (14) does not imply that $u \in \mathcal{D}(A)$. Indeed, in Example 2.2, p = 2 and the random operator A satisfying $E|Ax|^2 < \infty$, $EAe_i = 0$ and Y = R is 2 - smoothable. Condition (14) holds for the random variable u because

$$\sum_{k} E|(u, e_k^*)|^2 = \sum_{k} \frac{1}{k^2} < \infty,$$

but $u \notin \mathcal{D}(A)$.

ACKNOWLEDGMENTS.

The authors would like to thank Dr. Nguyen Thinh for helpful discussions and suggestions.

References

- [1] A. A. Dorogovtsev, On application of Gaussian random operator to random elements, *Theor. veroyat. i primen.* **30** (1986), 812–814 (in Russian).
- [2] J. Hoffmann-Jorgensen, Probability in Banach spaces, Lecture Notes in Math. 598 (1977), 1–186.
- [3] T. P. Hill, Conditional generalization of strong law which conclude the partial sums converges almost surely, Ann. Probab. 10 (1982), 828–830.

- [4] K. Ito, Stochastic integrals, Proc. Imp. Acad. Tokyo 20 (1944), 519–524.
- [5] W. Linde, Infinitely Divisible and Stable Measures on Banach Spaces, Leipzig, 1983.
- [6] A. V. Skorokhod, Random Linear Operators, Reidel Publishing Company, Dordrecht, 1984.
- [7] N. Z. Tien, Sur le theorem des trois series de Kolmogorov, Theor. veroyat. i primen. 24 (1979), 495–517. (Russian)
- [8] D. H. Thang, Random operator in Banach space, Probab. Math. Statist. 8 (1987), 155-157.
- D. H. Thang, The adjoint and the composition of random operators on a Hilbert space, Stochastic and Stochastic Reports 54 (1995), 53–73.
- [10] D. H. Thang and N. Thinh, Random bounded operators and their extension, Kyushu J. Math. 58 (2004), 257–276.
- [11] W. A. Woyczynski, Geometry and martingales in Banach spaces II., Advances in Probab. 4 (1978), 267–517.

DEPARTMENT OF MATHEMATICS HANOI NATIONAL UNIVERSITY 334 NGUYEN TRAI STR., HANOI, VIETNAM

E-mail address: hungthang.dang@gmail.com

E-mail address: cuongtm@vnu.edu.vn