
ACTA MATHEMATICA VIETNAMICA 91
Volume 34, Number 1, 2009, pp. 91–103

IMPLEMENTATION ISSUES FOR HIGH-ORDER
ALGORITHMS

JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. Newton-Raphson method, which dates back to 1669–1670, is widely
used to solve systems of equations and unconstrained optimization prob-
lems. Newton-Raphson consists in linearizing the system of equations and
provides quadratic local convergence order. Quite soon after Newton and
Raphson introduced their iterative process, Halley in 1694 proposed a higher-
order method providing cubic asymptotic convergence order. Chebyshev in
1838 proposed another high-order variant. In High-order Newton-penalty Al-
gorithms [2], by interpreting Newton’s iteration as a linear extrapolation,
formulæ were proposed to compute higher-order extrapolations generalizing
Newton-Raphson’s and Chebyshev’s methods.

In this paper, we provide details using an automatic differentiation (AD)
tool to implement those high-order extrapolations. We present a complexity
analysis allowing to predict the efficiency of those high-order strategies.

Introduction

Over the years, the so called Newton-Raphson [11, 12] iterative method has
proved a very efficient solution for solving nonlinear equations and optimization
problems. When applied to an unconstrained optimization problem min f(x),
Newton’s method reduces to iteratively solve a second-order approximation of
f . A local minimum of f being a stationary point, one observes that Newton’s
method consists in iteratively solving a linear approximation of g(x) = ∇f(x).
The linear approximation of g is defined using its Jacobian H(x) = ∇g(x) =
∇2f(x). When f is more than twice differentiable, higher-order variants may be
developed. Chebyshev’s and Halley’s methods both use third-order derivatives
of f within an iterative scheme. Both those methods avoid solving the quadratic
equations underlying a second-order Taylor expansion of g. This contrasts with
the so-called tensor methods proposed in the 80’s [13], which use clever approxi-
mations to the second-order model of g.

Received April 10, 2008; in revised form September 22, 2008.
2000 Mathematics Subject Classification. 65Y20.
Key words and phrases. Automatic differentiation, Newton-Raphson’s method, Halley’s

method, Chebyshev’s method.
This research was partially supported by NSERC grant OGP0005491.

92 JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

In High-order Newton-penalty Algorithms [2], we proposed a different inter-
pretation of the Newton-Raphson method, viewing it as a linear extrapolation
of the implicit function x(r), r being the residual of the nonlinear function at
the current iterate. If the function is p times differentiable, we are then able to
define extrapolations of orders as high as p. As it happens, a first order extrapo-
lation is nothing else than Newton’s method while a second-order extrapolation
is Chebyshev’s method.

These high-order approaches can be made practical using automatic differen-
tiation techniques. The purpose of this paper is to present details of the compu-
tations of those higher-order variants within a specific automatic differentiation
tool, SciAD [9], developed in the Scilab environment [14]. We will compare the
per-iteration cost of the competing variants, and give some hints on their conver-
gence properties.

1. High-order methods

In this section, we consider solving a system of equations F (x) = 0, where
F : R

n → R
n is p times continuously differentiable. For an iterative method, at

iteration k, we express

F (xk) − rk = 0

when solving optimization problems min f(x), F (x) = g(x) = ∇f(x).

1.1. Newton-Raphson’s method. This famous method consists in solving a
linearization of F at xk:

lk(d) = F (xk) + ∇F (xk)d = 0

and iterating xk+1 = xk + dk where dk solves lk(dk) = 0.

1.2. Halley class of iterations. Chebyshev’s, Halley’s and a so-called super
Halley’s method may all be derived from the general iterative scheme [5, 6],
where k = 0, 1, 2...:

xk+1 = xk −
[
I +

1
2
L(xk)[I − αL(xk)]−1

]
∇F (xk)−1F (xk),

and

L(x) = ∇F (x)−1∇2F (x)∇F (x)−1F (x).

The three most usual cases are

• α = 0: Chebyshev’s method [1];
• α = 1

2 : Halley’s method [7];
• α = 1: super Halley’s method [6].

