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NON-EXISTENCE AND MULTIPLICITY OF POSITIVE
SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEMS IN

BOUNDED DOMAINS

TRINH THI MINH HANG AND HOANG QUOC TOAN

Abstract. In the present paper, by using variational arguments, we prove
the non-existence, multiplicity of positive solutions to a system of p-Laplace
equations of gradient form with nonlinear boundary conditions.

1. Introduction

In a recent paper, [15], K. Perera has studied, by using variational arguments,
the existence, multiplicity and non-existence of positive solutions to the following
quasilinear elliptic problem

(1.1)

{
−Δpu = λf(x, u) in Ω,
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn, Δpu = div(|∇u|p−2∇u) is the p-
Laplacian , 1 < p <∞, λ is a positive parameter, and f(x, u) is a Caratheodory
function on Ω × [0,∞).

They proved that there are λ and λ, 0 < λ < λ, such that the problem (1.1)
has no positive solution for λ < λ and it has at least two positive solutions for
λ � λ.

Recently, in [10], J. Fernandez Bonder has extended these results to the Dirich-
let problem for a gradient system of p-Laplace equations:

(1.2)

⎧⎪⎨
⎪⎩
−Δpu = λf(x, u, v) in Ω,
−Δqv = λg(x, u, v) in Ω,
u = 0, v = 0 on ∂Ω,

and for the quasilinear elliptic problem with nonlinear boundary condition

(1.3)

⎧⎨
⎩
−Δpu+ |u|p−2u = 0 in Ω,

|∇u|p−2∂u

∂γ
= λf(x, u) on ∂Ω,
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where
∂

∂γ
is the outer unit normal derivative.

In the present article, we extend the results in [10] to a quasilinear elliptic system
with nonlinear boundary conditions as follows

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δpu+ |u|p−2u = 0 in Ω,
−Δqv + |v|q−2v = 0 in Ω,

|∇u|p−2∂u

∂γ
= λGu(x, u, v) on ∂Ω,

|∇v|q−2 ∂v

∂γ
= λGv(x, u, v) on ∂Ω,

where Ω is a smooth bounded domain in Rn, n � 2, 2 � p, q < ∞, λ is a positive
parameter.

We introduce the following hypotheses

H1) G(x, u, v) is a Caratheodory function on Ω × [0,∞) × [0,∞) such that
G(x, ·, ·) is C1 for a.e. x ∈ Ω and

Gu(x, u, v) = f(x, u, v), Gv(x, u, v) = g(x, u, v)

are Caratheodory functions on ∂Ω × [0,∞) × [0,∞).
H2)

G(x, 0, 0) = f(x, 0, 0) = g(x, 0, 0) = 0,

|uf(x, u, v) + vg(x, u, v)| � C(|u|p + |v|q),
|G(x, u, v)| � C(|u|p + |v|q),

for some constant C > 0.
H3) There are positive numbers δ, to, so such that for all x ∈ ∂Ω

G(x, u, v) � 0 for |u|p + |v|q � δ

G(x, to, so) > 0.

H4) lim sup
|(u,v)|−→∞

G(x, u, v)
|u|p + |v|q � 0 uniformly with respect to x ∈ ∂Ω.

Definition 1.1. A pair (u, v) ∈ W 1,p(Ω) ×W 1,q(Ω) is called a weak solution to
problem (1.4) if (u, v) satisfies:∫

Ω

(|∇u|p−2∇u∇ϕ+ |∇v|q−2∇v∇ψ + |u|p−2uϕ+ |v|q−2vψ)dx

−λ
∫
∂Ω

[ϕf(x, u, v) + ψg(x, u, v)]dσ = 0

∀ϕ,ψ ∈ C∞(Ω).

By using variational method we shall prove the following theorems.
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Theorem 1.1. Suppose that the assumptions H1)−H2) are satisfied, then there
exists a positive number λ such that for λ < λ the problem (1.4) has no positive
solution.

Theorem 1.2. Under the assumptions H1) − H4), there is a positive num-
ber λ such that the problem (1.4) has at least two different positive solutions
(u1, v1), (u2, v2) in W 1,p(Ω) ×W 1,q(Ω) for λ � λ.

