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A LOGARITHMIC QUADRATIC REGULARIZATION METHOD
FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

PHAM NGOC ANH

Abstract. We use the logarithmic quadratic function to develop two itera-
tive algorithms for solving equilibrium problems. We first use the Bregman
distance function to solve a pseudomonotone equilibrium problem satisfying a
certain Lipschitz condition. Next, to avoid the Lipschitz condition we combine
this technique with line search technique to obtain a convergent algorithm for
pseudomonotone equilibrium problems.

1. Introduction

Let C be a nonempty closed convex set in the real Euclidean space R
n and

f : C × C → R be such that f(x, x) = 0 for every x ∈ C. We consider the
following equilibrium problem:

Find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀y ∈ C. (EP )

Problem (EP) is very general in the sense that it includes, as special cases, opti-
mization problem, variational inequality, saddle point problem, Nash equilibrium
problem and others [20, 22, 29]. Monotone equilibrium problems have been con-
sidered by a lot of authors [21, 24, 26, 28]. Conditions for existence of solutions
can be found, for example, in [11] and recently in [1, 17, 18, 19, 33]. It is well
known that the logarithmic quadrative regularization technique is a powerfull
tool for analyzing and solving optimization problems. Recently this technique
has been used to develop iterative algorithm for variational inequalities [6, 10].

In some recent papers [3, 4, 8], authors have investigated contraction and non-
expansiveness properties for mixed multivalued monotone variational inequalities
and developed algorithms for solving them.

In this paper we extend our results in [3] to pseudomonotone equilibrium prob-
lem (EP). Namely, we first develop a linearly convergent algorithm for (EP) with
f being pseudomonotone bifunction satisfying a certain Lipschitz type condition
on C by using the Bregman distance function. Next, in order to avoid the Lips-
chitz condition we will use the line search and the Bregman distance function to
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obtain a convergent algorithm for solving equilibrium problem (EP) with pseu-
domonotone equilibrium bifunction f .

The paper is organized as follows. In the next section we list some examples
and summarize some basic properties used in this paper. In Section 3, we present
a linearly convergent algorithm for pseudomonotone and Lipschitz equilibrium
problems. In the fourth section we modify the algorithm by combining a line
search technique with the Bregman distance function, which allows avoiding the
Lipschitz condition. Applications to nonlinear complementarity problems are
discussed in the last section.

2. Preliminaries

We list some important results which will be required in our following analysis.
Let C be a closed convex set in R

n with the Euclidean norm ||.||, we denote the
projection on C by PC(.), i.e,

PC(x) = argmin{||y − x|| : y ∈ C} ∀x ∈ R
n.

From the above definition and the convexity of C, it follows that

||P (x) − y|| ≤ ||x − y|| ∀y ∈ C, x ∈ R
n.

Definition 2.1. Let C be a convex set in R
n, and let f : C × C → R ∪ {+∞}.

The bifunction f said to be
(i) monotone on C if for each x, y ∈ C, if we have

f(x, y) + f(y, x) ≤ 0;

(ii) pseudomonotone on C if for each x, y ∈ C, it holds

f(x, y) ≥ 0 implies f(y, x) ≤ 0;

(iii) Lipschitz with two constants c̄1 > 0 and c̄2 > 0 on C, if we have

(2.1) f(x, y) + f(y, z) ≥ f(x, z) − c̄1||y − x||2 − c̄2||z − y||2 ∀x, y, z ∈ C.

We note that when x = z and f(x, x) = 0, this condition deduces to

f(x, y) + f(y, x) ≥ −(c̄1 + c̄2)||y − x||2 ∀x, y ∈ C.

Problem (EP) includes the following problems:
1. Optimization Problem. Let C = R

n
+ and ϕ : C → R. We consider the

optimization problem:
min{ϕ(x) : x ∈ C}. (OP )

Setting f(x, y) = ϕ(y)−ϕ(x), it is easy to see that (OP) becomes a case of (EP).
Note that, if ϕ is convex, then f(x, .) is convex for each x ∈ C.
2. Nonlinear Complementarity Problem. Let C = R

n
+ and ϕ : C → R

n. The
following problem is called a nonlinear complementarity problem [23]:

Find x∗ ∈ C and ϕ(x∗) ∈ C such that 〈x∗, ϕ(x∗)〉 = 0. (NCP )
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It is easy to see that Problem (NCP) becomes a case of the following variational
inequality:

Find x∗ ∈ C such that 〈ϕ(x∗), x − x∗〉 ≥ 0 ∀x ∈ C. (V IP )

Then, setting
f(x, y) := 〈ϕ(x), y − x〉,

we can easily see that (VIP) becomes a case of (EP).
We recall the following well known definition [30].

Let C ⊆ R
n and ϕ : R

n → R
n.

