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QUASI-EQUILIBRIUM INCLUSION PROBLEMS
OF THE BLUM-OETTLI TYPE AND RELATED PROBLEMS

LAI-JIU LIN AND NGUYEN XUAN TAN

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. Several quasi-equilibrium inclusion problems of the Blum-Oettli
type are formulated and sufficient conditions on the existence of solutions are
shown. As special cases, we obtain several results on the existence of solu-
tions of general vector ideal (resp. proper, Pareto, weak) quasi-optimization
problems, of quasivariational inequalities, and of quasivariational inclusion
problems.

1. Introduction

Let Y be a topological vector space and let C ⊂ Y be a cone. We put l(C) =
C ∩ (−C). If l(C) = {0} , then C is said to be a pointed cone. For a given subset
A ⊂ Y , one can define efficient points of A with respect to C in different senses
as: ideal, Pareto, proper, weak,...(see [6]). The set of these efficient points is
denoted by αMin(A/C) with α = I;α = P ;α = Pr ;α = W; ... for the case of
ideal, Pareto, proper, weak efficient points, respectively. Let D be a subset of
another topological vector space X. By 2D we denote the family of all subsets
in D. For a given multivalued mapping f : D → 2Y , we consider the problem of
finding x̄ ∈ D such that

(GV OP )α f(x̄) ∩ αMin(f(D)/C) 6= ∅.

This is called a general vector α optimization problem corresponding to D, f and
C. The set of such points x̄ is said to be a solution set of (GV OP )α. The elements
of αMin(f(D)/C) are called α optimal values of (GV OP )α.

Now, let X,Y and Z be topological vector spaces, let D ⊂ X,K ⊂ Z be
nonempty subsets and let C ⊂ Y be a cone. Given the following multivalued
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mappings

S : D → 2D, P : D → 2K , T : D ×D → 2K , F : K ×D ×D → 2Y ,

we are interested in the problem of finding x̄ ∈ D such that

x̄ ∈ S(x̄) and F (y, x̄, x̄) ∩ αMin(F (y, x̄, S(x̄))/C) 6= ∅, for all y ∈ P (x̄).

This is called a general vector α quasi-optimization problem depending on a
parameter (α is respectively one of qualifications: ideal, Pareto, proper, weak).
Such a point x̄ is said to be a solution of (GV QOP )α. The above multivalued
mappings S, P, and F are said to be respectively a constraint, a parameter poten-
tial, and an utility mapping. These problems also play a central role in the vector
optimization theory concerning multivalued mappings and have many relations
to the following problems.
(UIQEP), upper ideal quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and F (y, x̄, x) ⊂ C, for all x ∈ S(x̄), y ∈ T (x̄, x).

(LIQEP), lower ideal quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and F (y, x̄, x) ∩ C 6= ∅, for all x ∈ S(x̄), y ∈ T (x̄, x).

(UPQEP), upper Pareto quasi-equilibrium problem. Find x̄ ∈ D such
that

x̄ ∈ S(x̄) and F (y, x̄, x) 6⊂ −(C\l(C)), for all x ∈ S(x̄), y ∈ T (x̄, x).

(LPQEP), lower Pareto quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and F (y, x̄, x) ∩ −(C\l(C)) = ∅, for all x ∈ S(x̄), y ∈ T (x̄, x).

(UWQEP), upper weakly quasi-equilibrium problem. Find x̄ ∈ D such
that

x̄ ∈ S(x̄) and F (y, x̄, x) 6⊂ (−intC), for all x ∈ S(x̄), y ∈ T (x̄, x).

(LWQEP), lower weakly quasi-equilibrium problem. Find x̄ ∈ D such
that

x̄ ∈ S(x̄) and F (y, x̄, x) ∩ (−intC) = ∅, for all x ∈ S(x̄), y ∈ T (x̄, x).

