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Abstract. We analyze here the asymptotic convergence properties of a class
of splitting algorithms for finding a zero of the sum of two maximal monotone
operators, not necessarily differentiable. We use the concept of proto- differ-
entiability to obtain some new bounds on the global error of the sequence of
iterates and explain the bad spiraling effect already observed in practice. After
linking our model with the Lawrence-Spingarn’s folding operators, we show
how to accelerate convergence by skipping the averaging steps in a particular
way. Numerical results on medium-term stochastic planning problems confirm
the nice behavior of the modified algorithm.

1. Introduction

This work originates in the numerical resolution of the following large-scale
optimization problem:

Minimize f(y) =
p∑

i=1

Fi(yi) + C(y1, . . . , yp),(1)

where Fi’s and C are closed proper convex functions which can take the value
+∞ to model local constraints. This special structure models a system made of
p smaller subsystems, each of them generates a cost Fi(yi) depending on a local
decision yi. The optimal decision for the whole system consists in a compromise
between these local costs and a global coupling cost C. In many applications,
C stands for the indicator function δA of a linear or affine subspace A which
defines coupling constraints between the subsystems. For instance, in stochastic
programming applications [26, 23], Fi represents the cost of scenario i and A
the space of non-anticipative decisions; in network routing problems Fi can be
the cost of traffic congestion on arc i of the network while A is the space of
flows respecting the conservation law at every node [8, 21]; in unit commitment
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problems Fi usually stands for the production cost of unit i and A models the
constraints of supply satisfaction.

Introducing the subdifferential operators for F and C leads to an inclusion
equivalent problem which consists in finding a zero of the sum of two maximal
monotone operators, a well studied model for which various splitting methods
have been explored. We are interested in the class of splitting methods derived
from the Douglas-Rachford and Peaceman-Rachford methods where iterations
based on both resolvent operators alternate (see for instance the seminal paper
by Lions and Mercier [16]). When applied to (1), it corresponds to the so-called
Alternate Direction Method of Multiplier and its numerical behavior has been
deeply analyzed by Eckstein, who observed the spiraling effect on the sequence
of iterates which tends to penalize the performance of the method [6].

In the more special framework where C is the indicator function of a linear
subspace, it corresponds to the method of partial inverses [27, 28] or the proximal
decomposition method [18]. Related models with inexact subproblem computa-
tions have been studied too in [20].

Quantitative convergence results about splitting methods generally rely on
strong monotonicity assumptions on operators ∂F , ∂C, or on their inverses [16,
29, 18, 9, 3] but more can be obtained by examining the properties of the global
operator which drives the sequence of iterates. Surprisingly, the relations between
this operator and the problem data has received to our knowledge only a little
attention in the literature.

In the following, we analyze the asymptotic convergence properties of the class
of splitting algorithm in the general case where the subdifferential operators are
only proto-differentiable. New bounds on the convergence rate are derived and
a geometric interpretation of the algorithm is given with connections with the
folding operators introduced by Lawrence and Spingarn [10]. Finally, we show
in the last section how to accelerate the convergence and break the spiraling
effect by carefully balancing the averaging and the folding steps of the algorithm.
Numerical results on medium-term stochastic planning problems confirm the nice
behavior of the resulting algorithm.

2. Technical background

Hereafter, we denote F (y) =
∑p

i=1 Fi(yi) and we suppose that ∂F + ∂C =
∂[F + C]. Under this assumption, a solution ȳ is an optimal solution for (1) if
and only if there exists ū such that

ū ∈ ∂F (ȳ)(2a)

−ū ∈ ∂C(ȳ).(2b)

We denote PF = (I +∂F )−1 the resolvent operator of ∂F . This is the proximal
operator [19] associated to F , i.e. the operator which maps to any s ∈ R

n the
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unique solution of the following optimization problem:

PF (s) = arg min
z

F (z) +
1
2
‖z − s‖2 .