• ϕ is said to be Lipschitz on C with constant L > 0 (shortly, L-Lipschitz) if

||ϕ(x) − ϕ(y)|| ≤ L||x − y|| ∀x, y ∈ C.

• ϕ is said to be pseudomonotone on C if

〈ϕ(y), x − y〉 ≥ 0 implies 〈ϕ(x), x − y〉 ≥ 0 ∀x, y ∈ C.

Some relations between the function ϕ of problem (NCP) and the function f
of problem (EP) are formulated in the following lemma [14, 28].

Lemma 2.2. (i) If ϕ is L-Lipschitz on C and f(x, y) = 〈ϕ(x), y − x〉, then

f(x, y) + f(y, z) ≥ f(x, z) − c̄1||x − y||2 − c̄2||y − z||2 ∀x, y, z ∈ C,

where c̄1 and c̄2 are any positive numbers satisfying 2
√

c̄1c̄2 ≥ L.
(ii) If ϕ is pseudomonotone on C then f is also pseudomonotone on C.

3. Nash Equilibrium Problem. Let I := {1, ..., p} be the set of p players, Ci := R
ni
+

the strategy set of player i (i ∈ I) and fi : C1 × ... ×Cp → R the loss function of
player i (i ∈ I).

By [21], a point x∗ ∈ C1 × ... × Cp is said to be a Nash equilibrium point of
f := (f1, ..., fp) on C := C1 × ... × Cp if and only if

fi(x∗) ≤ fi(x∗[yi]) ∀yi ∈ Ci, ∀i ∈ I,

where x[yi] stands for the vector obtained from x = (x1, ..., xp) ∈ C1 × ... × Cp

by replacing xi with yi. Then we set

f(x, y) :=
p∑

i=1

(
fi(x[yi]) − fi(x)

)
.

We can see that the problem of finding a Nash equilibrium point of f on C can
be formulated equivalently to (EP) (see [27]).

The following lemma can be found, for example in [27].

Lemma 2.3. Let f : C × C → R ∪ {+∞} be a bifunction. Then the following
statements are equivalent:
(i) x∗ is a solution to (EP).
(ii) x∗ ∈ C is a solution to the problem: min{f(x∗, y) : y ∈ C}.
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See e.g. Proposition 1 in [27].
Throughout this paper we suppose that

C = R
n
+ := {(x1, x2, ..., xn) : xi ≥ 0 ∀i = 1, 2, ..., n}

and for each fixed x ∈ C, the function f(x, .) is proper closed convex on C and
f(x, x) = 0 for every x ∈ C.

It is well known that the problem (NCP) can be alternatively formulated as
finding the zero point of the operator T (x) = ϕ(x) + NC(x) where

(2.2) NC(x) =

{
{y ∈ R

n : 〈y, z − x〉 ≤ 0, ∀z ∈ C} if x ∈ C,

∅ otherwise.

A classical method to solve this problem is the proximal point algorithm (see
[2, 32]), which starting with any point x0 ∈ R

n
+ and λk ≥ λ > 0, iteratively

updates xk+1 conforming the following problem:

(2.3) 0 ∈ λkT (x) + ∇xh(x, xk),

where
h(x, xk) =

1
2
||x − xk||2.

Recently, Auslender et al. [7] have proposed a new type of proximal interior
method through replacing function q(x, xk) by dφ(x, xk) which is defined as

dφ(x, y) =
n∑

i=1

y2
i φ(y−1

i xi),

where

(2.4) φ(t) =

{
ν
2 (t − 1)2 + μ(t − logt − 1) if t > 0,
+∞ otherwise,

with ν > μ > 0. The fundamental difference here is that the term dφ is used to
force the iteratives {xk+1} to stay in the interior of R

n
+.

Applying this idea to the equilibrium problem (EP), in this paper we use the
following distance of Bregman type

(2.5) d(x, y) =

{
1
2 ||x − y||2 + μ

∑n
i=1 y2

i (
xi
yi

logxi
yi

− xi
yi

+ 1) if x > 0,
+∞ otherwise,

with μ ∈ (0, 1) and y ∈ R
n
+. Then we consider the following regularized auxiliary

problem:

Find x∗ ∈ C such that f(x∗, y) +
1
c
d(y, x∗) ≥ 0 for all y ∈ C, (Aux EP )

where c > 0 is a regularization parameter.
We denote by ∇1d(x, y) the gradient of d(., y) at x for every y ∈ C. It is easy

to see that
∇1d(x, y) = x − y + μXylog

x

y
,
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where Xy = diag(y1, ..., yn) and logx
y = (logx1

y1
, ...,logxn

yn
)T .

The equivalence between (EP) and (Aux EP) is due to the following lemma.

Lemma 2.4. Let f : C × C → R ∪ {+∞} be a bifunction and x∗ ∈ C. Then x∗
is a solution to (EP) if and only if x∗ is a solution to (Aux EP).

