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CONVEX METRICS REVISITED

F. PLASTRIA, G. SONCK AND W. JACQUET

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. This short note gives a new proof and some extensions of the
classical result of Witzgall that any convex weak metric is derived from a
gauge.

1. Introduction

A gauge is a real-valued function γ defined on a real vector space V satisfying
the following properties for any u, v (see [4]):

G1: γ(u) ≥ 0,
G2: γ(ru) = r.γ(u) for any r ≥ 0,
G3: γ(u+ v) ≤ γ(u) + γ(v).
Any gauge γ defines a distance measure dγ by

dγ(x, y) = γ(y − x)

which is easily seen to be a weak metric, i.e. satisfies the following properties:
D1: d(x, y) ≥ 0, (nonnegativity)
D2: d(x, x) = 0, (identity)
D3: d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)
Furthermore, any gauge γ is evidently a convex function, and it follows that

the distance dγ derived from it is a convex function V × V → R+, and also for
any x ∈ V each of the functions dγ(x, .) and dγ(., x) is always a convex function
V → R+.

Witzgall ([5, 6]) proved that the converse also holds: any weak metric defined
on a finite dimensional real vector space, for which distance up to (and from) any
fixed point is convex, is necessarily derived from a gauge.

In this note, we give another proof of this result, using geometric arguments
which applies also in case of infinite dimension and, for dimension 1, may be
restricted to a convex subset. The proof consists of two steps. First we show that
each distance up to (and from) a fixed point is derived from a gauge. Secondly,
using some small technical lemmas, we prove that all these gauges are the same
for all fixed points.
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2. Another proof of Witzgall’s theorem and some generalizations

In the next theorem we show that each distance induced by a weak metric up
to (and from) any fixed point is derived from a gauge. The result holds for weak
metrics on a convex subset in a general vector space.

Theorem 1. Let C be a convex subset of V and d : C ×C → R+ a weak metric
on C. If for all x ∈ C both derived functions

dx : C − x → R+ : u 7→ d(x, x+ u)

dx : C − x → R+ : u 7→ d(x+ u, x)

are convex, then each of these functions dx and dx is a gauge restricted to its
respective domain.

Proof. We detail the proof for dx, where x ∈ C is arbitrary, the case of dx being
fully similar. We prove that dx satisfies properties G1,G2,G3, restricted to C−x.
First note that since x ∈ C, we always have 0 ∈ C − x, and C − x is always
convex as a translate of the convex C.

By D1 it is evident that dx satisfies G1.
To show G2, consider first any λ ∈ [0, 1] and u ∈ C −x. Then λu = (1−λ)0 +

λu ∈ C − x , and by convexity of dx and dx(0) = d(x, x) = 0 (using D2), we
obtain already

dx(λu) ≤ λdx(u).

In order to obtain also the inverse inequality, the triangle inequality D3 shows
that

(2.1) d(x, x+ u) ≤ d(x, x+ λu) + d(x+ λu, x+ u)

since x+ λu ∈ C. A similar reasoning as above, using −u ∈ C − x− u and 1− λ
and the convexity of dx+u on C − x− u, yields

dx+u(−(1− λ)u) ≤ (1− λ)dx+u(−u)

or d(x+λu, x+u) ≤ (1−λ)d(x, x+u). Combined with (2.1) we therefore obtain

d(x, x+ u) ≤ d(x, x+ λu) + (1− λ)d(x, x+ u)

or λd(x, x+ u) ≤ d(x, x+ λu) as sought to conclude dx(λu) = λdx(u).
G2 then also follows for λ > 1 as soon as λu ∈ C − x since 1

λ ∈ [0, 1], so
dx(u) = dx( 1

λ(λu)) = 1
λd

x(λu).
G3 now becomes a direct consequence of convexity : for any u, v ∈ C − x with

u+ v ∈ C − x we have

dx(u+v) = dx(2(
1
2
u+

1
2
v)) = 2dx(

1
2
u+

1
2
v) ≤ 2(

1
2
dx(u)+

1
2
dx(v)) = dx(u)+dx(v).

�
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Remark. It may be noted that Witzgall [6] gives the following example of a weak
metric d on R in which only the dx are convex, but not all positively homogeneous,
showing all assumptions above are needed:

d(x, y) =


2(y − x) if x < y
2(x− y) if 0 ≤ y ≤ x

2x− y if y < 0 ≤ x
x− y if y ≤ x < 0

The following three technical lemmas will allow us to prove that a weak metric
on an arbitrary vector space is derived from a gauge, if each distance from any
fixed point is a gauge.