We also consider QF = (I + ∂F−1)−1 the resolvent operator associated to ∂F−1.
QF is the Moreau-Yosida regularization operator of ∂F ; it has the same set of
zeros as ∂F but it is in addition firmly non-expansive (i.e. such that, for any x, x′
and y ∈ QF (x), y′ ∈ QF (x′), we have 〈x − x′, y − y′〉 � ‖x − x′‖2). It is also the
gradient operator of F̆ the Moreau-Yosida regularization function of F :

F̆ (s) = min
z

F (z) +
1
2
‖z − s‖2 .

PF and QF satisfy

PF + QF = In,(3)

where In is the n-dimensional identity operator and the mapping s �→ (PF (s),
QF (s)) is a Lipschitz parameterization of the graph of ∂F :

gr(∂F ) = {(PF (s), QF (s)), s ∈ R
n} .

The operator of main interest in this study is the difference:

(4) NF = PF −QF .

NF is non-expansive and generalizes the notion of reflection across a linear sub-
space. Indeed, if F is the indicator function δA of the subspace A, then PδA = ΠA
is the orthogonal projector onto A; QδA = ΠA⊥ is the orthogonal projector onto
A⊥ and NδA = RA is the orthogonal reflector across A.

Rachford class splitting methods [16, 6, 7] for solving (1) essentially use recur-
sive applications of operators NF and NC . Actually, solutions of system (2) can
be deduced from fixed points of NC ◦NF with the following theorem:

Theorem 2.1. The following propositions are equivalent:

i) s̄ = NC ◦NF (s̄),
ii) s̄ = NC(d̄); d̄ = NF (s̄),
iii) (ȳ, ū) = (PF (s̄), QF (s̄)) = (PC(d̄),−QC(d̄)),
iv) (ȳ, ū) is a solution of (2).

Proof. A proof can be found for instance in [7]. �

Given a relaxation parameter 0 < α � 1, the Rachford class methods consist in
applying the following fixed point averaged iterations from an arbitrary starting
point s0:

sk+1 = ((1− α)In + αNC ◦NF ) (sk).(5)

The cases α = 1 and α = 1
2 are respectively known to correspond to the

Peaceman-Rachford and the Douglas-Rachford methods, developed in [16] for
any maximal monotone operators, i.e. not necessarily subdifferentials of convex
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functions. When α = 1
2 , the algorithm corresponds [5] to the alternating direction

method of multipliers (algorithm 1).

Algorithm 1

Require: ε > 0, yk=0, uk=0 ∈ R
n

1: repeat
2: sk = yk + uk

3: for all i = 1, . . . , p do

4: y
k+ 1

2
i = arg minyi Fi(yi) + 1

2

∥∥yi − yk
i

∥∥2 − 〈uk
i , yi

〉
5: end for
6: yk+1 = arg miny C(y) + 1

2

∥∥∥y − yk+ 1
2

∥∥∥2
+
〈
uk, y

〉
7: uk+1 ← uk − (yk+1 − yk+ 1

2 )
8: until

∥∥∥yk+ 1
2 − yk

∥∥∥ < ε

The sequence
{
(yk, uk)

}
k

generated by this method always converges to a
primal-dual solution of (2) from any starting point.

3. Differentiability properties of generalized reflections

By identity (3) and definition (4), we have

NF = In − 2QF .(6)

Therefore, NF has the same first order differentiability properties as QF = ∇F̆
which actually correspond to second-order differentiability properties of F̆ . The
question of twice-differentiability of F̆ has received much interest in the study
of the proximal point method [2] as well as inexact versions [14] so as to de-
velop quasi-Newton like methods. It has been studied in the convex case by [17],
Lemaréchal and Sagastizabál [11, 12] and in a more general context by Poliquin
and Rockafellar [22]. The first result (Proposition 3.1) needs ∂F to be differen-
tiable. Before stating it, we first recall this notion for multi-valued operators.