In general, we call the above problems γ quasi-equilibrium problems involving
D,K, S, T, F with respect to C, where γ is one of the following qualifications:
upper ideal, lower ideal, upper Pareto, lower Pareto, upper weakly, lower weakly.
These problems generalize many well-known problems in the optimization theory
as quasi-equilibrium problems, quasivariational inequalities, fixed point problems,
complementarity problems, saddle point problems, minimax problems as well as
different others which have been studied by many authors, for examples, Park
[11] Chan and Pang [2], Parida and Sen [10], Gurraggio and Tan [4] etc. for
quasi-equilibrium problems and quasivariational problems, Blum and Oettli [1],
Lin, Yu and Kassay [5], Tan [12], Minh and Tan [8], Fan [3] for equilibrium and
variational inequality problems and by some others in the references therein. One
can easily see that the above problems also have many relations with the following
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quasivariational inclusion problems which have been considered in Tan [12], Luc
and Tan [7] and Minh and Tan [8].
(UQVIP), upper quasivariational inclusion problem. Find x̄ ∈ D such
that

x̄ ∈ S(x̄) and F (y, x̄, x) ⊂ F (y, x̄, x̄) + C, for all x ∈ S(x̄), y ∈ T (x̄, x).

(LQVIP), lower quasivariational inclusion problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and F (y, x̄, x̄) ⊂ F (y, x̄, x)− C, for all x ∈ S(x̄), y ∈ T (x̄, x).

The purpose of this paper is to give some sufficient conditions on the existence
of solutions to the above γ quasi-equilibrium problems involving D,K, S, T, F
with respect to (−C), where F is of the form F (y, x, x′) = G(y, x′, x)−H(y, x, x′)
with G,H : K×D×D → 2Y being two different multivalued mappings. We also
call them quasi-equilibrium problems of the Blum-Oettli Type.

2. Preliminaries and definitions

Throughout this paper, we denote by X,Y and Z real Hausdorff topological
vector spaces. The space of real numbers is denoted by R. Given a subset D ⊂ X,
we consider a multivalued mapping F : D → 2Y . The effective domain of F is
denoted by

domF = {x ∈ D/F (x) 6= ∅} .
Further, let Y be a topological vector space with a cone C. We introduce new
definitions of C-continuities.

Definition 2.1. Let F : D → 2Y be a multivalued mapping.
(i) F is said to be upper (resp. lower) C–continuous at x̄ ∈ dom F if for any

neighborhood V of the origin in Y there is a neighborhood U of x̄ such that

F (x) ⊂ F (x̄) + V + C

(F (x̄) ⊂ F (x) + V − C, respectively)
holds for all x ∈ U ∩ domF .

(ii) If F is simultaneously upper C–continuous and lower C–continuous at x̄,
then we say that it is C–continuous at x̄.

(iii) If F is upper, lower,. . . , C–continuous at any point of domF , we say
that it is upper, lower,. . . , C–continuous on D.

(iv) In the case C = {0} in Y , we shall only say that F is upper, lower
continuous instead of upper, lower 0-continuous. The mapping F is continuous
if it is simultaneously upper and lower continuous.

Definition 2.2. Let F : D×D → 2Y be a multivalued mapping with nonempty
values. We say that

(i) F is upper C-monotone if

F (x, y) ⊂ −F (y, x)− C

holds for all x, y ∈ D.
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(ii) F is lower C-monotone if for any x, y ∈ D we have

(F (x, y) + F (y, x)) ∩ (−C) 6= ∅.

Definition 2.3. Let F : K × D × D → 2Y , T : D × D → 2K be multivalued
mappings with nonempty values. We say that

(i) F is diagonally upper (T,C)-quasiconvex in the third variable on D if for
any finite xi ∈ D, ti ∈ [0, 1], i = 1, ..., n,

∑n
i=1ti = 1, xt =

∑n
i=1tixi, there exists

j ∈ {1, 2, . . . , n} such that

F (y, xt, xj) ⊂ F (y, xt, xt) + C, for all y ∈ T (xt, xj).

(ii) F is diagonally lower (T,C)-quasiconvex in the third variable on D if for
any finite xi ∈ D, ti ∈ [0, 1], i = 1, ..., n,

∑n
i=1ti = 1, xt =

∑n
i=1tixi, there exists

j ∈ {1, 2, . . . , n} such that

F (y, xt, xt) ⊂ F (y, xt, xj)− C, for all y ∈ T (xt, xj).

To prove the main results we shall need the following theorem:

Theorem 2.4. ([13]) Let D be a nonempty convex compact subset of X and
F : D → 2D be a multivalued mapping satisfying the following conditions:

1) For all x ∈ D,x /∈ F (x) and F (x) is convex;
2) For all y ∈ D,F−1(y) is open in D.
Then there exists x̄ ∈ D such that F (x̄) = ∅.

