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Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. In this paper, we establish an existence result of solutions to
Minty Variational Inequality under a generalized properly quasimonotone as-
sumption that we introduce. This condition is weaker than those given in the
literature for this problem. We illustrate it by an example. We also use this
condition to extend the result given by Kassay, Kolumbán and Páles for Minty
variational inequality systems.

1. Introduction

Let X and Y be two real Hausdorff topological vector spaces and let C be a
nonempty set of Y . Let 〈·, ·〉 : X × Y → R be a continuous bilinear function and
F : C → P(X) be a set-valued mapping with nonempty values. We consider the
following Minty variational problem:

(1) M(F ; C)
{

Find x ∈ C, such that :
〈v, y − x〉 ≥ 0 ∀ y ∈ C ∀ v ∈ F (y).

In Konnov [13] this problem was called the dual formulation of the following
variational inequality problem:

(2) VIP(F ; C)
{

Find x ∈ C, such that ∃ u ∈ F (x) :
〈u, y − x〉 ≥ 0 ∀ y ∈ C.

It is well known in the literature that the existence of a solution to problem
M(F ; C) implies, under suitable continuity conditions on F that V IP (F ; C) is
also solvable (see, for example, [13, 14, 15, 16] and references therein). It is im-
portant to observe that the existence of solutions to M(F ; C) usually requires
some monotonicity condition. In [15] it was assumed that F is a single mono-
tone operator while in [14] this condition was required for multivalued monotone
operators. In [16] the existence result was shown for pseudomonotone operators.
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In [13] was obtained the solvability of the Minty variational inequality under the
semistrictly quasimonotone condition on F . In [12] it was studied the existence of
solutions to M(F ; C) and to Minty variational inequality systems by using that
F is a properly quasimonotone mapping.
The aim of this paper is to present existence results for these two problems un-
der a weak condition on F , that we call the generalized properly quasimonotone
condition.
The outline of this work is as follows. In Section 2 we give definitions and prop-
erties that will be useful. We also fix some notations. In Section 3 we present
a generalization of the KKM principle and properties that we will use to prove
the main existence result. We also consider an example to illustrate our require-
ments. Finally, we present in Section 4 an existence theorem of solutions to Minty
variational inequality systems.

2. Preliminaries

We recall some concepts we will use. Throughout this section let X and Y be
two real Hausdorff topological vector spaces. Let A be a nonempty subset of X
and B a nonempty convex subset of Y . The following notions and properties can
be seen, for example, with slight differences in [1, 5, 12, 17].

Definition 2.1. A multivalued mapping F : A → P(X) is said to be a KKM
mapping if, for any finite subset {x1, · · · , xn} ⊂ A, it holds

co{x1, · · · , xn} ⊆
n⋃

i=1

F (xi)

where co{x1, · · · , xn} denotes the convex hull of the set {x1, · · · , xn}.

Definition 2.2. A multivalued mapping F : A→ P(B) is said to be a generalized
KKM mapping if, for any finite subset {x1, · · · , xn} ⊂ A, there is a finite subset
{y1, · · · , yn} ⊂ B such that, for any subset {yi1 , · · · , yik} ⊆ {y1, · · · , yn}, it holds

co{yi1 , · · · , yik} ⊆
k⋃

j=1

F (xij ).

It is easy to see that every KKM mapping is a generalized KKM mapping. In
[5] there is a counterexemple to illustrate that the converse does not hold.
We will generalize the following concept that we can find in [8].

Definition 2.3. A multivalued mapping F : A → P(X) is said to be prop-
erly quasimonotone if for any finite subset {y1, · · · , ym} ⊂ A and for any y ∈
co{y1, · · · , ym} it holds

max
1≤j≤m

inf
v∈F (yj)

〈v, yj − y〉 ≥ 0.
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Let us note that this notion has a strong relation with the concept of 0-
diagonally quasiconvexity in y. In fact, F is a properly quasimonotone mapping if
and only if the function ϕ(x, y) = infv∈F (y) 〈v, y − x〉 is 0-diagonally quasiconvex
in y (see for example [5]).

In proving our main results we need the following two theorems.