Definition 3.1. ∂F is differentiable at ȳ if ∂F (ȳ) = {ū} and if there is a linear
mapping S such that

∂F (y) ⊂ ū + S(y − ȳ) + o(‖y − ȳ‖)B,

where B is the unit ball of R
n.

Proposition 3.1. If ∂F is differentiable at ȳ with D[∂F ](ȳ) = S and ∂F (ȳ) =
{ū}, then F̆ is twice differentiable at s̄ = ȳ + ū and

∇QF (s̄) = ∇2F̆ (s̄) = In − (In + S)−1.

A proof can be found in [12] and references therein. The differentiability of
NF follows from (6).
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Corollary 3.1. If ∂F is differentiable at ȳ with D[∂F ](ȳ) = S and ∂F (ȳ) = {ū},
then NF is differentiable at s̄ = ȳ + ū and

∇NF (s̄) = 2(In + S)−1 − In.

This result is generalized in [17] and [22] with the help of proto-differentiability
of ∂F . This notion was introduced in [25] as a way to generalize second order
differentiability of convex functions. It corresponds to the convergence of the
graphs of the family of operators indexed by τ > 0:

Δτ (ȳ|ū) : h �→ ∂F (ȳ + τh)− ū

τ
.

Definition 3.2. ∂F is proto-differentiable at ȳ for ū ∈ ∂F (ȳ) if {Δτ (ȳ|ū)}τ
graphically converges as τ positively goes to zero. The limit operator D[∂F ](ȳ|ū)
is the proto-derivative mapping.

The differentiability of ∂F actually corresponds to the proto-derivative being
a linear mapping. It was highlighted in [17] and [22] that the relevant property
to obtain twice differentiability of F̆ is not linearity of D[∂F ](ȳ|ū) but rather the
linearity of its graph, i.e. the generalized linearity of D[∂F ](ȳ|ū).

Definition 3.3. D[∂F ](ȳ|ū) is generalized linear if D[∂F ](ȳ|ū) = S +NH where
H is a linear subspace, S is symmetric positive semi-definite.

Generalized linearity for multi-valued mappings is usually defined as the lin-
earity of the graph. This formulation for maximal monotone subdifferential op-
erators appears in [24, Proposition 4.1]. The following characterization of second
order differentiability of F̆ as well as the explicit formula for the Hessian is given
in [17]. A† denotes the Penrose-Moore pseudo-inverse of A; im(A) and ker(A)
respectively denote the image and the kernel of A.

Proposition 3.2 (Lucet [17]). The following propositions are equivalent:

i) ∂F is proto-differentiable at ȳ for ū with a generalized linear proto-derivative
D[∂F ](ȳ|ū) = S + NH.

ii) F̆ is twice differentiable at s̄ = ȳ + ū and

∇2F̆ (s̄) = ∇QF (s̄) =
[
Πim(S)+H⊥ ◦

[
In + (ΠHSΠH)†

]
◦ Πim(S)+H⊥

]†
.

A generalized linear subdifferential mapping is the subdifferential of a gener-
alized quadratic or partially quadratic function. This class of functions, as noted
in [22], can be viewed as a quadratic function with +∞ as a possible eigenvalue.
To simplify the notations, we will use a decomposition of the space in three
subspaces, each of them corresponds respectively to eigenvalues in {0}, R

∗ and
{+∞}.
Proposition 3.3. In Definition 3.3, S can be chosen such that im(S) ⊂ H.
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Proof. D[∂F ](ȳ|ū) has the form:

Sy + NH(y)

{
Sy +H⊥ if y ∈ H
∅ else.

In the first case, y = ΠHy and Sy +H⊥ = ΠH(Sy) +H⊥ so S can be replaced
by ΠHSΠH which satisfies im(ΠHSΠH) ⊂ H. �

Hereafter, R
n will be decomposed into the direct sum:

H1 ⊕H2 ⊕H3 = R
n

H1 = H ∩ im(S) = im(S)

H2 = H ∩ ker(S)

H3 = H⊥.