IMPLEMENTATION ISSUES FOR HIGH-ORDER ALGORITHMS 93

The above formulation is better rewritten as follows for implementation (omit-
ting the iteration index k):

∇F (x)d1 = F (x)

(∇F (x) + α∇2F (x)d1)d2 = −1
2
∇2F (x)d1d1.

Therefore, each iteration requires the solution of two linear systems, and the
evaluation of ∇2F (x)d1 and ∇2F (x)d1d1 once d1 is computed. When α = 0, for
Chebyshev’s method, the two linear system are both defined by the same matrix
∇F (x), and only ∇2F (x)d1d1 is needed. As we will see, this has a tremendous
impact on the computational cost per iteration.

All three third-order variants (using third-order derivatives of the objective
function f , ∇2F (x) = ∇3f(x)) share an asymptotic convergence of order three.
It has been reported that super Halley’s method usually requires less iterations
than the other two variants, even if it does not benefit from a higher convergence
order.

1.3. Extrapolations. An unusual way of obtaining Newton’s method consists
in writing r̃k = rk

‖rk‖ ,

F (xk) − τ r̃k = 0,

and devising extrapolation formulæ from τk = ‖rk‖ to 0. Let us apply the implicit
function theorem to obtain x as a function of τ , with xk = x(τk):

∇F (xk)ẋ(τk) − r̃k = 0.

It is now clear that ẋ(τk) = ∇F (xk)−1r̃k and that the first order extrapolation is
nothing else than Newton’s direction, dN = ẋ(τk)(0 − τk) = −∇F (xk)−1F (xk).
Whenever F is many times continuously differentiable at x∗, we may generalize
the extrapolation to a higher-order Taylor expansion of x,

x̂p(0) = x(τ) + ẋ(τ)(0 − τ) . . . +
1
p!

x(p)(τ)(0 − τ)p,

thus providing a superlinear convergence of order p + 1.
Even if high-order derivatives of F are required, this high-order Taylor expan-

sion only requires solving linear systems, all involving the same matrix ∇F (xk).
For example,

(1) ∇2F (x)ẋ(τ)ẋ(τ) + ∇F (x)ẍ(τ) = 0

defines ẍ(τ) as

ẍ(r) = −∇F (x)−1
(∇2F (x)ẋ(r)ẋ(r)

)
.

The extrapolation itself is x̂2 = x(τ)+ ẋ(τ)(0−τ)+ 1
2 ẍ(τ)(0−τ)2. One recognizes

Chebyshev’s iteration in this x̂2.

94 JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

1.4. Convergence. The local convergence properties of the above methods are
quite well documented. Newton’s method converges quadratically while all the
variants in the Halley family converge with an asymptotic order three. It is gen-
erally considered that super Halley’s method requires marginally less iterations
than Chebyshev’s method, both third-order variants reputedly outperform New-
ton’s method in terms of the number of iterations. We are concerned with more
global efficiency considerations, taking into account the per-iteration computa-
tional costs as well.

For optimization problems, Newton’s method may be adapted (modified Chole-
sky factorization of the Hessian matrix, line search, trust regions) to be globally
convergent, thanks to the descent property of those modifications. The high-
order variants will benefit from such modifications, but the details are left to
future works.

2. Computational cost per iteration

Without presuming on the cost of involving high-order tensors, we now com-
pare the main operations required by the three main variants, Newton’s, Cheby-
shev’s and super Halley’s methods. Halley’s method uses the same per iteration
operations as super Halley (see (1)), but is generally reported less efficient.

The main computational items involve computing f , ∇f , ∇2f , ∇3fd1, ∇3fd1d1

and solving a linear system Mz = b for some right hand side vector b. For our
unconstrained optimization application, the matrix M is symmetric, and in the
neighborhood of a non-degenerate minimum, positive definite. Therefore, the
solution of the linear system may be divided into two steps: factorization of
M = LLt, and two back substitutions involving the triangular matrix L.