3. Main results

Let D ⊂ X, K ⊂ Z be nonempty convex compact subsets, C ⊂ Y be a
convex closed pointed cone. We assume implicitly that multivalued mappings
S, T and G,H are as in Introduction. In the sequel, we always suppose that the
multivalued mapping S has nonempty convex values and S−1(x) is open for any
x ∈ D. We have

Theorem 3.1. Assume that
1) For any x′ ∈ D, the set

A1(x′) = {x ∈ D|(G(y, x, x′)−H(y, x′, x)) 6⊂ −C, for some y ∈ T (x, x′)}

is open in D;
2) The multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in

the third variable;
3) For any fixed y ∈ K, the multivalued mapping G(y, ., .) : D × D → 2Y is

upper C-monotone;
4) (G(y, x, x) +H(y, x, x)) ⊂ C for all (y, x) ∈ K ×D.
Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and (G(y, x, x̄)−H(y, x̄, x)) ⊂ −C, for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. We define the multivalued mapping M1 : D → 2D by

M1(x) = {x′ ∈ D|(G(y, x′, x)−H(y, x, x′)) 6⊂ −C, for some y ∈ T (x, x′)}.
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Observe that if for some x̄ ∈ D, x̄ ∈ S(x̄), one has M1(x̄) ∩ S(x̄) = ∅, then

(G(y, x, x̄)−H(y, x̄, x)) ⊂ −C, for all x ∈ S(x̄), y ∈ T (x̄, x)

and hence the proof is complete. Thus, our aim is to show the existence of such
a point x̄. Consider the multivalued mapping Q from D to itself defined by

Q(x) =
{
coM1(x) ∩ S(x), if x ∈ S(x),
S(x), otherwise,

where the multivalued mapping coM1 : D → 2D is defined by coM1(x) =
co(M1(x)) with co(B) denoting the convex hull of the set B. We now show that
Q satisfies all conditions of Theorem 2.4 in Section 2. It is easy to see that for
any x ∈ D,Q(x) is convex and

Q−1(x) = [(coM1)−1(x)) ∩ S−1(x)] ∪ [S−1(x) \ {x})]
= [coA1(x) ∩ S−1(x)] ∪ [S−1(x) \ {x})]

is open in D.
Further, we claim that x /∈ Q(x) for all x ∈ D. Indeed, suppose to the

contrary that there exists a point x̄ ∈ D such that x̄ ∈ Q(x̄) = coM1(x̄) ∩ S(x̄).
In particular, x̄ ∈ coM1(x̄), we then conclude that there exist x1, ..., xn ∈M1(x̄)
such that x̄ =

∑n
i=1tixi, xi ∈ M1(x̄), ti ≥ 0,

∑n
i=1ti = 1. By the definition of M1

we can see that

(1) (G(yi, xi, x̄)−H(yi, x̄, xi)) 6⊂ −C,

for some yi ∈ T (x̄, xi), and for all i = 1, ..., n. Since the multivalued mapping
G + H is diagonally upper (T,C)-quasiconvex in the third variable, there exists
j ∈ {1, ..., n} such that

(2) G(y, x̄, xj) +H(y, x̄, xj) ⊂ C +G(y, x̄, x̄) +H(y, x̄, x̄) ⊂ C,

for all y ∈ T (x̄, xj).
Since G is upper C-monotone, we deduce

(3) G(y, xj , x̄) ⊂ (−C −G(y, x̄, xj)), for y ∈ T (x̄, xj).

A combination of (2) and (3) gives

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, xj) +H(y, x̄, xj)})

⊂ −C − C = −C, for all y ∈ T (x̄, xj).

This contradicts (1). Applying Theorem 2.4 in Section 2, we conclude that there
exists a point x̄ ∈ D with Q(x̄) = ∅. If x̄ /∈ S(x̄), then Q(x̄) = S(x̄) = ∅, which
is impossible. Therefore, we deduce x̄ ∈ S(x̄), and Q(x̄) = coM1(x̄)) ∩ S(x̄) = ∅.
This implies M1(x̄) ∩ S(x̄) = ∅ and hence

x̄ ∈ S(x̄), (G(y, x, x̄)−H(y, x̄, x)) ⊂ −C, for all x ∈ S(x̄), y ∈ T (x̄, x).