Theorem 2.4. [3, Theorem 6] A topological space X is compact if and only if
the finite intersection axiom is verified, that is, if {Fi : i ∈ I} is a family of closed
sets in X for which any finite intersection is nonempty, then

⋂
i∈I Fi 6= ∅.

Theorem 2.5. Let K be a nonempty compact convex subset of a Hausdorff topo-
logical vector space X. Let F : K → P(X) be a multivalued mapping such that:

(a) for each x ∈ K, F (x) is a nonempty convex subset of K;
(b) for each y ∈ K, the set F−1(y) = {x ∈ K|y ∈ F (x)} contains an open

subset Oy of K (that may be empty);
(c)

⋃
y∈K Oy = K.

Then, there exists a point x0 ∈ K such that x0 ∈ F (x0).

3. Results for minty variational inequality

Let C be a nonempty subset of a Hausdorff topological vector space Y and let
F : C → P(X). Let MF : C → P(C) be the multivalued mapping given in [12]
and defined by

(3) MF (y) = {x ∈ C | 〈v, y − x〉 ≥ 0 ∀v ∈ F (y)}.

Let us observe that x is a solution of problem M(F ; C) if and only if

x ∈
⋂
y∈C

MF (y).

The following result will be useful.

Lemma 3.1. Let C be a nonempty convex subset of a Hausdorff topological vector
space Y and let F : C → P(X). Then, the multivalued mapping MF (y) has closed
values related to C:

(4) clCMF (y) = MF (y) ∀y ∈ C,

where clCMF denotes the closure of MF in relation to the set C.

Proof. It is sufficient to show that clCMF (y) ⊆ MF (y) for each y ∈ C since
the other inclusion is always valid. Given y ∈ C consider x ∈ C such that
x /∈ MF (y). Therefore there is vy ∈ F (y) verifing 〈vy, y − x〉 < 0. Then, by the
continuity of the function 〈vy, y− ·〉 there is a neighborhood U(x) of x such that
〈vy, y − u〉 < 0 for all u ∈ U(x). Thus, this relation holds for all u ∈ U(x) ∩ C.
Hence, x /∈ clCMF (y). Then, we conclude that clCMF (y) ⊆MF (y) and the proof
is complete. �
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Now we present a generalization of the KKM principle (Fan [9]). We follow a
similar argument to that in [11, Theorem 2.1.1]. Let us recall that a family of
sets {Si : i ∈ I} has the finite intersection property if any finite intersection of
elements of this family is nonempty.

Theorem 3.2. Let C be a nonempty convex subset of a Hausdorff topological
vector space Y and let F : C → P(X). Then, the multivalued mapping MF :
C → P(C) verifies the generalized KKM property if and only if the family of sets
{MF (y) : y ∈ C} has the finite intersection property.

Proof. Let MF be a generalized KKM mapping. Assume to the contrary that
there is a finite set D = {y1, · · · , yn} ⊆ C such that:

(5)
n⋂

i=1

MF (yi) = ∅ .

So, there is a finite subset {x1, · · · , xn} of C such that:

(6) co{xi1 , · · · , xik} ⊆
k⋃

j=1

MF (yij )

for any subset {xi1 , · · · , xik} of {x1, · · · , xn}. We take K = co{x1, · · · , xn}.
Therefore, K is a nonempty compact convex subset of C. We define T : K →
P(K) by

(7) T (x) = co{xi|x /∈MF (yi)} .

Now we show that T verifies the conditions of Theorem 2.5:

(a) From (5) and (7) we deduce that T (x) is a nonempty convex subset of K
for every x ∈ K.

(b) We claim that for each y ∈ K there is an open subset Oy of K such that
Oy ⊆ T−1(y). Indeed, if T−1(y) = ∅, we take Oy = ∅. Otherwise, let
x ∈ T−1(y). We define

(8) Sx =
⋃
i∈Ix

MF (yi) where Ix = {1 ≤ i ≤ n : x /∈MF (yi)} ,

and

(9) Ox = K\Sx.