Their respective dimensions are denoted by n1, n2, n3 with n1 + n2 + n3 = n. It
is quite clear that these spaces are mutually orthogonal since ker(S) = im(S)⊥.
The fact that the sum is direct comes from the inclusion im(S) ⊂ H.

Remark 3.1. This decomposition is closely related to the U -V decomposition of
[13]. More precisely, U = H is the space along which F is smooth and V = H⊥
is the subspace where F is not differentiable. Here, we additionally require F to
have a Hessian along U and we consider again the subspaces where F is linear
and where it is strongly convex.

Now, we choose an orthogonal basis B which fits this block decomposition so
that S writes in this new basis:

B−1SB =

⎛
⎝ L

0
0

⎞
⎠ ,(7)

where L is a n1 × n1 invertible submatrix. In this setting, we have the following
proposition:

Proposition 3.4. The following statements are equivalent:

i) ∂F is proto-differentiable at ȳ for ū with a generalized linear proto-derivative
D[∂F ](ȳ|ū) = S + NH1⊕H2; im(S) = H1,

ii) F̆ is twice differentiable at s̄ = ȳ + ū and

∇2F̆ (s̄) = ∇QF (s̄) = B

⎛
⎝ (In1 + L−1)−1

0
In3

⎞
⎠B−1,

iii) NF is differentiable at s̄ = ȳ + ū and

∇NF (s̄) = B

⎛
⎝ 2(In1 + L)−1 − In1

In2

−In3

⎞
⎠B−1.(8)
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Proof. i) and ii) are simple reformulations of Proposition 3.2 i) and ii) while iii)
comes from (6). We give the detail of the formula of ∇QF (s̄):

∇QF (s̄) = ∇2F̆ (s̄)

=
[
ΠH1⊕H3 ◦

[
In + (ΠH1⊕H2 ◦ S ◦ΠH1⊕H2)

†
]
◦ ΠH1⊕H3

]†
=
[
ΠH1⊕H3 ◦

[
In + S†

]
◦ ΠH1⊕H3

]†
=
[
ΠH1⊕H3 + S†

]†
= B

⎛
⎝ (In1 + L−1)−1

0
In3

⎞
⎠B−1.

�

The case H3 = {0} is treated at Corollary 3.1. We now consider another
extreme case when H1 = {0}.

Case H1 = {0}. When H1 = {0}, the proto-derivative D[∂F ](ū|ȳ) reduces
to NH. It means that H2 = H, H3 = H⊥ and from Proposition 3.4, NF is
differentiable with

∇NF (s̄) =
(

In2

−In3

)
= RH.(9)

Notably, if ∂F is the subdifferential of a polyhedral function, then it is proto-
differentiable everywhere and generalized linear with H = 0 almost everywhere.
In addition, for ε small enough, NF has an expansion which holds exactly

NF (s) = NF (s̄) +∇NF (s̄)(s− s̄) ∀s/ ‖s− s̄‖ � ε.(10)

As a remark, some other functions which are not polyhedral can however present
a subdifferential with generalized linear proto-derivative having H1 = {0}. This
includes for example:

F : y �→ 1
3
|y|3 ∇F : y �→

{
y2 if y � 0
−y2 if y < 0

or its conjugate, proto-derivatives of which at 0 for 0 are respectively y �→ 0 and
N{0}. In the next section we will however concentrate on polyhedral functions
because of the additional structure (10) it provides.