The rest of the paper is organized as follows: in Section 2, we prove Theorem
1.1, and in Section 3, we prove Theorem 1.2.

2. Proof of Theorem 1.1

Firstly, we notice that the following eigenvalue problem (see [5, 7])

(2.1)

⎧⎪⎪⎨
⎪⎪⎩
−Δru+ |u|r−2u = 0 in Ω

|∇u|r−2∂u

∂γ
= λ|u|r−2u on ∂Ω

(1 < r < +∞)

has the first positive eigenvalue λ1r given by:

λ1r = min
u∈W 1,r(Ω)\W 1,r

0 (Ω)

∫
Ω

(|∇u|r + |u|r)dx∫
∂Ω

|u|rdσ .

Now for 2 � p, q < +∞ we denote

λpq = min{λ1p, λ1q}.
Then we obtain

(2.2) λpq �

∫
Ω

(|∇u|p + |∇v|q + |u|p + |v|q)dx∫
∂Ω

(|u|p + |v|q)dσ .

Suppose that (u, v) ∈W 1,p(Ω) ×W 1,q(Ω) is a positive solution of problem (1.4).
Multiplying the first equation of (1.4) by u and the second by v, integrating by
parts and adding up, we get∫

Ω

(|∇u|p + |u|p + |∇v|q + |v|q)dx =
∫
∂Ω

[(|∇u|p−2 ∂u

∂γ
)u+ (|∇v|q−2 ∂v

∂γ
)v]dσ

= λ

∫
∂Ω

(uGu(x, u, v) + vGv(x, u, v))dσ.

From that, by hypothesis H2) we have the estimate

(2.3)
∫
Ω

(|∇u|p + |u|p + |∇v|q + |v|q)dx � λC

∫
∂Ω

(|u|p + |v|q)dσ.
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From (2.2), (2.3) it follows that

λ �

∫
Ω

(|∇u|p + |∇v|q + |u|p + |v|q)dx
C

∫
∂Ω

(|u|p + |v|q)dσ � λpq

C
.

Thus with λ =
λpq

C
and for λ < λ the problem (1.4) has no positive solution.

The proof of Theorem 1.1 is complete. �

3. Proof of Theorem 1.2

For the proof of Theorem 1.2 we use critical point theory. Set G(x, u, v) = 0
for u < 0 or v < 0, hence also f(x, u, v) = g(x, u, v) = 0 for u < 0 or v < 0.
Under hypotheses H1) − H4) we consider the C1 functional associated to the
problem (1.4)

(3.1) Gλ(u, v) =
∫
Ω

( |∇u|p + |u|p
p

+
|∇v|q + |v|q

q

)
dx− λ

∫
∂Ω

G(x, u, v)dσ.

(u, v) ∈W 1,p(Ω) ×W 1,q(Ω)

and we have〈
DGλ(u, v), (ϕ,ψ)

〉
(3.2)

=
∫
Ω

(|∇u|p−2∇u∇ϕ+ |∇v|q−2∇v∇ψ)dx+
∫
Ω

(|u|p−2uϕ+ |v|q−2vψ)dx

− λ

∫
∂Ω

(f(x, u, v)ϕ + g(x, u, v)ψ)dσ

for (u, v), (ϕ,ψ) ∈W 1,p(Ω) ×W 1,q(Ω).
It is well known that the (weak) solutions of the problem (1.4) correspond to the
critical points of Gλ. To prove Theorem 1.2 we need some following facts.

Proposition 3.1. If (u, v) ∈ W 1,p(Ω) ×W 1,q(Ω) is a critical point of Gλ then
u � 0, v � 0 in Ω.

Proof. Let (u, v) be a critical point of Gλ. Denote

u− = min{u, 0}, v− = min{v, 0}.
Remark that ∫

∂Ω

(u−f(x, u, v) + v−g(x, u, v))dσ = 0.
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We have

0 =
〈
DGλ(u, v), (u−, v−)

〉
=

∫
Ω

(|∇u|p−2∇u∇u− + |∇v|q−2∇v∇v− + |u|p−2uu− + |v|q−2vv−)dx

− λ

∫
∂Ω

(u−f(x, u, v) + v−g(x, u, v))dσ

=
∫
Ω

(|∇u−|p + |∇v−|q + |u−|p + |v−|q)dx

=||u−||p
W 1,p(Ω)

+ ||v−||q
W 1,q(Ω)

.