See e.g. Proposition 1 in [27].

3. A logarithmic-quadratic algorithm

Lemma 2.4 shows that the solution of the equilibrium problem (EP) can be
approximated by an iterative procedure xk+1 = h(xk), k = 0, 1, ... where x0 is
any starting point in C := R

n
+ and h(xk) is the unique solution of the strongly

convex program

min{f(xk, y) +
1
c
d(y, xk) : y ∈ C}.

However, generally, the sequence {xk} does not converge to a solution of the
equilibrium [20, 21]. In order to avoid this drawback, the extragradient algorithm
has been introduced for monotone equilibrium problems [30].

Algorithm 3.1. Step 0. Choose x0 ∈ C, k := 0, c > 0 and a positive sequence
{ck} such that ck → c as k → +∞.
Step 1. Solve the strongly convex program:

(3.1) min{f(xk, y) +
1
ck

d(y, xk) : y ∈ C}

to obtain the unique solution yk.
If yk = xk, then terminate: xk is a solution to (EP).
Otherwise go to Step 2.
Step 2. Find xk+1 which is the unique solution to the strongly convex program:

min{f(yk, y) +
1
ck

d(y, xk) : y ∈ C}.

Step 3. Set k := k + 1, and go to Step 1.

In the next proposition, we justify the stopping criterion.

Proposition 3.2. If yk = xk, then xk is a solution to (EP).

Proof. If the algorithm terminates at Step 1, then yk = xk. It means that xk is
the solution of problem (3.1). By Lemma 2.3 and Lemma 2.4 it is a solution of
(EP). �

In order to prove the convergence of Algorithm 3.1, we give the following key
property of the sequence {xk}k≥0 generated by the algorithm.
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Lemma 3.3. Suppose that the bifunction f : C×C → R∪{+∞} is pseudomono-
tone, Lipschitz with constants c1 and c2 on C, and f(x, .) is closed convex sub-
differentiable on C for each x ∈ C. Then, if the algorithm does not terminate,
then for every solution x∗ of (EP) we have

||xk+1 − x∗||2

≤ ||xk − x∗||2 − 1 − 3μ − 2c̄2ck

1 + μ
||xk+1 − yk||2 − 1 − 3μ − 2c̄1ck

1 + μ
||xk − yk||2.

Proof. Since yk is the solution of problem (3.1), from an optimization result in
convex programming (Moreau-Rockafellar theorem (see [31])), we have

0 ∈ ∂2f(xk, yk) +
1
ck

∇1d(yk, xk) + NC(yk),

where ∂2f(xk, yk) denotes the subdifferential of f(xk, .) at yk and NC denotes
the normal cone. We have

(3.2) 0 = w1 +
1
ck

∇1d(yk, xk) + w2,

where w1 ∈ ∂2f(xk, yk), w2 ∈ NC(yk).
Since w2 ∈ NC(yk), we have

(3.3) 〈w2, y − yk〉 ≤ 0 ∀y ∈ C.

From (3.2) and (3.3) it follows that

〈 1
ck

∇1d(yk, xk), y − yk〉 ≥ 〈w1, y
k − y〉 ∀y ∈ C.

By the definition of subgradient, we have from the the last inequalities that

(3.4)
1
ck

〈∇1d(yk, xk), y − yk〉 ≥ f(xk, yk) − f(xk, y) ∀y ∈ C.

Replacing y by x∗, we obtain
1
ck

〈∇1d(yk, xk), x∗ − yk〉 ≥ f(xk, yk) − f(xk, x∗).

Note that x∗ is a solution of (EP), f(x∗, y) ≥ 0. By pseudomonotonicity of f , it
follows that f(xk, x∗) ≤ 0. Then

1
ck

〈∇1d(yk, xk), x∗ − yk〉 ≥ f(xk, yk).

On the other hand, since xk+1 is the solution to the convex program

min{f(yk, y) +
1
ck

d(y, xk) : y ∈ C},

in the same way, we can show that

(3.5)
1
ck

〈∇1d(xk+1, xk), x∗ − xk+1〉 ≥ f(yk, xk+1).
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We recall that

∇1d(xk+1, xk) = xk+1 − xk + μXxk log
xk+1

xk
,

where Xxk = diag(xk
1 , ..., xk

n) and logxk+1

xk = (logxk+1
1

xk
1

, ...,logxk+1
n

xk
n

)T . Then (3.5)
can be written as

(3.6) 〈xk+1 − xk, x∗ − xk+1〉 + μ〈Xxk log
xk+1

xk
, x∗ − xk+1〉 ≥ ckf(yk, xk+1).