4. Asymptotic behavior in the polyhedral case

Let Algorithm 1 converge to (ȳ, ū), s̄ = ȳ + ū, d̄ = ȳ − ū. If NF and NC are
respectively differentiable at s̄ and d̄, then, from recursion (5), it comes:

ek+1 =
[
(1− α)I + α∇NC(d̄)∇NF (s̄)

]
ek + o(

∥∥∥ek
∥∥∥),
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where ek = sk − s̄ denotes the error at each iteration. We now specialize these
results when F and C are polyhedral functions. From (9) and (10), we have for
ε small enough and as soon as

∥∥ek
∥∥ < ε:

ek+1 =
[
(1− α)I + α∇NC(d̄)∇NF (s̄)

]
ek.(11)

To simplify, we will suppose that
∥∥e0
∥∥ < ε. According to (9), ∇NC(d̄)∇NF (s̄)

is the product of two reflections hence it is isometric. It consequently writes in
some basis D:

∇NC(d̄)∇NF (s̄) = D

⎛
⎜⎜⎜⎜⎜⎝

Ip

−Iq

E1

. . .
Er

⎞
⎟⎟⎟⎟⎟⎠D−1,

where p + q + 2r = n and Ei =
(

cos(θi) − sin(θi)
sin(θi) cos(θi)

)
, 0 < θ1 � . . . � θr < π.

The operator Jα = (1− α)I + α∇NC(d̄)∇NF (s̄) writes in this basis:

Jα = D

⎛
⎜⎜⎜⎜⎜⎝

Ip

(1− 2α)Iq

(1− α)I2 + αE1

. . .
(1− α)I2 + αEr

⎞
⎟⎟⎟⎟⎟⎠D−1.

(12)

The error vector expressed in basis D can be decomposed in 2 + r subvectors,
independent one from another. The first subvector (of size p) is constant, so it
must be 0p from some rank, i.e. the algorithm converges in a finite number of
steps in this first subspace. The second subvector (of size q) converges linearly
at a rate |1− 2α| in a one-dimensional subspace of Eq, in a finite number of steps
if α = 1

2 . The r remaining 2-dimensional subvectors are given from one iteration
to another by an α-averaged rotation of angle θi.

Remark 4.1. The exactness of the expansion (10) is necessary to affirm that the
first subvector converges in a finite number of steps. Otherwise, we only could
have said that it converges sublinearly. This occurs for instance in the following
counter-example:

F (y) =
1
3
|y|3 ;C(y) = 0; s0 > 0

where sk+1 is given by the recursion sk+1 = (1
4 + sk)

1
2 − (1

4 )
1
2 .

We can derive an upper bound for the rate of convergence by considering the
maximum between the norms of all the blocks of Jα but the first. We already
mentioned that the norm of the second block is |1− 2α|; for the other ones the
calculation gives:
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Lemma 4.1. The norm of the averaged rotation (1− α)I2 + αEi is

‖(1− α)I2 + αEi‖2 =
[
(1− 2α)2 sin2

(
θi

2

)
+ cos2

(
θi

2

)] 1
2

.

Proof. Let us choose v ∈ R
2 and compute the norm of v′ = (1−α)v + αEiv. We

will use the fact that ‖Eiv‖ = ‖v‖ and 〈v,Eiv〉 = cos(θi).∥∥v′∥∥2 = ‖(1− α)v + αEiv‖2

=
∥∥∥∥(1− 2α)

1
2

(v − Eiv) +
1
2

(v + Eiv)
∥∥∥∥2

= (1− 2α)2
1
4
‖v − Eiv‖2 +

1
4
‖v + Eiv‖2 +

1
4
(1− 2α)

⎛
⎝‖v‖2 − ‖Eiv‖2︸ ︷︷ ︸

=0

⎞
⎠

= (1− 2α)2
1
4

(
‖v‖2 + ‖Eiv‖2 − 2 〈v,Eiv〉

)
+

1
4

(
‖v‖2 + ‖Eiv‖2 + 2 〈v,Eiv〉

)
= (1− 2α)2

1− cos(θi)
2

‖v‖2 +
1 + cos(θi)

2
‖v‖2

= (1− 2α)2 sin2

(
θi

2

)
‖v‖2 + cos2

(
θi

2

)
‖v‖2

∥∥v′∥∥ =
[
(1− 2α)2 sin2

(
θi

2

)
+ cos2

(
θi

2

)]1
2

‖v‖ .