In this investigation, we consider unstructured problems, either with no spar-
sity or unexploited sparsity. Similar observations on variants of Rosenbrock’s
function using highly efficient sparse linear algebra are reported in [4]. For such
unstructured problems, the algebraic costs are dominated by the factorization of
the second derivative matrix, an operation that has O(n3) complexity. As we
will see, the tensor operations may be performed, thanks to the reverse mode of
automatic differentiation, at a lower complexity.

As all three methods will evaluate f , ∇f and ∇2f at each iteration, and thus
the associated cost will be the same. By using the reverse mode of automatic
differentiation, the cost of evaluating ∇f is bounded by 5 times the cost of eval-
uating f [3], but the cost to obtain ∇2f is proportional to n times the cost of
f .

For unstructured problems, one may expect that the cost of evaluating f will
grow as O(n2). This cost will vary from one problem to another, very sparse
functions being closer to O(n), and parameter estimation problems bearing a very
large constant cost multiplied by the problem’s dimension, but for the moment,
let us assume the relation that C(f) ∼ O(n2). We will see below that in this
case, the only O(n3) computations are the evaluation of ∇2f , the factorization

IMPLEMENTATION ISSUES FOR HIGH-ORDER ALGORITHMS 95

of ∇2f and the tensor operation ∇3fd1. All other operations may be performed
at a cost proportional to n2.

Method M = LLt back-substitution ∇3fd1 ∇3fd1d1

Newton 1 1 — —
Chebyshev 1 2 — 1
superHalley 2 2 1 1

Table 1. Computationally important operations

3. Computations with higher-order derivatives

We now discuss the computation of the quantities involving the third-order
tensor, ∇3f(x)d1 and ∇3f(x)d1d1. The formulation using the extrapolation in-
troduced in Section 1.3 allows to obtain a simple presentation. Therefore, we
assume that the quantity d1 = ẋ. Up to a constant, this same quantity is used
within the Halley family of iterations.

Therefore, we now obtain formulations allowing efficient computations of x̂2,
and higher-orders x̂p using automatic differentiation techniques. Those tech-
niques rely on the representation of the computational graph of a given function,
and produce a representation of the computational graph of its derivatives.

3.1. A first attempt. Now, to rework the expression (1), we fix x̄1 = ẋ(τ), and
write

B̄2 = ∇2F (x)ẋ(τ)ẋ(τ) = ∇τ (∇F (x(τ))x̄1),
so that

ẍ(τ) = −∇F (x(τ))−1B̄2.

Thus expressed, B̄2 is obtained by differentiating the vector valued function
∇F (x(τ))x̄1, requiring n times its cost.

This may be improved as follows, but let us mention that the computation
of ∇2F (x)d1 may be reduced to ∇x(∇F (x)d1) and ∇F (x)d1 is a vector valued
function whose derivative costs n times the cost of its evaluation.

3.2. An improved formulation for symmetric systems. Still using the no-
tation above, we define the scalar function φ(x) = F (x)tx̄1, and further ψ(x) =
∇φ(x)x̄1. We claim that if ∇F (x) is symmetric, i.e. F (x) = ∇f(x) for some
scalar valued function f(x), B̄2 = ∇ψ(x). Observe that the above computation
yields the value of B̄2, as opposed to its computational graph. It would then be
more convenient to denote B2(u) the general quantity, and the value of B̄2 above
is simply B̄2 = B2(x̄1).

Therefore, using the backward mode of automatic differentiation, we obtain
B2 with no more than 5 times the number of operations required to compute ψ
[3], and ψ is computed in no more than 5 times the number of operations needed

96 JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

for φ, itself requiring one operation more than the computation of F itself, for
an overall cost of no more than 25 times the cost of F . On the other hand, to
obtain ∇F costs n times the cost of F .

3.3. High-orders. Successive orders have to be computed sequentially, since the
right hand side of the relevant equation involves lower order derivatives. We then
obtain a recursion

∇F (x(τ))x(p) + Bp(ẋ, ẍ, . . . , x(p−1)) = 0

where

Bp(ẋ, ẍ, . . . , x(p−1)) = ∇τ

(
∇F (x)x̄p−1 + Bp−1(ẋ, ẍ, . . . , x(p−2))

)
,

with B1 = 0 and x̄p a constant vector of value x(p). We were able to obtain an
efficient formulation to compute B̄2. Let us examine the computation of B̄3.