Now applying the Lipschitz condition (2.1) of f with x = xk, y = yk, z = xk+1

we obtain

(3.7) f(xk, yk) + f(yk, xk+1) ≥ f(xk, xk+1) − c̄1||yk − xk||2 − c̄2||xk+1 − yk||2.
From (3.6) and (3.7), we have

〈xk+1 − xk, x∗ − xk+1〉

≥ −μ〈Xxk log
xk+1

xk
, x∗ − xk+1〉 + ckf(xk, xk+1) − ckf(xk, yk)

− c̄1ck||yk − xk||2 − c̄2ck||xk+1 − yk||2.(3.8)

If y = xk+1, inequality (3.4) becomes

f(xk, xk+1) − f(xk, yk)

≥ 1
ck

〈∇1d(yk, xk), yk − xk+1〉

=
1
ck

〈yk − xk, yk − xk+1〉 +
1
ck

μ〈Xklog
yk

xk
, yk − xk+1〉.(3.9)

From (3.8) and (3.9), it follows that

〈xk+1 − xk, x∗ − xk+1〉

≥ −μ〈Xxk log
xk+1

xk
, x∗ − xk+1〉 + 〈yk − xk, yk − xk+1〉

+ μ〈Xxk log
yk

xk
, yk − xk+1〉 − c̄1ck||yk − xk||2 − c̄2ck||xk+1 − yk||2.(3.10)

Substituting

〈xk+1 − xk, x∗ − xk+1〉 =
1
2
(||xk − x∗||2 − ||xk − xk+1||2 − ||xk+1 − x∗||2)

into (3.10), we obtain the estimation

||xk − x∗||2 − ||xk − xk+1||2 ≥ ||xk+1 − x∗||2 − 2μ〈Xxk log
xk+1

xk
, x∗ − xk+1〉

+ 2〈yk − xk, yk − xk+1〉 + 2μ〈Xxk log
yk

xk
, yk − xk+1〉

− 2c̄1ck||yk − xk||2 − 2c̄2ck||xk+1 − yk||2.(3.11)
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Combining the inequality (3.11) with the following equality

||xk+1 − xk||2 = ||xk+1 − yk||2 + ||xk − yk||2 + 2〈xk+1 − yk, yk − xk〉,
we have

||xk+1 − x∗||2
≤ ||xk − x∗||2 − ||xk+1 − yk||2 − ||xk − yk||2 + 2c̄1ck||yk − xk||2

+ 2c̄2ck||xk+1 − yk||2 + 2μ〈Xxk log
xk+1

xk
, x∗ − xk+1〉

− 2μ〈Xxk log
yk

xk
, yk − xk+1〉.(3.12)

For each t > 0 we have 1− 1
t ≤ log t ≤ t− 1, then we obtain after multiplication

by x∗
i ≥ 0 for each i = 1, ..., n,

(3.13) xk
i x

∗
i log

xk+1
i

xk
i

≤ x∗
i (x

k+1
i − xk

i ),

and after multiplication by −xk
i ≤ 0 for each i = 1, ..., n,

(3.14) −xk
i x

k+1
i log

xk+1
i

xk
i

≤ −xk
i x

k+1
i (1 − xk

i

xk+1
i

) = xk
i (x

k
i − xk+1

i ).

Adding the two inequalities (3.13) and (3.14), we obtain

2xk
i log

xk+1
i

xk
i

(x∗
i − xk+1

i )

≤ 2(xk
i − x∗

i )(x
k
i − xk+1

i )

= |xk
i − x∗

i |2 + |xk
i − xk+1

i |2 − |xk+1
i − x∗

i |2 ∀i = 1, ..., n.

These inequalities deduce that

(3.15) 2〈Xxk log
xk+1

xk
, x∗ − xk+1〉 ≤ ||xk − x∗||2 + ||xk − xk+1||2 − ||xk+1 − x∗||2.

In the same way, we also have

(3.16) 2〈Xxk log
yk

xk
, xk+1 − yk〉 ≤ ||xk − xk+1||2 + ||xk − yk||2 − ||yk − xk+1||2.

Substituting (3.15) and (3.16) into (3.12), we get

||xk+1 − x∗||2
≤ ||xk − x∗||2 − ||xk+1 − yk||2 − ||xk − yk||2 + 2c̄1ck||yk − xk||2

+ 2c̄2ck||xk+1 − yk||2 + μ(||xk − x∗||2 + ||xk − xk+1||2 − ||xk+1 − x∗||2)
+ μ(||xk+1 − xk||2 + ||yk − xk||2 − ||xk+1 − yk||2),
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and consequently

(1 + μ)||xk+1 − x∗||2
≤ (1 + μ)||xk − x∗||2 − (1 + μ − 2c̄2ck)||xk+1 − yk||2
− (1 + μ − 2c̄1ck)||xk − yk||2 + 2μ||xk+1 − xk||2.(3.17)

Applying the following inequality

||xk+1 − xk||2 ≤ 2||xk+1 − yk||2 + 2||xk − yk||2
to the last term in the right hand side of (3.17), we obtain

(1 + μ)||xk+1 − x∗||2
≤ (1 + μ)||xk − x∗||2 − (1 − 3μ − 2c̄2ck)||xk+1 − yk||2
− (1 − 3μ − 2c̄1ck)||xk − yk||2,

the lemma thus is proved. �

Now we are in a position to prove the convergence of Algorithm 3.1.