�

We deduce from this formula the following bound for the convergence rate:

lim sup

∥∥ek+1
∥∥

‖ek‖ � r
max
i=1

[
(1− 2α)2 sin2

(
θi

2

)
+ cos2

(
θi

2

)] 1
2

which is minimized for the choice α = 1
2 and reduces to

lim sup

∥∥ek+1
∥∥

‖ek‖ � r
max
i=1

cos
(

θi

2

)
= cos

(
θ1

2

)
.

Link with Foldings of Spingarn and Lawrence. We examine in this
section the case when F and C are polyhedral but with proto-derivatives not
necessarily generalized linear. NF and NC , as well as their composition NF ◦NC

belong to a special class of operators called foldings introduced in [10]. A folding is
a non-expansive piecewise isometric mappings F : R

n → R
n having only a locally

finite number of pieces called folds. These folds must be closed polyhedron with a
non-empty disjoint interior. Actually, when F (equivalently C) is polyhedral, the
folds of NF are in one-to-one correspondence with the projection onto R

n × {0}
of the faces of epi(F ), the epigraph of F . Namely, if f is such a projected face
then the polyhedron Uf = f + ∂F (f) is a fold. See figure 1 for an example of
such a construction. If we denote by df the projection of ∂F (f) onto span(f) (it
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Figure 1. Folds Ufi
associated with projected faces fi of a poly-

hedral convex function from R
2 to R.

is a singleton since ∂F (f) is orthogonal to span(f)), then the restriction of NF

to Uf is Raff(f) − 2df , i.e. the composition of the reflection through the affine
subspace spanned by f and of the translation of −2df .

In [10], Lawrence and Spingarn also study the asymptotic behavior of averaged
iterations of foldings in the case α = 1

2 :

sk+1 =
1
2
sk +

1
2
F(sk).

They restrict themselves to the class of positively homogeneous foldings, by cen-
tering F around the convergence point and considering a neighborhood of 0. This
actually corresponds to handle the semi-derivative DF(s̄) of F at s̄ and to study
the sequence of error vectors

{
ek
}

k
given by averaged iterations:

ek+1 =
1
2
ek +

1
2
DF(s̄)(ek).

Their main result states that, from some rank the sequence
{
ek
}

k
stays in some

subspace V (e0) (depending on the initial iterate e0) and the restriction of DF(s̄)
on V (e0) is isometric. More specially, consequences i) and ii) of Theorem 4.1
claims that the sequence

{
ek
}

k
spirals in V (e0).

Theorem 4.1 (Lawrence-Spingarn [10]). Let F be a folding and ek+1 = 1
2 (I +

DF)ek converge to 0. Then

i) there exist a subspace V (e0) and a rank K such that

k � K ⇒ span(ek, ek+1, . . .) = V (e0) = cone(ek, ek+1, . . .).

ii) The restriction of DF to V (e0) is an isometry.
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This result is more general than our development because it does not ne-
cessitate F to be differentiable but simply semi-differentiable which is the case
everywhere. It is worth noting that even in the differentiable case, conclusion i)
does generally not extend to choices α < 1

2 because of the second block in (12)
which may keep the associated component in a half-line. A second remark is that
consequence iii) asserts that the restriction of 1

2(I + DF(s̄)) to V (e0) has the
same structure as Jα= 1

2
in (12). Consequently, the convergence rate also satisfies

for some 0 < θ1 � θ2 � . . . � θr′ < π:

lim sup

∥∥ek+1
∥∥

‖ek‖ � r′
max
i=1

cos
(

θi

2

)
= cos

(
θ1

2

)
.