B3(ẋ, ẍ) = ∇r

(∇F (x)x̄2 + B2(ẋ)
)

= ∇r

(∇F (x)x̄2 + ∇2F (x)ẋẋ
)

= ∇2F (x)ẋx̄2 + ∇3F (x)ẋẋẋ + ∇2F (x)ẍẋ + ∇2F (x)ẋẍ.

For symmetric systems, we then have

B̄3 = ∇3F (x)x̄1x̄1x̄1 + 3∇2F (x)x̄1x̄2,

and ∇3F (x)x̄1x̄1x̄1 = ∇(∇ψ(x)x̄1) while ∇2F (x)x̄1x̄2 may be obtained similarly
to B̄2 by using x̄1 in the definition of φ and x̄2 in the definition of ψ. The most
costly term is thus the term involving third derivatives, whose cost is bounded
above by 5 times the cost of computing ∇ψ, i.e. less than 125 times the cost of
evaluating F itself.

It seems reasonable to estimate the cost of evaluating F as O(n2); in that
case, automatic differentiation techniques allow to compute each of the required
quantities in O(n2) arithmetic operations, so that the cost of evaluating those
high-order Taylor coefficients is still dominated by the factorization of the matrix
∇F (x), O(n3) operations, which has to be performed only once. However, the
constant in the O(n2) grows exponentially with respect to the derivative order p,
but (of course) is independent of n.

4. Experimental efficiency

The computations sketched above require to interleave derivative operations
and numeric computations. To our knowledge, no existing AD tool except our
implementation SciAD [8] allows such combination.

SciAD has been instrumented to collect statistics on operations performed
while evaluating a given computation tree. Since every arithmetic operation is
overloaded, it is easy to obtain the total number of each operation, whose grand
total is accumulated using the weights given in Table 2, where complex opera-
tion may be logarithms, exponentials, trigonometric functions and so on. Those
weights correspond to the Sun SPARC architecture [15]. Intel with floating point

IMPLEMENTATION ISSUES FOR HIGH-ORDER ALGORITHMS 97

accelerators behave similarly, but of course, the exact weights are slightly differ-
ent. Our purpose is not to provide accurate predictions, but exhibit the general
trend. We do not rely on CPU clock measurements because our experiment is
performed under the Scilab environment, which is an interpreted environment
plagued by severe non-arithmetic overhead.

operation Memory Basic ops complex ops
fetch write +− ∗ / sin, cos, etc.

cost 2 1 4 8 24 247

Table 2. Operation costs for the Sun SPARC architecture

Hereafter, we present graphically several statistics. The function F is actually
the gradient of an objective function. We present statistics for the MGH [10]
collection translated to Scilab from the MATLAB version.

4.1. Computational cost of ∇f . Our first experiment plots the cost of evalu-
ating ∇f(x) given the evaluation graph for the function f(x). We plot the cost
with respect to n2. A regression gives C(∇f) = 1855.44 n2. This cost accumu-
lates the cost of obtaining the evaluation graph for ∇f and of evaluating it for a
given x.

0 100 200 300 400 500 600 700
0.0e+00

4.0e+05

8.0e+05

1.2e+06

1.6e+06

2.0e+06

2.4e+06

2.8e+06

3.2e+06

3.6e+06

××××××
×××××××
×

×

×

×

××
×× ×
×

×

×

×

×

The gradient of the function f
involves n variables. It is rea-
sonable to guess that its eval-
uation cost is proportional to
n2, a cost that would be real-
istic for a quadratic function.
For the problems we tested,
we observe that the variance
is large, but that the trend
proportional to n2 is not un-
realistic. The blue line illus-
trates the regression C(∇f) =
1855.44 n2

Figure 1. Cost of the gradient

4.2. Computational cost of ∇2f . Next, we plot the cost of computing ∇2f
once the evaluation graph for ∇f is available. A regression gives C(∇2f) =
1.87 n C(∇f).