The proof is complete. �
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Theorem 3.2. Assume that
1) For any x′ ∈ D, the set

A2(x′) = {x ∈ D|(G(y, x, x′)−H(y, x′, x)) ∩ (−C) 6= ∅, for some y ∈ T (x, x′)}
is open in D;

2) The multivalued mapping G + H is diagonally lower (T,C)-quasiconvex in
the third variable;

3) For any fixed y ∈ K, the multivalued mapping G(y, ., .) : D × D → 2Y is
upper C-monotone;

4) (G(y, x, x) +H(y, x, x)) ⊂ C for all (y, x) ∈ K ×D.
Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and (G(y, x, x̄)−H(y, x̄, x)) ∩ (−C) 6= ∅, for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one of Theorem 3.1 with M1 replaced
by

M2(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′) ∩ (−C) = ∅,
for some y ∈ T (x, x′)}. Similarly, as in (1) we obtain

(4) (G(yi, xi, x̄)−H(yi, x̄, xi)) ∩ (−C) = ∅, for i = 1, ..., n, yi ∈ T (x̄, xi).

Since the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex in
the third variable, there exists j ∈ {1, ..., n} such that

(G(y, x̄, xj) +H(y, x̄, xj)) ∩ C 6= ∅, for all y ∈ T (x̄, xj).

Since G is upper C-monotone, we deduce

(G(y, xj , x̄) ⊂ (−C −G(y, x̄, xj)), for y ∈ T (x̄, xj).

Therefore, we have

G(y, x̄, xj) +H(y, x̄, xj) ⊂ (−C − {G(y, xj , x̄)−H(y, x̄, xj))}
and then

∅ 6= (G(y, x̄, xj) +H(y, x̄, xj) ∩ C ⊂ C ∩ (−C − {(G(y, xj , x̄)−H(y, x̄, xj))}).
This implies

(G(y, xj , x̄)−H(y, x̄, xj)) ∩ (−C) 6= ∅, for all y ∈ T (x̄, xj).

This contradicts (4). Further, we can argue as in the proof of Theorem 3.1. �

Theorem 3.3. Assume that
1) For any x′ ∈ D, the set

A3(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x) ⊂ (C\{0}) for some y ∈ T (x, x′)}
is open in D;

2) The multivalued mapping G + H is diagonally lower (T,C)-quasiconvex in
the third variable;

3) For any fixed y ∈ K, the multivalued mapping G(y, ., .) : D × D → 2Y is
upper C-monotone;

4) (G(y, x, x) +H(y, x, x)) ∩ (−C \ {0}) = ∅ for all (y, x) ∈ K ×D.
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Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and (G(y, x, x̄)−H(y, x̄, x)) 6⊂ (C \ {0}), for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one of Theorem 3.1 with M1 replaced
by

M3(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)) ⊂ C \ {0}, for some y ∈ T (x, x′)}.
Similarly, as in (1) we obtain

(5) (G(yi, xi, x̄)−H(yi, x̄, xi)) ⊂ C \ {0}, for i = 1, . . . , n, yi ∈ T (x̄, xi).

Since the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex in
the third variable, there exists j ∈ {1, ..., n} such that

(G(y, x̄, xj) +H(y, x̄, xj)) ∩ (C +G(y, x̄, x̄) +H(y, x̄, x̄)) 6= ∅, ∀ y ∈ T (x̄, xj).

Since G is upper C-monotone, we then have

(G(y, x̄, xj) +H(y, x̄, xj)) ⊂ (−C − {G(y, xj , x̄)−H(y, x̄, xj)}),
for all y ∈ T (x̄, xj).
This implies

(C +G(y, x̄, x̄) +H(y, x̄, x̄)) ∩ (−C − {G(y, xj , x̄)−H(y, x̄, xj)}) 6= ∅,
for all y ∈ T (x̄, xj). Together with (5) we get

(G(yj , x̄, x̄) +H(yj , x̄, x̄)) ∩ −(C \ {0}) 6= ∅,
which is impossible by Assumption 4.