By (5) we have that Ix 6= ∅ and by Lemma 3.1 we obtain that Sx is
a nonempty closed subset in C. Therefore, Sx ∩K is a closed subset of
K. Indeed, we have MF (yi) = Ci ∩ C where Ci is the closure of MF (yi),
Ci = clMF (yi) for each i ∈ Ix. Then, Sx ∩K = (

⋃
i∈Ix

(Ci ∩ C)) ∩K =
(
⋃

i∈Ix
Ci) ∩ C ∩K = (

⋃
i∈Ix

Ci) ∩K. Hence, Ox = K\Sx = K\(Sx ∩K)
is open in K.
Now, we affirm that Ox ⊆ T−1(y). In fact, let z ∈ Ox. By (9) we have that
z /∈ Sx and by (8) we obtain that z /∈ MF (yi) for every i ∈ Ix. Then, by
the definition of T it results that T (x) ⊆ T (z). Moreover, since y ∈ T (x)
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we obtain that z ∈ T−1(y). Hence, we conclude that Ox ⊆ T−1(y).
Finally, we take

(10) Oy =
⋃

x∈T−1(y)

Ox

which is open in K and Oy ⊆ T−1(y) for every y ∈ K. Thus, the assertion
is valid.

(c) We show that K =
⋃

y∈K Oy. Indeed, let z ∈ K. So, item(a) implies that
there is v ∈ K such that v ∈ T (x). By taking z and v in (7), (8), (9) and
(10) instead of x and y respectively, we deduce that z ∈ Oz ⊆ Ov. Hence,
we deduce that K ⊆

⋃
y∈K Oy. Since the other inclusion is obviously

valid the result holds.

Thus, we apply Theorem 2.5 to conclude that there exists x̄ ∈ K such that
x̄ ∈ T (x̄). Therefore, by (6), (7) and (8) it holds

(11) x̄ ∈ T (x̄) = co{xi|i ∈ Ix̄} ⊆
⋃
i∈Ix̄

MF (yi).

At the same time, by the definition of Ix̄ it results that

(12) x̄ /∈
⋃
i∈Ix̄

MF (yi).

So, we obtain a contradiction. Hence we deduce that {MF (y) : y ∈ C} has the
finite intersection property.
Conversely we assume that the property above is satisfied. Hence, given a finite
subset D = {y1, · · · , yn} we get that there is x ∈

⋂n
i=1 MF (yi). Take xi = x for

i = 1, · · · , n. Therefore, for any subset {yi1 , · · · , yik} of D it results:

(13) co{xi1 , · · · , xik} = {x} ⊆
k⋃

j=1

MF (yij ).

This implies that MF is a generalized KKM mapping. The proof is complete. �

Let us observe that in the proof of Theorem 3.2 given in [5] is deduced a similar
result under a strongly condition. In fact, they assume that MF has closed values
in Y , that is, clMF = MF while we have that F has only closed values related to
C ⊆ Y , clC MF = MF .

Next we present two auxiliary results.

Lemma 3.3. Let C be a nonempty convex subset of a Hausdorff topological vector
space Y and let F : C → P(X) be a multivalued mapping. Assume that the
following condition is satisfied:
(A1) For any finite set {y1, · · · , ym} ⊂ C there is a finite subset {x1, , · · · , xm} ⊂
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C such that, for any subset {xi1 , · · · , xik} ⊂ {x1 , · · · , xm} and for any point
x ∈ co{xi1 , · · · , xik} it holds

(14) max
1≤j≤k

inf
v∈F (yij

)
〈v, yij − x〉 ≥ 0.

Then, MF is a generalized KKM mapping.

Proof. Let {y1, · · · , ym} ⊂ C. Then, by (A1)we have that there is {x1, · · · , xm} ⊂
C such that for any x ∈ co{xi1 , · · · , xik} relation (14) is verified. Hence, for some
p ∈ {i1, · · · , ik} it holds

(15) inf
v∈F (yp)

〈v, yp − x〉 = max
1≤j≤k

inf
v∈F (yij

)
〈v, yij − x〉 ≥ 0

which implies that x ∈MF (yp) ⊆
⋃k

j=1 MF (yij ). Thus, the assertion follows. �

We say that F : C → P(X) is a generalized properly quasimonotone mapping
if it verfies condition A1, that is, if ϕ(x, y) = infv∈F (y) 〈v, y − x〉 is 0- generalized
quasiconvex in y.