98 JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

××××××××××××××

×

×

××
×

×
××

× ×

×

×

×

In order to obtain ∇2f , we
must evaluate n times the
derivatives of the gradient’s
components, so that we expect
the cost to be of the order of
n times the cost of ∇f . This
time, the blue line represent-
ing the regression C(∇2f) =
1.87 n C(∇f) predicts much
more faithfully the actual cost

.

Figure 2. Cost of the Hessian

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

×××××××××××××××
×

×

×

×

×

×
×

×

×
×

×

×

When computing ẋ, we have
to solve a linear system.
Actually, computing ẋ is
equivalent to performing
a Newton-Raphson itera-
tion, O(n3). The regression
C(ẋ) = 46.38 n3 is quite
faithful to the observed data.

.

Figure 3. Cost of the first order derivative ẋ

4.3. Computational cost of ẋ. Now, we give the cost of obtaining ẋ, i.e. ob-
taining the Cholesky factors of ∇2f , and solve the linear system defining ẋ, the
Newton direction. The regression yields C(ẋ) = 46.38 n3.

4.4. Computational cost of ẍ. The additional work to obtain ẍ requires to
evaluate B2, as explained in Section 3.2, and solve a linear system reusing the
Cholesky factors already computed to obtain ẋ. The regression yields C(ẍ) =
4.06 C(∇f).

4.5. Computational cost of x(3). Our last experiment compares the additional
work for obtaining the third derivative of x with respect to the cost of obtaining
the gradient. The regression yields C(x(3)) = 6.81 C(∇f).

IMPLEMENTATION ISSUES FOR HIGH-ORDER ALGORITHMS 99

0.0e+00 4.0e+05 8.0e+05 1.2e+06 1.6e+06 2.0e+06 2.4e+06 2.8e+06 3.2e+06 3.6e+06
0.0e+00

2.0e+06

4.0e+06

6.0e+06

8.0e+06

1.0e+07

1.2e+07

1.4e+07

1.6e+07

××××××
××
×

×××
×

×

×

×

×

×
×

××
×

× ×

×

×

×

When computing ẍ, we have to
solve a linear system, but the
Cholesky factors of the matrix
defining the linear system are
known, so that we expect the
cost to be O(n2). The regres-
sion C(ẋ) = 4.06 C(∇f) is
quite realistic; we already saw
that C(∇f) ∼ O(n2).

.

Figure 4. Cost of the second-order derivative ẍ

0.0e+00 4.0e+05 8.0e+05 1.2e+06 1.6e+06 2.0e+06 2.4e+06 2.8e+06 3.2e+06 3.6e+06
0.0e+00

4.0e+06

8.0e+06

1.2e+07

1.6e+07

2.0e+07

2.4e+07

2.8e+07

×××××
×

××
×

×
××

×

×

×

×

×

×
×

×
×

×

×
×

×

×

×

To compute the third-order
derivative of x(τ), we need
obtain high-order derivatives
of functions constructed by
interleaving arithmetic opera-
tions and differentiation op-
erations. The order should
be quadratic, but the under-
lying constant could, in worst
case analysis, explode as 5p.
The good news is, for our test
set, that this exponential ex-
plosion seems not to occur, as
the regression (the blue line)
C(x(3)) = 6.81 C(∇f) is quite
close to the observed data.

.

Figure 5. Cost of the third-order derivative x(3)

4.6. Discussion. We confirm the complexity estimations experimentally. Actu-
ally, we observe that the exponential dependence of the cost of higher derivative
is much less in practice than the predicted 5p.