The rest of the proof can be done as in proving Theorem 3.1. �

Theorem 3.4. Assume that
1) For any x′ ∈ D, the set

A4(x′) = {x ∈ D|(G(y, x, x′)−H(y, x′, x)) ∩ (C \ {0}) 6= ∅ for some y ∈ T (x, x′)}
is open in D;

2) The multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in
the third variable with G(y, x, x) +H(y, x, x) ⊂ C, for any (y, x) ∈ D ×K;

3) For any fixed y ∈ K, the multivalued mapping G(y, ., .) : D × D → 2Y is
upper C-monotone;

4) (G(y, x, x) +H(y, x, x)) ∩ (−C \ {0}) = ∅ for all (y, x) ∈ K ×D.
Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and (G(y, x, x̄)−H(y, x̄, x))∩(C\{0}) = ∅, for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one of Theorem 3.1 with M1 replaced
by

M4(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)∩(C\{0}) 6= ∅, for some y ∈ T (x, x′)}.
Similarly, as in (1) we obtain

(6) (G(yi, xi, x̄)−H(yi, x̄, xi)) ∩ (C \ {0}) 6= ∅,
for i = 1, ..., n, yi ∈ T (x̄, xi).
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Since the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in
the third variable, there exists j ∈ {1, ..., n} such that

(7) G(y, x̄, xj) +H(y, x̄, xj) ⊂ C +G(y, x̄, x̄) +H(y, x̄, x̄),

for all y ∈ T (x̄, x).
Since G is upper C-monotone,

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, xj) +H(y, x̄, xj)}),
for all y ∈ T (x̄, xj) and then together with (7), we deduce

(8) (G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, x̄) +H(y, x̄, x̄)}),
for all y ∈ T (x̄, xj).

A combination of (6) and (8) gives

(C \ {0}) ∩ (−C − {G(yj , x̄, x̄) +H(yj , x̄, x̄)}) 6= ∅.
It follows that

(G(yj , x̄, x̄) +H(yj , x̄, x̄)) ∩ −(C \ {0}) 6= ∅.
This is impossible by Assumption 4.
Further, we continue the proof as in Theorem 3.1. �

Theorem 3.5. Assume that
1) For any x′ ∈ D, the set

A5(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ⊂ intC for some y ∈ T (x, x′)}
is open in D;

2) The multivalued mapping G + H is diagonally lower (T,C)-quasiconvex in
the third variable with G(y, x, x) +H(y, x, x) ⊂ C, for any (y, x) ∈ D ×K;

3) For any fixed y ∈ K, the multivalued mapping G(y, ., .) : D × D → 2Y is
upper C-monotone.

4) (G(y, x, x) +H(y, x, x)) ∩ −intC = ∅ for all (y, x) ∈ K ×D.
Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and (G(y, x, x̄)−H(y, x̄, x)) 6⊂ intC, for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one of Theorem 3.1 with M1 replaced
by

M5(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′) ⊂ intC, for some y ∈ T (x, x′)}.
Similarly, as in (1) we obtain

(9) (G(yi, xi, x̄)−H(yi, x̄, xi)) ⊂ intC, for i = 1, ..., n, yi ∈ T (x̄, xi).

Since the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex in
the third variable, there exists j ∈ {1, ..., n} such that

G(y, x̄, xj) +H(y, x̄, xj) ∩ (C +G(y, x̄, x̄) +H(y, x̄, x̄)) 6= ∅, ∀ y ∈ T (x̄, xj).

Since G is upper C-monotone, we then have

G(y, x̄, xj) +H(y, x̄, xj) ⊂ (−C − {G(y, xj , x̄)−H(y, x̄, xj)})
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⊂ (−C − intC) = −intC for all y ∈ T (x̄, xj).
Together with (9), we conclude

(C +G(yi, x̄, x̄) +H(yi, x̄, x̄)) ∩ −intC 6= ∅.
It is impossible by Assumption 4.
Further, we continue the proof as in Theorem 3.1. �

Theorem 3.6. Assume that
1) For any x′ ∈ D, the set

A6(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ∩ intC 6= ∅ for some y ∈ T (x, x′)}
is open in D;

2) The multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in
the third variable;

3) For any fixed y ∈ K, the multivalued mapping G(y, ., .) : D × D → 2Y is
upper C-monotone.

4) (G(y, x, x) +H(y, x, x)) ⊂ C for all (y, x) ∈ K ×D.
Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and (G(y, x, x̄)−H(y, x̄, x)) ∩ intC = ∅, for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one of Theorem 3.1 with M1 replaced
by

M6(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′))∩ intC 6= ∅, for some y ∈ T (x, x′)}.
Similarly, as in (1) we obtain

(10) (G(yi, xi, x̄)−H(yi, x̄, xi)) ∩ intC 6= ∅, for i = 1, ..., n, yi ∈ T (x̄, xi).