Theorem 3.4. Suppose that the bifunction f : C × C → R ∪ {+∞} is pseu-
domonotone, Lipschitz with constants c1 and c2 on C, and f(x, .) is closed convex
subdifferentiable on C for each x ∈ C. Suppose further that f is lower semicon-
tinuous on C × C and f(., y) upper semicontinuous on C for each y ∈ C. Then,
if the algorithm does not terminate and 0 < μ < 1

3 min{1−ε−2c̄1ck, 1−ε−2c̄2ck}
where ε > 0, then the sequence {xk} converges to a solution x∗ of (EP).

Proof. The assumptions 0 < μ < 1
3 min{1 − ε − 2c̄1ck, 1 − ε − 2c̄2ck} and ε > 0

imply
1 − 2c̄2ck > 0 and 1 − 2c̄2ck > 0 ∀k = 0, 1, ....

Then, from Lemma 3.3 we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 ∀k = 0, 1, ...

This inequality shows that the sequence {||xk − x∗||} is nonincreasing. Since it
is bounded below by 0, it must be convergent. Then the sequence {xk}k≥0 is
bounded and it has a subsequence {xki} such that xki → x̄ as i → +∞. From
Lemma 3.3, we get

1 − 3μ − 2c̄1ck

1 + μ
||xk − yk||2 ≤ ||xk − x∗||2 − ||xk+1 − x∗||2 ∀k = 0, 1, ...

Applying these inequalities iteratively, we obtain
n∑

k=0

1 − 3μ − 2c̄1ck

1 + μ
||xk − yk||2 ≤ ||x0 − x∗||2 − ||xn+1 − x∗||2 ∀n ≥ 0.

As the sequence {||xk − x∗||}k≥0 is convergent, passing n → +∞ we have

lim
k→+∞

1 − 3μ − 2c̄1ck

1 + μ
||xk − yk||2 = 0.
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Using this with the assumption 1 − 3μ − 2c̄1ck > ε > 0, we get

lim
k→+∞

ε||xk − yk|| = 0.

It follows that lim
i→∞

yki = x̄.

Recall that yki is the solution of the problem

min{f(xki , y) +
1
cki

d(y, xki) : y ∈ C}.

Then

f(xki , yki) +
1
cki

d(yki , xki) ≤ f(xki , y) +
1
cki

d(y, xki) ∀y ∈ C.

Using the lower semicontinuity of f , the upper semicontinuity of f(., y) and d(y, .),
taking the liminf of the left-hand side and the limsup of the right-hand one we
obtain

f(x̄, y) +
1
c
d(y, x̄) ≥ 0 ∀y ∈ C.

So x̄ is a solution to (Aux EP). Then, by Lemma 2.4, x̄ is a solution to (EP).
Replacing x∗ by x̄ in Lemma 3.3 yields

||xk+1 − x̄|| ≤ ||xk − x̄|| ∀k = 0, 1, ...,

which implies that the sequence ||xk − x̄|| is convergent. By the above proof,
the sequence {xk} has a subsequense converging to x̄, we deduce that the whole
sequence {xk} converges to the solution x̄ of (EP). �

4. An algorithm without Lipschitz condition

In Section 3, we consider the bifunction f , which satisfies the Lipschitz condi-
tion on C. In this section, in order to avoid this requirement, we modify Algo-
rithm 3.1 by using line search. The line search technique has been used widely in
descent method for solving this problem (see [25, 30]) and variational inequalities
(see [9, 13, 15, 16, 20]).

The algorithm then can be described as follows.

Algorithm 4.1. Step 0. Take x0 ∈ C, k := 0 and a sequence γk ∈ (0; 2) ∀k ≥ 0,
choose c̄ > 0 and a sequence ck → c̄ as k → +∞.
Step 1. Find yk which is the solution to the strongly convex program:

(4.1) min{f(xk, y) +
1
ck

d(y, xk) : y ∈ C}.

If yk = xk, then stop.
Otherwise go to Step 2.
Step 2. Find λk ∈ (0, 1) as the smallest number such that

(4.2) f((1 − λk)xk + λky
k, yk) +

1
2ck

d(yk, xk) ≤ 0.
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Set zk := (1 − λk)xk + λky
k.

If 0 ∈ ∂2f(zk, zk), then stop.
Otherwise go to Step 3.
Step 3. Choose gk ∈ ∂2f(zk, zk), set

z̄k := xk − γk
−λkf(zk, yk)
(1 − λk)||gk||2 gk and xk+1 := PC(z̄k),

it means that for every i = 1, ..., n,

xk+1
i =

{
z̄k
i if z̄k

i ≥ 0,
0 otherwise.