This geometric interpretation of “spiraling” convergence will be used in the
next section to propose possible acceleration of the method.

5. Accelerating the convergence

Theorem 4.1 states that the sequence of errors asymptotically describes a spiral
around 0. We propose here a slight modification of recursion (5) and of algorithm
1 with a negligible computational cost. The main idea is to follow “chords” of
the spiral instead of the spiral itself.

5.1. Skipping average in Algorithm 1. We have shown that the asymptotic
convergence rate depends on the largest angle θ1. The closer this angle will be
from π, the faster the convergence will be. Now, if we operate several applications
of F before averaging, say L applications, then the set of angles (θ1, . . . , θr)
will be replaced by (Lθ1, . . . , Lθr). Consequently, if some angles are small, it
can be profitable to alternate the number of applications of F before averaging.
Formally, we propose the following method. Let us select a set of a + 1 integers
L0, . . . , La with L0 = 1 that we will refer as the averaging sequence. We set
σ =

∑a
l=0 Ll and apply the recursion:

(13) s(k+1)σ =
1
2
(
I + FL0

) ◦ . . . ◦ 1
2
(
I + FLa

)
skσ.

The superscript of s gives the number of required computations of F . Figure 2
graphically shows the acceleration for several choices of sequence. The number
of computation of F is identical for the three choices.

The involved operator

R =
1
2

(I + F) ◦ 1
2
(
I + FL1

) ◦ . . . ◦ 1
2
(
I + FLa

)
is an averaged operator, so successive applications converge to an element of
fix(R) =

⋂a
l=0 fix(FLl) = fix(F). Proofs of this fact can be found in [1, 4].

The modified iterations (13) gives Algorithm 2.
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Figure 2. Convergence rate improvement for several choices of
averaging sequence.

Algorithm 2

Require: ε > 0; 0 < α � 1; yk=0, uk=0 ∈ R
n

1: repeat
2: for all l = 0, . . . , a do
3: SAVING REFERENCE ALLOCATIONS
4: (yref , uref )← (yk, uk)
5: for all j = 1, . . . , Ll do
6: SOLVING SUBPROBLEMS
7: for all i = 1, . . . , p do

8: y
k+ 1

2
i = arg minyi Fi(yi) + 1

2

∥∥yi − yk
i

∥∥2 − 〈uk
i , yi

〉
9: end for

10: COORDINATION

11: yk+1 = 2
{

arg miny C(y) + 1
2

∥∥∥y − yk+ 1
2

∥∥∥2
+
〈
uk, y

〉}− yk

12: uk+1 ← uk − (yk+1 − 2yk+ 1
2 + yk)

13: k ← k + 1
14: end for
15: AVERAGING
16: (yk, uk)← α(yk−1, uk−1) + (1− α)(yref , uref )
17: end for
18: until

∥∥∥yk+ 1
2 − yk

∥∥∥ < ε
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5.2. Asymptotic behavior. We have

lim sup

∥∥e(q+1)σ
∥∥

‖eqσ‖ = max
i=1,...,r

{∣∣∣∣∣
a∏

l=0

cos
(

Llθi

2

)∣∣∣∣∣
}

.

In order to reflect the number of computation of F , we consider the mean con-
vergence rate to be the σ-root

τ(θ) = max
i=1,...,r

{∣∣∣∣∣
a∏

l=0

cos
(

Llθi

2

)∣∣∣∣∣
} 1

σ

.