Since the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in
the third variable, there exists j ∈ {1, ..., n} such that

(G(y, x̄, xj) +H(y, x̄, xj)) ⊂ (C +G(y, x̄, x̄) +H(y, x̄, x̄)), for all y ∈ T (x̄, xj).

Remarking that
(G(y, x̄, x̄) +H(y, x̄, x̄)) ⊂ C,

we obtain

(11) (G(y, x̄, xj) +H(y, x̄, xj)) ⊂ C, for all y ∈ T (x̄, xj).

Since G is upper C-monotone, we then have

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, xj) +H(y, x̄, xj)}),
for all y ∈ T (x̄, xj).

Taking account of (11), we conclude that

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ −C for all y ∈ T (x̄, xj).

A combination of (10) and (11) gives

intC ∩ (−C) 6= ∅.
It is impossible, since C is a pointed cone.
Further, we continue the proof as in Theorem 3.1. �
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Remark 1. 1) In the case G(y, x, x′) = {0} (resp. H(y, x, x′) = {0}) for all
(y, x, x′) ∈ K × D × D, the above theorems show the existence of solutions of
quasi-equilibrium inclusion problems of the Ky Fan (of the Browder-Minty, re-
spectively ) type. These also generalize the results obtained by Luc and Tan
[7]; Minh and Tan [8, 9] and many other well-known results for vector optimiza-
tion problems, variational inequalities, equilibrium, quasi-equilibrium problems
concerning scalar and vector functions optimization etc.

2) If G and H are single-valued mappings, then we can see that Theorem 3.1
coincides with Theorem 3.2, Theorem 3.3 with Theorem 3.4 and Theorem 3.5
with Theorem 3.6.

Further, the following propositions give sufficient conditions putting on the
multivalued mappings T and F such that Conditions 1 of the above theorems are
satisfied.

Proposition 3.7. Let F : K × D → 2Y be a lower C-continuous multivalued
mapping with nonempty values and T : D → 2K be a lower continuous multivalued
mapping with nonempty values. Then the set

A1 = {x ∈ D| F (T (x), x) 6⊂ −C}

is open in D.

Proof. Let x̄ ∈ A1 be arbitrary. We have F (T (x̄), x̄) 6⊂ −C. Therefore, there
exists ȳ ∈ T (x̄) such that F (ȳ, x̄) 6⊂ −C. Since F is lower C-continuous at (ȳ, x̄) ∈
K×D, then for any neighborhood V of the origin in Y one can find neighborhoods
U of x̄,Wof ȳ such that

F (ȳ, x̄) ⊂ F (y, x) + V − C, for all (y, x) ∈W × U.

Since T is lower continuous at x̄, one can find a neighborhood U0 ⊂ U of x̄ such
that

T (x) ∩W 6= ∅, for all x ∈ U0 ∩D.
Hence, for any x ∈ U0 ∩D there is y ∈ T (x) ∩W, such that

F (ȳ, x̄) ⊂ F (y, x) + V − C.
If there is some x ∈ U0∩D, y ∈ T (x), F (y, x) ⊂ −C, then we have F (ȳ, x̄) ⊂ V −C
for any V . It then follows that F (ȳ, x̄) ⊂ −C and we have a contradiction. So,
we have shown that

F (T (x), x) 6⊂ −C, for all x ∈ U0 ∩D.
This means that U0 ∩D ⊂ A1 and then A1 is open in D. �

Proposition 3.8. Let F : K × D → 2Y be an upper C-continuous multivalued
mapping with nonempty values and T : D → 2K be a lower continuous multivalued
mapping with nonempty closed values. Then the set

A2 = {x ∈ D| F (y, x) ∩ (−C) = ∅, for some y ∈ T (x)}

is open in D.
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Proof. Let x̄ ∈ A2 be arbitrary, F (ȳ, x̄) ∩ (−C) = ∅, for some ȳ ∈ T (x̄). Since F
is upper C-continuous at (ȳ, x̄) ∈ K × D, then for any neighborhood V of the
origin in Y one can find neighborhoods U of x̄,Wof ȳ such that

F (y, x) ⊂ F (ȳ, x̄) + V + C, for all (y, x) ∈W × U.