Step 4. Increase k by 1 and return to Step 1.

Recall that PC(x) denotes the projection of x on C.
Now we are in a position to prove the following convergence theorem for Al-

gorithm 4.1.

Theorem 4.2. Suppose that the sequence γk ∈ (0, 2) has lim inf γk(2 − γk) > 0,
the bifunction f : C × C → R ∪ {+∞} is pseudomonotone on Cand f(x, .) is
closed, convex and subdifferentiable on C for each x ∈ C. Suppose further that
f is lower semicontinuous on C × C and f(., y) is upper semicontinuous on C.
Then
(i) If Algorithm 4.1 terminates at Step 1 or Step 2 then xk is a solution to (EP).
(ii) For all x∗ which is a solution to (EP), we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − (2 − γk)γk

( λkf(zk, yk)
(1 − λk)||gk||

)2
.

(iii) If Algorithm 4.1 doesn’t terminate at Step 1 or Step 2, then the sequence
{xk} converges to x∗ which is a solution to (EP).

Proof. First, we have to show that there always exists λk ∈ (0, 1) as the smallest
number satisfying (4.2). We suppose on the contrary that for every λ ∈ (0, 1),
we have

f((1 − λ)xk + λyk, yk) +
1

2ck
d(yk, xk) > 0.

Passing to the limit in the above inequality (as λ → 0+), by upper semicontinuity
of f(., y), we obtain

(4.3) f(xk, yk) +
1

2ck
d(yk, xk) ≥ 0.

Since yk is a solution to (4.1), it follows that

f(xk, y) +
1
ck

d(y, xk) ≥ f(xk, yk) +
1
ck

d(yk, xk).

Replacing y by xk in the above inequality, we have

(4.4) 0 ≥ f(xk, yk) +
1
ck

d(yk, xk).
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Then from (4.3) and (4.4) it follows that d(yk, xk) = 0, i.e, xk = yk. This
contracdics to xk �= yk in Step 1.

To prove part (i), we suppose that Algorithm 4.1 terminates at Step 1, hence
xk = yk. Then

f(xk, y) +
1
ck

d(y, xk) ≥ f(xk, yk) +
1
ck

d(yk, xk) = 0 ∀y ∈ C.

This means that xk is a solution to (Aux EP). From Lemma 2.4, xk is also a
solution to (EP).

If Algorithm 2 terminates at Step 2, from zk ∈ intC it follows that

0 ∈ ∂2f(zk, zk)

can be written as
0 ∈ ∂2f(zk, zk) + NC(zk).

It means that zk is a solution to the following convex problem:

min
y∈C

f(zk, y).

Then by virtue of Lemma 2.3, zk is a solution to (EP).
Now we prove part (ii). Note that, by the above proof, at Step 3, from 0 /∈

∂2f(zk, zk) it follows that zk isn’t a solution to the following convex problem:

min
y∈C

f(zk, y).

It means that zk isn’t a solution to (EP). We set

σk :=
−λkf(zk, yk)
(1 − λk)||gk||2 .

Then

||xk+1 − x∗||2 = ||Pk

(
xk − γkσkg

k
) − x∗||2 ≤ ||xk − x∗ − γkσkg

k||2
= ||xk − x∗||2 − 2γkσk〈gk, xk − x∗〉 + (γkσk||gk||)2.(4.5)

Note that, since x∗ is a solution to (EP), f(x∗, y) ≥ 0. Then by pseudomono-
tonicity, it follows that −f(zk, x∗) ≥ 0. Combine this with

〈gk, xk − x∗〉 = 〈gk, xk − zk〉 + 〈gk, zk − x∗〉
≥ 〈gk, xk − zk〉 + f(zk, zk) − f(zk, x∗),

≥ 〈gk, xk − zk〉 =
λk

1 − λk
〈gk, zk − yk〉

≥ λk

1 − λk

(
f(zk, zk) − f(zk, yk)

)
=

−λk

1 − λk
f(zk, yk).

= σk||gk||2.(4.6)
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Since, at Step 2, d(yk, xk) > 0 and

f(zk, yk) +
1

2ck
d(yk, xk) ≤ 0,

we obtain that f(zk, yk) < 0. Hence

(4.7) σk =
−λkf(zk, yk)
(1 − λk)||gk||2 > 0.

Then from (4.5) and (4.6), we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2γkσ
2
k||gk||2 + (γkσk||gk||)2

= ||xk − x∗||2 − (2 − γk)γk(σk||gk||)2,(4.8)

which proves part (ii).
Now we rewrite (4.8) as follows

n∑
k=0

(2 − γk)γk(σk||gk||)2 ≤
n∑

k=0

(||xk − x∗||2 − ||xk+1 − x∗||2)

= ||x0 − x∗||2 − ||xn+1 − x∗||2 ∀n ≥ 0.