5. Local convergence

We present a few examples illustrating the gains provided by the use of high-
order variants close to a solution. We picked an x0 such that ‖x0 − x∗‖ ∼ 0.1,
except for the Box function, for which no variant converged from that far, and
we used ‖x0 − x∗‖ ∼ 0.01. As can be observed, on Rosenbrock, the initial point

100 JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−16

10

−12
10

−8
10

−4
10

0
10

Wood function

Newton

Chebychev

superHalley

Halley

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−16

10

0
10

Rosenbrock function

Newton

Chebychev

superHalley

Halley

Newton

Chebychev

superHalley

Halley

Figure 6. Wood and Rosenbrock functions

was outside the convergence radius of Halley’s method. One can appreciate that
super Halley’s method is indeed the most efficient in terms of local convergence
speed, but the gain does not appear to be enough to compensate its much higher
per iteration cost when compared to Chebyshev’s method.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−16

10

−12
10

−8
10

−4
10

0
10

Beale function

Newton

Chebychev

superHalley

Halley

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−15

10

−12
10

−9
10

−6
10

−3
10

0
10

Box function

Newton

Chebychev

superHalley

Halley

Figure 7. Beale and Box functions

6. High-order Newton-Raphson iteration

In the unconstrained optimization context, one expects algorithms to be mod-
ified to ensure global convergence while retaining fast asymptotic convergence.
The use of higher-order variants will hopefully reduce the number of iterations,
but at some per-iteration cost. We here compare Chebyshev’s and Newton-
Raphson’s iterations, both suitably modified using the Cholesky modified factor-
ization and a line search (simple Armijo backtracking method) to ensure global

IMPLEMENTATION ISSUES FOR HIGH-ORDER ALGORITHMS 101

convergence. We use a very simple heuristic to trigger the use of Chebyshev’s
method. As discussed in Section 1.2, Chebyshev’s is obtained as a correction to
the Newton direction. Therefore, we use the correction only when the Cholesky
factorization returns an unmodified result, i.e. when ∇2f(x) is sufficiently posi-
tive definite.

Problem number Dimension Newton Chebychev Best
weighted ops # weighted ops

1 2 91916 155773. Newton
2 2 51076 63422 Newton
3 2 1006441 1165651 Newton
4 2 230426 248213 ∼=
5 2 568310 608360 ∼=
6 2 2502457 2986719 Newton
8 3 7885767 9088827 Newton
9 3 3719897 5279117 Newton
10 3 2.392×108 2.032×108 Chebychev
12 3 3493107 3659552 ∼=
13 4 1281523 872617 Chebychev
14 4 3026279 3197496 ∼=
15 4 6998007 8818893 Newton
16 4 26621673 32473938 Newton
21 10 19638946 17697387 Chebychev
22 8 18706802 11516356 Chebychev
23 10 55189602 36882347 Chebychev
24 10 8.441×108 7.487×108 Chebychev
25 10 29723031 20044968 Chebychev
26 10 1.145×108 1.105×108 ∼=
28 12 30712372 34906996 Newton
29 12 1.956×108 2.192×108 Newton
30 10 27017447 22318732 Chebychev
31 10 55331379 47741981 Chebychev
32 10 909059 1038633 Newton
33 10 3.545×108 3.546×108 ∼=
34 10 3.453×108 3.454×108 ∼=

Table 3. Newton vs Chebyshev on the MGH collection

In our experiment, we require precisions close to the machine precision, i.e.
1 × 10−12. However, the value of the improved iteration lies in the actual com-
putational cost. With the instrumented overloaded arithmetic operations and
standard functions, we may quantify the cost for a standard Newton method

102 JEAN-PIERRE DUSSAULT, BENOIT HAMELIN AND BILEL KCHOUK

(modified for optimization problems in order to ensure global convergence) and
a hopefully improved version using higher-order derivatives.

Our first attempt used the formulation of Section 3.1, and the results were
disappointing, the plain Newton iteration exhibiting lower costs than the second-
order version.

In Table 3, we observe that the version of a second order iteration using the
strategy developed above actually slightly improves upon the usual Newton iter-
ation; note that for very small instances (n = 2, 3 or 4) Newton’s method is more
efficient. This is predictable, since 2 Newton iterations have a cost proportional
to 2n3 and provide a quadratic convergence order while a Chebyshev iteration
have a cost proportional to n3+n2 and provides a cubic convergence order. When
n = 2 or 3, the gain from n3 + n2 over 2n3 is not enough to warrant the use of
the higher-order method. In contrast, for n = 8, 10, 12, the Chebyshev variant is
more efficient in 7 out of 13 instances, and equivalent in 3 other.