Lemma 2. Let γ : V → R+ be a gauge on a real vector space V then for all
u, v ∈ V,

|γ(u)− γ(v)| ≤M = max{γ(u− v), γ(v − u)}.

Proof. For u, v ∈ V we have

γ(u) = γ(u− v + v) ≤ γ(u− v) + γ(v)

and so γ(u)− γ(v) ≤ γ(u− v) ≤M .
Analogously we find γ(v)− γ(u) ≤ γ(u− v) ≤M . �

Lemma 3. Let γ : V → R+ be a gauge on a real vector space V then for all
u′, v ∈ V , f : R → R, µ → γ(u′ + µv) − γ(µv) has the Lipschitz property with
Lipschitz constant equal to 2 max{γ(v), γ(−v)}.

Proof. Let µ1, µ2 ∈ R. Then

|f(µ2)− f(µ1)|
= |γ(u′ + µ2v)− γ(µ2v)− γ(u′ + µ1v) + γ(µ1v)|)
≤ |γ(u′ + µ2v)− γ(u′ + µ1v)|+ |γ(µ1v)− γ(µ2v)|)
≤ max{γ((µ2 − µ1)v), γ((µ1 − µ2)v)}+ max{γ((µ1 − µ2)v), γ((µ2 − µ1)v)}
= 2|µ2 − µ1|max{γ(v), γ(−v)}. �

Lemma 4. Let γ, γ′ be gauges on a real vector space V with γ 
 γ′. Then for
all v ∈ V there exists u ∈ V such that γ(v + u) > γ(v) + γ′(u).

Proof. Since γ 
 γ′ there exists u′ 6= 0 such that γ(u′) > γ′(u′). We define
f : R → R, µ 7→ γ(u′ + µv) − γ(µv). The function f is Lipschitz and therefore
continuous at 0 (see [1]). Since f(0) = γ(u′) > γ′(u′) ≥ 0 there exists µ > 0 with
f(µ) > γ′(u′). This implies γ(u′ + µv)− γ(µv) > γ′(u′). Let u = u′

µ . Then

γ(v + u) = γ(v +
u′

µ
) =

1
µ
γ(µv + u′)

>
1
µ

(γ′(u′) + γ(µv)) = γ′(
u′

µ
) + γ(v) = γ′(u) + γ(v).

�
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Theorem 5. Let d : V × V → R+ be a weak metric on a real vector space V . If
∀v ∈ V dv : V → R, u 7→ d(v, v + u) is a gauge then all dv are equal, i.e. d is
derived from a gauge.

Proof. Let v1, v2 ∈ V be such that dv1 6= dv2 . Then either dv1 
 dv2 or dv2 
 dv1 .
Suppose that dv1 
 dv2 . By Lemma 4 there exists u ∈ V such that

dv1(v2 − v1 + u) > dv1(v2 − v1) + dv2(u).

Let z = v2 + u, then

d(v1, z) = d(v1, v1 + z − v1) = dv1(z − v1) = dv1(v2 + u− v1),

d(v1, v2) = d(v1, v1 + v2 − v1) = dv1(v2 − v1),

d(v2, z) = d(v2, v2 + u) = dv2(u).

It follows that d(v1, z) > d(v1, v2) + d(v2, z), which contradicts the triangle in-
equality. �

3. The one-dimensional case

The following theorem specifies necessary and sufficient conditions for a weak
metric d on a convex subset C in R to be derived from a gauge when V = R.

Theorem 6. Let d : C × C → R be a weak metric on a convex subset C ⊂ R
(case n = 1). Then the following statements are equivalent

(1) d is a convex function,
(2) all functions dx and dx (x ∈ C) as defined in Theorem 1 are convex,
(3) d is derived from a gauge.

Proof. The only nontrivial part is the implication (2) to (3). By Theorem 1,
(2) implies that for each x ∈ C both dx and dx are positively homogeneous.
In particular this means that for all x ∈ C some nonnegative numbers dx(1)
and dx(−1) exist such that for all u > 0, u ∈ C − x we have dx(u) = dx(1)u
and dx(−u) = dx(−1)u. Observe that dx(1) (respectively dx(−1)) are uniquely
defined, except when x = maxC (respectively x = minC), if this exists, in which
case the value is arbitrary. (Note also that the notations dx(1) and dx(−1) are
not meant to imply that 1 ∈ C − x or −1 ∈ C − x.)