On the other hand, since (4.8) deduces that {||xk −x∗||} is a decreasing sequence
and is lower bounded by ||x0 − x∗||, then it must converge. It means that

∞∑
k=0

(2 − γk)γk(σk||gk||)2 < +∞.

Hence
lim

k→∞
(2 − γk)γk(σk||gk||)2 = 0,

which together with lim
k→∞

inf(2 − γk)γk > 0 implies

lim
k→∞

λkf(zk, yk)
(1 − λk)||gk|| = 0.

From the convergence of {||xk−x∗||}, we have that the sequence {xk} is bounded.
Then by the maximum theorem [5], we can deduce that the sequence {gk} is
bounded too. Thus

(4.9) lim
k→∞

λkf(zk, yk)
1 − λk

= 0.

According to the rule (4.2), it is easy to see that

(4.10)
1

2ck
d(yk, xk) ≤ −f(zk, yk).

We consider two cases:
Case 1: If lim

k→∞
supλk > 0, then we have that there exist a subsequence {xki}i≥0
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and λ̄ ∈ (0, 1] such that λki
≥ λ̄ ∀i ≥ 0. From (4.9) and inequality (4.10), we

have

(4.11) lim
i→∞

d(yki , xki) = 0.

Since the sequence {xki} is bounded, hence it has a subsequence {xki : i ∈ M}
converging to a point x̄. Using the limit (4.11) we see that the subsequence
{yki : i ∈ M} also converges to x̄. Note that yki is a solution to (4.1), hence

f(xki , y) +
1

cki

d(y, xki) ≥ f(xki, yki) +
1

cki

d(yki , xki) ∀i ∈ M,y ∈ C.

Passing to the limit as i → ∞ and using the upper semicontinuity of f(., y), we
have

f(x̄, y) +
1
c̄
d(y, x̄) ≥ f(x̄, x̄) +

1
c̄
d(x̄, x̄) = 0 ∀y ∈ C.

By Lemma 2.4, x̄ is a solution to (EP), thus the proof of the theorem in this case
is complete.
Case 2: If lim

k→∞
supλk = 0, then since {xk} is bounded, we have some subsequence

{xk : k ∈ M} converging to some point x̄ as k → ∞. From Step 1 of Algorithm
4.1, by the lower semicontinuity of f(xk, .) + 1

ck
d(., xk), the sequence {yk} is

bounded too [5, 12]. Thus, by taking a subsequence, if necessary, we may assume
that the subsequence {yk : k ∈ M} also converges to some point ȳ. From

f(xk, y) +
1
ck

d(y, xk) ≥ f(xk, yk) +
1
ck

d(yk, xk) ∀k ∈ M,y ∈ C,

by the lower semicontinuity of f, d and upper semicontinuity of f(., y), d(y, .),
taking the limit as k → ∞, we can write

(4.12) f(x̄, y) +
1
c̄
d(y, x̄) ≥ f(x̄, ȳ) +

1
c̄
d(ȳ, x̄).

Substituting y = x̄ we then have

(4.13) 0 ≥ f(x̄, ȳ) +
1
c̄
d(ȳ, x̄).

On the other hand, by Step 2 in Algorithm 4.1, since λk ∈ (0, 1) is the smallest
number satisfying

f
(
(1 − λk)xk + λky

k, yk
)

+
1

2ck
d(yk, xk) ≤ 0,

we deduce that

f

((
1 − 1

2
λk

)
xk +

1
2
λky

k, yk

)
+

1
2ck

d(yk, xk) > 0 ∀k ≥ 0.

Passing k → ∞, k ∈ M in the above inequality, we obtain

f(x̄, ȳ) +
1
2c̄

d(ȳ, x̄) ≥ 0.
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This together with (4.13) implies d(ȳ, x̄) = 0, hence x̄ = ȳ. Then replacing ȳ in
(4.12) by x̄, we deduce that

f(x̄, y) +
1
c̄
d(y, x̄) ≥ 0 ∀y ∈ C.

The proof is complete. �
Remark 4.3. The smallest number λk ∈ (0, 1) in Step 2 of Algorithm 4.1 can
be replaced by the following: With β ∈ (0, 1), we find n as the smallest natural
number such that

f
(
βnxk + (1 − βn)yk, yk

)
+

1
2ck

d(yk, xk) ≤ 0,

then set λk := 1 − βn.