The question of the acceleration of the convergence in comparison to the classical
algorithm (a = 0) depends on the repartition of the θi’s in ]0, π[. If θ1 is close
to 0, then the convergence will be accelerated. One case when the classical
implementation should not be changed is when all θi’s are close to π. In this
case, the classical method is very fast and making several applications of the
folding before averaging will slow down the convergence. Some computations of
F will be used to make small steps whereas they would have been used instead
to perform large steps in the original method. We consider on figure 3 the case
where dim(V (e0)) = 4. We draw for a = 1 and L1 = 2 the area of ]0, π[×]0, π[,
θ1 � θ2 where the convergence rate is decreased, i.e. the area where τ(θ) � ρ(θ) =
| cos(θ1)|. It seems difficult to deduce a priori the values of these angles from the
problem data and even more so to determine an adequate averaging sequence. In
the last section, we present some attempts of sequences and observe the results
on a powerplant management problem.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

θ
1

θ 2

τ(θ
1
,θ

2
) ≤ ρ(θ

1
,θ

2
)

π

Figure 3. Domain of ]0, π[×]0, π[, θ1 � θ2 where the asymptotic
convergence is improved for a = 1, L1 = 2
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6. Numerical experiments

We compare in this last section the classical algorithm (a = 0) with its modified
version on a powerplant management problem. We dispose of p powerplants and
we have to determine how much each of them must produce over a time period
so as to satisfy a given demand d and minimize a production cost. yi is the
amount of production of plant i over the period. Fi models the linear cost of
production of plant i as well as its local constraint (management of a reservoir,
capacity of production, ...). C is the indicator function δA of the affine subspace
A of production satisfying the demand:

A = {(y1, . . . , yp)/y1 + . . . + yp = d} .
Usually, a scaling factor λ is added so as to improve the problem conditioning.
It consists in replacing F (·) and C(·) by F (λ−1·) and C(λ−1·). For a = 1 and
L1 = 2, we applied both algorithms for several values of this scaling parameter.
The number of subproblem resolutions and CPU time savings are reported on
figures 4 and 5. 100% coincide with no saving at all while 50% means that the
modified algorithm is twice faster.
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Figure 4. CPU and number of subproblem resolutions saving on
a 50 periods problem with 6 reservoirs

In most cases, we observe between 20% and 40% of CPU savings. Interestingly,
the maximum saving is provided for values of λ making the classical method the
most efficient. We also compared several sequences, namely [1]; [1, 2]; [1, 2, 3] and
[1, 2, 3, 4] on a larger problem. The quantity ‖yk+ 1

2 − yk‖2 used in the stopping
criterion is plotted with respect to CPU time on figure 6. Parameter ε is chosen
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Figure 5. CPU and number of subproblem resolutions saving on
a 350 period problem with 2 reservoirs

equal to 10−6. On this instance, we succeeded in reducing the computation time
by a factor 3 with the last two sequences.
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Figure 6. Speed of convergence for different choices of averaging sequence
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7. Conclusion

This study focused on polyhedral separable optimization and revealed that
the examined splitting method can theoretically be accelerated by skipping some
of the averaging steps. Our preliminary numerical experiments have confirmed
it was the case in practice, reducing effectively the linear rate of convergence.
The theoretical setting employed in Sections 3 and 4 provides a unified view of
the asymptotic behavior of the method: it covers the twice differentiable case
already examined in [15] and allowed us to partially recover former results in
the polyhedral case. We hope this approach will enable further developments on
broader classes of functions. However, the polyhedral case still raises interesting
theoretical and numerical questions like the asymptotic effect of multidimensional
scaling or the development of automatic tuning strategies of the parameter α away
from the solution.
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[14] C. Lemaréchal and C. Sagastizábal, Variable metric bundle methods: From conceptual to
implementable forms, Math. Program. 76 (3) (1997), 393–410.

[15] A. Lenoir and P. Mahey, Global and adaptive scaling in a separable augmented lagrangian
algorithm, Optimization Online, 2007.

[16] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal. 16 (1979), 964–979.

[17] Y. Lucet, Formule explicite du hessien de la régularisée de Moreau-Yosida d’une fonc-
tion convexe f en fonction de l’épi-différentielle seconde de f ., Tech. report, Laboratoire
Approximation et Optimisation, Université Paul Sabatier, Toulouse, France, 1995.
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