Hence ||u−||W 1,p(Ω) = 0, ||v−||W 1,q(Ω) = 0, it follows that u � 0, v � 0 in Ω. The
proof is complete. �

Remark 3.1. Let (u, v) be a critical point of Gλ, then u � 0, v � 0 in Ω. By
Harnack’s inequality (see [17]), it follows that either u > 0, v > 0 or u = v = 0 in
Ω. Therefore, non-trivial critical points of Gλ are positive solutions of problem
(1.4).

Proposition 3.2. Gλ is coercive and bounded from below in W 1,p(Ω)×W 1,q(Ω).

Proof. By assumptionsH2) andH4), for any λ > 0 there exists a constant Cλ > 0
such that

λG(x, u, v) � λpq

2

[ |u|p
p

+
|v|q
q

]
+Cλ.

Hence

Gλ(u, v) =
∫
Ω

( |∇u|p + |u|p
p

+
|∇v|q + |v|q

q

)
dx− λ

∫
∂Ω

G(x, u, v)dσ

�
∫
Ω

|∇u|p + |u|p
p

dx+
∫
Ω

|∇v|q + |v|q
q

dx−
∫
∂Ω

(
λ1p

2p
|u|p +

λ1q

2q
|v|q + Cλ)dσ

�
∫
Ω

|∇u|p + |u|p
p

dx+
∫
Ω

|∇v|q + |v|q
q

dx− 1
2p

∫
Ω

(|∇u|p + |u|p)dx∫
∂Ω

|u|pdσ
∫
∂Ω

|u|pdσ

− 1
2q

∫
Ω

(|∇v|q + |v|q)dx∫
∂Ω

|v|qdσ
∫
∂Ω

|v|qdσ −
∫
∂Ω

Cλdσ

� 1
2p

∫
Ω

(|∇u|p + |u|p)dx+
1
2q

∫
Ω

(|∇v|q + |v|q)dx−Cλμ(∂Ω).
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From this it follows that

(3.3) Gλ(u, v) � 1
2p

||u||p
W 1,p(Ω)

+
1
2q

||v||q
W 1,q(Ω)

− Cλμ(∂Ω),

where μ(∂Ω) denotes the Lebesgue measure of ∂Ω. So Gλ is coercive and bounded
from below. �
Remark 3.2. By Proposition 3.2 and as Gλ(u, v) is weakly lower semicontinuous,
we obtain a global minimizer (u1, v1) of Gλ(u, v) in W 1,p(Ω) ×W 1,q(Ω).

Proposition 3.3. There is a positive number λ such that for λ � λ inf
(u,v)

Gλ(u, v) <

0 and hence (u1, v1) �= (0, 0).

Proof. Take the constant functions uo(x) = to, vo(x) = so where to, so are as in
H3).
Then we obtain ∫

∂Ω

G(x, uo, vo)dσ =
∫
∂Ω

G(x, to, so)dσ > 0,

hence there is a number λ > 0 such that : for λ � λ

Gλ(uo, vo) =
1
p
||uo||pW 1,p(Ω)

+
1
q
||vo||W 1,q(Ω)q − λ

∫
∂Ω

G(x, uo, vo)dσ < 0.

From this it follows that
inf
(u,v)

Gλ(u, v) � Gλ(uo, vo) < 0 for λ � λ. So Gλ(u1, v1) < 0 with λ � λ, hence

(u1, v1) �= 0. Proposition 3.3 is proved. �
Proposition 3.4. The origin (0, 0) is a strict local minimizer of Gλ in W 1,p(Ω)×
W 1,q(Ω).