5. An application to nonlinear complementarity problems

We apply Algorithm 3.1 to the complementarity problem (NCP) when ϕ is
pseudomonotone and L-Lipschitz on C := R

n
+. Note that in this case, the sub-

problem

yk = argmin
{

f(xk, y) +
1
ck

d(y, xk) : y ∈ C

}
takes the form

yk = argmin
{
〈ϕ(xk), y − xk〉 +

1
ck

d(y, xk) : y ∈ C

}
where d is defined by (2.5). It is written as

yk = argmin

{
〈ϕ(xk), y − xk〉 +

1
2ck

||y − xk||2

+
μ

ck

n∑
i=1

(xk
i )

2
( yi

xk
i

log
yi

xk
i

− yi

xk
i

+ 1
)

: y ∈ C+

}
,

where
C+ := {x ∈ Rn : xi > 0 ∀i = 1, ..., n}.

It is not difficult to see that if we denote yk = (yk
1 , ..., yk

n) and ϕ(x) =
(
ϕ1(x), ...,

ϕn(x)
) ∀x ∈ C, then for every i = 1, ..., n, we have yk

i is the unique solution to
the strongly convex problem

min{1
2
t2 + ηki t + ξki tlogt : t ∈ (0,+∞)},

where

ηki := ckϕi(xk) − xk
i − μxk

i logxk
i − μxk

i , ξki := μxk
i ∀i = 1, ..., n.

In the same way, in Algorithm 3.1, we can show that xk+1 is the unique solution
of the following problem

min{f(yk, y) +
1
ck

d(y, xk) : y ∈ C},
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which is also defined by

xk+1
i := argmin{1

2
t2 + ρkit + ξki tlogt : t ∈ (0,+∞)},

where

ρki := ckϕi(yk) − xk
i − μxk

i logxk
i − μxk

i , ξki := μxk
i ∀i = 1, ..., n.

Then the algorithm for the nonlinear complementarity problem (NCP) can be
detailed in the following.

Algorithm 5.1. Step 0. Choose x0 ∈ C, k := 0, μ > 0 and a positive sequence
{ck} such that ck → c̄ > 0 as k → +∞.
Step 1. For every i = 1, ..., n, solve the strongly convex program:

(5.1) min{1
2
t2 + ηki t + ξki tlogt : t ∈ (0,+∞)},

to obtain the unique solution yk
i , where

ηki := ckϕi(xk) − xk
i − μxk

i logxk
i − μxk

i , ξki := μxk
i ∀i = 1, ..., n.

If yk = xk, then terminate: xk is a solution to (NCP).
Otherwise go to Step 2.
Step 2. For every i = 1, ..., n, find

(5.2) xk+1
i := argmin{1

2
t2 + ρkit + ξki tlogt : t ∈ (0,+∞)},

where
ρki := ckϕi(yk) − xk

i − μxk
i logxk

i − μxk
i ∀i = 1, ..., n.

Step 3. Set k := k + 1, and return to Step 1.

Validity and linear convergence of this algorithm are immediate from Algorithm
3.1.

Thus both problems (5.1) and (5.2) are strongly convex programming problems
which can be solved efficiently by MATLAB 7.5 Optimization Toolbox. To test
the proposed method, we consider the nonlinear complementarity problem (NCP)
(see [10]) for ϕ(x) = D(x) + Mx + q, where the components of the D(x) are
Dj(x) = dj ∗ arctan(xj) ∀j ≥ 1, dj is chosen randomly in (0, 1). The matrix
M = AT A with A being n× n matrix whose entries are randomly generalized in
the interval (−1, 3). The vector q is generated from a uniform distribution in the
interval (−5, 9).

In the test we take the logarithmic parameter μ = 0.01, ck = 0.01 ∀k ≥ 1 and
the tolerance 10−7. We obtain the following computational results.

The approximate solution obtained after eleven iterations is

x10 = (1.1317, 0.1882, 0.8906, 0.4829, 0.1277, 0.2159, 0.2640)T .
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Iter(k) xk
1 xk

2 xk
3 xk

4 xk
5 xk

6 xk
7

0 1 1 1 1 1 1 1
1 1.0470 0.8957 1.0302 1.0030 0.9289 0.9641 0.9084
2 1.0886 0.8120 1.0654 1.0099 0.8549 0.9311 0.8199
3 1.1243 0.7436 1.1005 1.0155 0.7793 0.8975 0.7347
4 1.1528 0.6847 1.1296 1.0134 0.7022 0.8584 0.6540
5 1.1735 0.6296 1.1475 0.9976 0.6232 0.8095 0.5793
6 1.1864 0.5710 1.1496 0.9632 0.5422 0.7473 0.5112
7 1.1915 0.5067 1.1344 0.9088 0.4597 0.6706 0.4497
8 1.1887 0.4364 1.1014 0.8340 0.3763 0.5794 0.3946
9 1.1779 0.3601 1.0502 0.7383 0.2926 0.4733 0.3455
10 1.1590 0.2774 0.9801 0.6214 0.2095 0.3522 0.3020
11 1.1317 0.1882 0.8906 0.4829 0.1277 0.2159 0.2640

Table 1. Numerical results: Algorithm 5.1 with n = 7.
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