Since T is lower continuous at x̄, one can find a neighborhood U0 of x̄ such that

T (x) ∩W 6= ∅, for all x ∈ U0 ∩D.

Therefore, for any x ∈ U0 ∩D there is y ∈ T (x) ∩W, we have

F (y, x) ⊂ F (ȳ, x̄0) + V + C.

If there is some x ∈ U0∩D, y ∈ T (x), F (y, x)∩(−C) 6= ∅, then we have (F (ȳ, x̄)+
V + C) ∩ (−C) 6= ∅ for any V . It then follows that F (ȳ, x̄) ∩ (−C) 6= ∅ and we
have a contradiction. So, we have shown that

F (T (x), x) ∩ (−C) =6 ∅, for all x ∈ U0 ∩D.

This means that U0 ∩D ⊂ A2 and then A2 is open in D. �

Analogously, we can prove the following propositions

Proposition 3.9. Let F : K × D → 2Y be an upper C-continuous multivalued
mapping with nonempty values and T : D → 2K be a lower continuous multivalued
mapping with nonempty values. Then the set

A3 = {x ∈ D| F (y, x) ⊂ intC, for some y ∈ T (x)}

is open in D.

Proposition 3.10. Let F : K × D → 2Y be a lower C-continuous multivalued
mapping with nonempty values and T : D → 2K be a lower continuous multivalued
mapping with nonempty values. Then the set

A4 = {x ∈ D| F (y, x) ∩ intC 6= ∅, for some y ∈ T (x)}

is open in D.

Remark 2. 1) Assume that the multivalued mappings T,G and H are given
as in Theorems 3.1-3.6 with nonempty values. In addition, suppose that T is a
lower continuous multivalued mapping. For any fixed x ∈ D if the multivalued
mapping F : K ×D → D defined by

F (y, x′) = G(y, x, x′)−H(y, x′, x), (y, x′) ∈ K ×D,

is lower, upper, upper and lower C-continuous, then Conditions 1 of Theorems
3.1, 3.2, 3.5 and 3.6 is satisfied, respectively.

2) Assume that there exists a cone C̃ ⊂ Y such that C̃ is not the whole space
Y and (C \ {0}) ⊂ intC̃ and the mapping T is lower continuous, the mapping F
defined as above is upper (resp. lower) C-continuous, then Theorem 3.3 (resp.
Theorem 3.4) is also true without Condition 1 (apply Theorems 3.5, 3.6 with C

replaced by C̃).
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To conclude this section, we consider the simple case when G and H are real
functions. We can see that Theorems 3.1- 3.6 are extensions of a result by Blum
and Oettli to vector and multivalued problems. We have

Theorem 3.11. Let D,K, S, T be as above with T lower continuous. Let G,H :
K ×D ×D → R be real functions satisfying the following conditions

1) For any fixed (y, x) ∈ K × D the function F : D → R defined by F (x′) =
G(y, x, x′) − H(y, x′, x) is lower semi-continuous in the usual sense. For any
fixed, y ∈ K,x1, x2 ∈ D, the function g : [0, 1] → R defined by g(t) = G(y, tx1 +
(1− t)x2, x2) is upper semi-continuous in the usual sense;

2) For any fixed (y, x) ∈ K ×D,G(y, x, .), H(y, x, .) are convex functions;
3) For any fixed y ∈ K the function G(y, ., .) is monotone (i.e, G(y, x, x′) +

G(y, x′x) ≤ 0, for all x, x′ ∈ D);
4) G(y, x, x) = H(y, x, x) = 0 for all (y, x) ∈ K ×D.
Then there exists x̄ ∈ D such that x̄ ∈ S(x̄) and

G(y, x̄, x) +H(y, x̄, x) ≥ 0, for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. Take Y = R,C = R+, we can see that all assumptions of Theorems 3.1–
3.6 are satisfied. Applying any of the theorems, we conclude that there exists
x̄ ∈ D with x̄ ∈ S(x̄) such that

G(y, x, x̄)−H(y, x̄, x) ≤ 0, for all x ∈ S(x̄), y ∈ T (x̄, x).

This is equivalent to

G(y, x̄, x) +H(y, x̄, x) ≥ 0, for all x ∈ S(x̄), y ∈ T (x̄, x),

(see the proof in [1]). �
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