Proof. Let Γ = {x ∈ ∂Ω : |u(x)|p + |v(x)|q > δ}, δ be as in H3).
So G(x, u(x), v(x)) � 0 for x ∈ ∂Ω \ Γ, hence −λ ∫

∂Ω\Γ
G(x, u, v)dσ � 0 with

λ � λ > 0.
Therefore, for λ � λ > 0,

Gλ(u, v) =
1
p
||u||p

W 1,p(Ω)
+

1
q
||v||q

W 1,q(Ω)
− λ

∫
∂Ω\Γ

G(x, u, v)dσ − λ

∫
Γ

G(x, u, v)dσ

� 1
p
||u||p

W 1,p(Ω)
+

1
q
||v||q

W 1,q(Ω)
− λ

∫
Γ

G(x, u, v)dσ.

By H2), Holder’s inequality and Sobolev trace embedding theorem, we have∫
Γ

G(x, u, v)dσ �
∫
Γ

C(|u|p + |v|q)dσ

� C(||u||p
W 1,p(Ω)

μ(Γ)1−
p
s + ||v||q

W 1,q(Ω)
μ(Γ)1−

q
r ),
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where

(3.4)

⎧⎪⎨
⎪⎩
s =

(n− 1)p
n− p

if p < n and s > p if p � n

r =
(n− 1)q
n− q

if q < n and r > q if q � n.

So, in order to finish the proof, it suffices to show that μ(Γ) −→ 0 as ||u||p
W 1,p(Ω)

−→ 0 and ||v||q
W 1,q(Ω)

−→ 0.
We recall that

∫
Ω

(|∇u|p + |u|p + |∇v|q + |v|q)dx∫
∂Ω

(|u|p + |v|q)dσ � λpq = min (λ1p, λ1q) > 0.

Then

||u||p
W 1,p(Ω)

+ ||v||q
W 1,q(Ω)

� λpq

∫
∂Ω

(|u|p + |v|q)dσ � λpq

∫
Γ

(|u|p + |v|q)dσ

� λpq

∫
Γ

δdσ = λpqδμ(Γ).

Now μ(Γ) −→ 0 when ‖u‖p
W 1,p(Ω)

+ ‖v‖q
W 1,q(Ω)

−→ 0.
Hence Gλ(u, v) > Gλ(0, 0) when ‖u‖p

W 1,p(Ω)
−→ 0, ‖v‖q

W 1,q(Ω)
−→ 0.

This completes the proof. �

Proposition 3.5. Gλ satisfies the Palais-Smale condition in W 1,p(Ω)×W 1,q(Ω).

Proof. Let {(um, vm)}+∞
m=1 be a Palais-Smale sequence ofGλ inW 1,p(Ω)×W 1,q(Ω).

We have then |Gλ(um, vm)| � K, for any m, DGλ(um, vm) −→ 0 as m −→ +∞.
Due to Proposition 3.2, Gλ is coercive and bounded, and from (3.3) we have

Gλ(um, vm) � 1
2p

‖um‖p
W 1,p(Ω)

+
1
2q

‖vm‖q
W 1,q(Ω)

− Cλμ(∂Ω).

Hence (um, vm) is a bounded sequence in W 1,p(Ω)×W 1,q(Ω). Thus, there exists a
subsequence {(umj , vmj )}∞j=1 of {(um, vm)}∞m=1 which converges weakly to (uo, vo)
in W 1,p(Ω) ×W 1,q(Ω). We shall prove that {(umj , vmj )} converges strongly to
(uo, vo) in W 1,p(Ω) ×W 1,q(Ω).

Firsly, by Rellich-Kondrachov theorem (see[1], p.144), the embeddingW 1,p(Ω)×
W 1,q(Ω) into Lp(Ω)× Lq(Ω) is continuous and compact. Therefore the sequence
{(umj , vmj )}j

converges strongly to (uo, vo) in Lp(Ω) × Lq(Ω). This implies that
the sequence {(umj , vmj )}j

is bounded in Lp(Ω) × Lq(Ω), hence the sequence

{|umj |p−2umj , |vmj |q−2vmj}j
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is bounded in Lp’
(Ω) × Lq’

(Ω), where p’ =
p

p− 1
, q’ =

q

q − 1
so that

(3.5) lim
j−→+∞

∫
Ω

(|umj |p−2umj (umj − uo) + |vmj |q−2vmj (vmj − vo))dx = 0.