Now for any pair x < y ∈ C we have

d(x, y) = d(x, x+ (y − x)) = dx(y − x) = dx(1)(y − x)

d(x, y) = d(y − (y − x), y) = dy(−(y − x)) = dy(−1)(y − x)

and hence dx(1) = dy(−1) as soon as x < y.
Thus, for any x′ ∈ C with x < x′, either x′ = maxC and we may choose

dx
′
(1) = dx(1), or some y ∈ C exists with y > x′, and we have dx(1) = dy(−1) =

dx
′
(1). Also, either x = minC and we may choose dx(−1) = dx′(−1) or some

z ∈ C exists with z < x, and we have dx(−1) = dz(1) = dx′(−1). In each case
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we have, dx(1) = dx(−1) =: α for all x ∈ C. Similarly, using d(y, x) above, we
obtain dx(1) = dx(−1) =: β for all x ∈ C. Then, defining

γ(u) =:
{
αu (u ≥ 0)
β(−u) (u < 0)

we obtain, for all x, y ∈ C, d(x, y) = γ(y − x). �

Remark. We give an example of a weak metric defined on a convex subset of R
for which all dx are gauges but not necessarily equal. This shows in particular
that the second condition above may not be weakened to consider the functions
dx only.

Let C = [1, 2] and define

d : C × C → R+ : (x, y) 7→
{
x(y − x) if x ≤ y
0 if x ≥ y

Evidently d satisfies D1 and D2. For D3 take three points x, y, z in C. The
inequality is trivial when x ≥ y or when two of the three points coincide. If x < y
we consider the following cases:

(1) if x < z < y then d(x, y) = x(y−x) = x(y−z+z−x) = x(y−z)+x(z−x) <
z(y − z) + x(z − x) = d(z, y) + d(x, z),

(2) if x < y < z then d(x, y) = x(y−x) < x(z−x) = d(x, z) ≤ d(x, z)+d(z, y),
(3) if z < x < y then y ≤ 2 = 1+1 < x+z and so (x−z)y < (x−z)(x+z) =

x2 − z2 which implies x(y − x) < z(y − z) or d(x, y) < d(x, z) + d(z, y).
For each x ∈ C the map

dx : C − x→ R+ : u 7→ d(x, x+ u) =
{
xu if u ≥ 0
0 if u < 0

is easily seen to be positively homogeneous. For G3 we take two points u, v ∈ C−x
such that u+ v ∈ C − x. The inequality is trivial when u+ v ≤ 0 so we suppose
u+ v > 0 and consider the following cases:

(1) if u and v both are positive then dx(u + v) = x(u + v) = xu + xv =
dx(u) + dx(v),

(2) if u > 0 and v < 0 then dx(u+ v) = x(u+ v) = xu+ xv < xu = dx(u) ≤
dx(u) + dx(v).

Finally for x = 5
4 and x′ = 7

4 we have 1
4 ∈ (C − x) ∩ (C − x′) and dx(1

4) = 5
16 6=

7
16 = dx

′
(1
4) and so the weak gauges dx and dx

′
do not coincide on the intersection

of their domains.

4. Some open questions

(1) The proof of Lemma 4 clearly shows that the less the two gauges differ,
the smaller µ will have to be chosen, thus enlarging u quite rapidly. This
means that in Theorem 5 the z, constructed in order to violate the triangle
inequality, will have to be taken the farther away, the closer the unit balls
for distance up to x and y are. Therefore our argument does not apply
for convex C 6= V , and it is not clear how to adapt it to such cases.
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One may note that a proof for C ⊂ R2 would suffice, since the triangle
inequality involves three points, so any proof may always be restricted
to the two-dimensional plane containing them. It should be noted that
recently Guerrini [2] gave another proof of the result, valid when C is the
positive cone of a Riesz space.

One may also try to construct counterexamples. In other words, the
question is if one can define a family of gauges for all points from a
bounded set, which only slowly change, in such a way that they define
together a convex function d on this set, which would also satisfy the
triangle inequality, because for its violation one would always need to use
a z outside the bounds of the set.

It might also be that in dimension higher than one the full equivalences
of Theorem 6 do not hold, in the sense that full convexity of d on C ×C
is required to prove it to be derived from a gauge.

(2) Does this theorem still hold when distance may be ∞, as happens for
gauges with 0 on the unit ball’s boundary?

(3) Can some similar result be derived for quasiconvex metrics? E.g. If a
weak metric is quasiconvex in each parameter, might it be derived from
a gauge composed with a concave function?

This looks much more dubious, although it might be related to the fact
that the composition of a weak metric with any concave real functional
which is nonnegative and vanishes at 0 is still a weak metric (see [3]).
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