Conclusion

We presented a clever analysis and implementation proposal for high-order
methods of the Halley family, and high-order methods introduced in [2]. The use
of automatic differentiation tools allows to obtain the required higher derivatives
efficiently. We reported on a preliminary experimental implementation which
confirms that high-order variants may well be competitive, and even better than
the usual Newton’s method.

We limited ourselves to unstructured dense problems. For structured sparse
problems, Gundersen and Steihaug [4] obtained similar conclusions with super
Halley’s method on high dimensional chained and extended Rosenbrock func-
tions. They did not address the subtleties in evaluating directional tensors as
we presented in Section 3.2, and their leading complexity is much lower than n3

since they consider very sparse problems.
In all cases, high-order methods have been shown viable alternatives to the

usual Newton method, and those promising aspects certainly warrant further
research.

References

[1] P. L. Chebyshev, Collected works, Number 5, Moscow-Leningrad, 1951 (in Russian), an
early work while he was a student. In 1841 Chebyshev was awarded the silver medal for
his work ”calculation of the roots of equations” which he had finished in 1838.

[2] J.-P. Dussault, High order Newton-penalty algorithms, J. Comput. Appl. Math. 182 (1)
(2005), 117–133.

[3] A. Griewank, On automatic differentiation, In M. Iri and K. Tanabe, editors, Math. Pro-
gram.: Recent Developments and Applications, pp. 83 – 108. Kluwer Academic Publishers,
1989.

[4] G. Gundersen and T. Steihaug, On large scale unconstrained optimization problems and
higher order methods, Optimization online, 2007. A revised version will appear in Opti-
misation Methods and Software.

IMPLEMENTATION ISSUES FOR HIGH-ORDER ALGORITHMS 103

[5] J. M. Gutiérrez and M. A. Hernández, A family of Chebyshev-Halley type methods in
Banach spaces, Bull. Austral. Math. Soc. 55 (1997), 113–130.

[6] J. M. Gutiérrez and Miguel A. Hernández, An acceleration of Newton’s method: Super-
Halley method, Appl. Math. Comput. 117 (2001) (2–3), 223–239.

[7] E. Halley, A new, exact, and easy method of finding roots of any equations generally, and
that without any previous reduction, Philos. Trans. Roy. Soc. London 18 (1694), 136–145.

[8] B. Hamelin and J.-P. Dussault, Object-oriented implementation of an automatic differ-
entiation toolkit in a high-level numerical processing functional language, in Scilab 2004
INRIA Rocquencourt, 2004.

[9] B. Hamelin and J.-P. Dussault, SCIAD Toolbox of automatic differentiation software and
related algorithmic computation tools.
http://www.dmi.usherb.ca/ hamelin/autodiff/html/sciad.html, 2004.

[10] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Softw. 7 (1) (1981), 17–41.
MATLAB version: ftp://ftp.mathworks.com/pub/contrib/v4/optim/uncprobs/.

[11] Isaac Newton, Methodus fluxionium et serierum infinitarum, 1664–1671.
[12] J. Raphson, Analysis Aequationum Universalis, London, 1690.
[13] R. B. Schnabel and T. Chow, Tensor methods for unconstrained optimization using second

derivatives, SIAM J. Optim. 1 (1991), 293–315.
[14] Scilab group, ψlab 4.1.2. http://www.scilab.org, 2008.
[15] R. St-Denis, La programmation en langage d’assemblage SPARC, Les Éditions G.G.C.,

Sherbrooke, 1998.

Professeur titulaire, département d’Informatique, Université de Sherbrooke,

Sherbrooke (Québec), Canada J1K 2R1

E-mail address: Jean-Pierre.Dussault@USherbrooke.CA

École Polytechnique, Montréal

E-mail address: benoit@benoithamelin.com

Département d’Informatique, Université de Sherbrooke,

Sherbrooke (Québec), Canada J1K 2R1

E-mail address: Bilel.Kchouk@USherbrooke.CA