On the other hand, from hypothesis H2) it follows that f(x, umj , vmj ) is bounded
in Lp’

and g(x, umj , vmj ) is bounded in Lq’
, hence

(3.6) lim
j−→+∞

∫
∂Ω

[(umj −mo).f(x, umj , vmj ) + (vmj − vo)g(x, umj , vmj )]dσ = 0.

Besides, we have

(3.7) lim
j−→+∞

〈
DGλ(umj , vmj ), (umj − uo, vmj − vo)

〉
= 0.

By applying the equality (3.2) we have∫
Ω

(|∇u|p−2∇u∇ϕ+ |∇v|q−2∇v∇ψ)dx

=
〈
DGλ(u, v), (ϕ,ψ)

〉− ∫
Ω

(|u|p−2uϕ+ |v|q−2vψ)dx

+ λ

∫
∂Ω

[ϕf(x, u, v) + ψg(x, u, v)]dσ

for (u, v), (ϕ,ψ) ∈ W 1,p(Ω) ×W 1,q(Ω). With u = umj , v = vmj , ϕ = umj − uo,
ψ = vmj − vo, we get∫

Ω

(|∇umj |p−2∇umj∇(umj − uo) + |∇vmj |q−2∇vmj∇(vmj − vo))dx

=
〈
DGλ(umj , vmj ), (umj − uo, vmj − vo)

〉
−

∫
Ω

(|umj |p−2umj (umj − uo) + |vmj |q−2vmj (vmj − vo))dx

+ λ

∫
∂Ω

[(umj − uo)f(x, umj , vmj ) + (vmj − vo)g(x, umj , vmj )]dσ.

Letting j −→ +∞ from (3.5), (3.6), (3.7) we obtain that

(3.8)
∫
Ω

(|∇umj |p−2∇umj∇(umj − uo) + |∇vmj |q−2∇vmj∇(vmj − vo))dx = 0.

Using a similar approach we get

(3.9)
∫
Ω

(|∇uo|p−2∇uo∇(umj − uo) + |∇vo|q−2∇vo∇(vmj − vo))dx = 0.
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Remark that for r � 2, there exists a positive contant Cr such that

(3.10) (|s|r−2s− |s|r−2s)(s− s) � Cr|s− s|r
for any s, s ∈ Rn (Proposition 2, [21]).
Applying (3.10) with s = ∇umj (∇vmj ), s = ∇uo(∇vo) we obtain the estimate∫

Ω

(|∇umj |p−2∇umj − |∇uo|p−2∇uo)(∇umj −∇uo)dx(3.11)

+
∫
Ω

(|∇vmj |q−2∇vmj − |∇vo|q−2∇vo)(∇vmj −∇vo)dx

� Cp||∇umj −∇uo||pLp(Ω) + Cq||∇vmj −∇vo||qLq(Ω).

Letting j −→ ∞ , using (3.8), (3.9), from (3.11), we get

lim
j−→∞

||umj − uo||W 1,p(Ω) = 0,

lim
j−→∞

||vmj − vo||W 1,q(Ω) = 0.

Besides, (umj , vmj ) −→ (uo, vo) in Lp(Ω)×Lq(Ω) that the sequence {(umj , vmj )}j

converges strongly to (uo, vo) in W 1,p(Ω) ×W 1,q(Ω). The proof of Proposition
3.5 is complete. �

Now we are in position to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. By Proposition 3.5 and Proposition 3.4, Gλ satisfies the
Palais-Smale condition in W 1,p(Ω) ×W 1,q(Ω), the origin (0, 0) is a strict local
minimizer of Gλ and Gλ(0, 0) = 0. Moreover, from Proposition 3.2 and Remark
3.2, Gλ has a global minimizer (u1, v1) �= (0, 0), Gλ(u1, v1) < 0. Now applying the
mountain-pass theorem (Theorem 10.3 [18]), there exists a critical point (u2, v2) ∈
W 1,p(Ω)×W 1,q(Ω) of Gλ which is not of minimizer type. Thus (u2, v2) �= (u1, v1).
Theorem 1.2 is proved. �
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