Lemma 3.4. Let C be a subset of a Hausdorff topological vector space Y and let
F : C → P(X) be a multivalued mapping. Assume that the following condition
is satisfied:
(A2) There exist a nonempty compact subset B of C and a finite subset of C,
{y1, · · · , yl}, such that for each x ∈ C\B it holds:

(16) min
1≤j≤l

inf
vj∈F (yj)

〈vj , yj − x〉 < 0 .

Then

(17) A =
l⋂

i=1

MF (yi)

is a compact subset of B.

Proof. First we claim that A ⊂ B. Indeed, if A = ∅, the assertion follows. Now,
let A 6= ∅. For purpose of contradiction, we suppose that there is a point x ∈ C
such that

(18) x ∈
l⋂

i=1

MF (yi) and x /∈ B.

Therefore x ∈ C\B. By assumption (A2), there is j ∈ {1, · · · , l} verifying:

(19) inf
vj∈F (yj)

〈vj , yj − x〉 < 0 .

Hence, x /∈MF (yj) which is in contradiction with our assumption. Thus, we get
that A ⊂ B. Since A is a closed subset related to C and B is closed we obtain
that A is closed in B. As a closed subset of a compact set is compact, it follows
that A is a compact subset of B, the proof is complete. �
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We note that condition (A2) is also used in [10, 12]. For l = 1 it is considered
for several authors, for example [1, 4, 5, 7], Now, we are able to give the following
result.

Theorem 3.5. Let C be a convex subset of a Hausdorff topological vector space
Y and let F : C → P(C) be a multivalued mapping verifying conditions (A1) and
(A2). Then, there exists a solution of problem M(F ; C).

Proof. By condition (A1) we can use Theorem 3.2 to deduce that the family of
sets {MF (y) : y ∈ C} has the finite intersection property. Therefore, the set A
defined in (17) is nonempty. Furthermore, the family of sets {MF (y)∩A : y ∈ C}
verifies the same property. In addition, for each y ∈ C we have that MF (y)∩A =
clMF (y)∩C ∩A = clMF (y)∩A is closed in A, so it is compact in A. Therefore,
by Theorem 2.4 we conclude that

(20) ∅ 6=
⋂
y∈C

(MF (y) ∩A) =
⋂
y∈C

MF (y).

The proof is complete. �

In [12] is assumed that F is a properly quasimonotone mapping which implies
our condition (A1) by taking xi = yi. The converse is not valid in general. We
illustrate this situation by considering a modification of Example 4.3 given in
[8]. Let X = R2, y1 = (0, 1), y2 = (0, 0), y3 = (1, 0). Let F : X → X be
defined by F (y1) = (1, 0), F (y2) = (1, 0), F (y3) = (0, 1) and F (y) = 0 otherwise.
This function F is not properly quasimonotone (take y = 1

3(y1 + y2 + y3)). It is
easy to see that F verifies condition (A1) by taking, for example, x1 = (−1, 1),
x2 = (0, 0), x3 = (1,−1) associated with y1, y2 and y3 respectively and x = (0, 0)
otherwise. In addition, if we define C = {(y1, y2) ∈ R2 : y2 ≥ − y1, |y1| ≤
1, |y2| < 2}, we have that condition (A2) is satisfied by taking B = {(y1, y2) ∈
R2 : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1

2}. Hence, by Theorem 3.5 we conclude that there
exists a solution to this problem. Actually, the solution is x = (0, 0).

Related results can be found in [9, 5, 1, 17].

4. Minty variational inequality systems

Let Xi and Yi be real Hausdorff topological vector spaces, for each i = 1, · · · , n.
Let Ci be a nonempty subset of Yi and let 〈·, ·〉 : Xi × Yi → R be a continuous
bilinear function for each i = 1, · · · , n. Let C = C1×· · ·×Cn and Fi : C → P(Xi)
be a set-valued mapping with nonempty values, for each i = 1, · · · , n. We consider
the Minty variational problem M(F1, · · · , Fn; C1, · · · , Cn) given by:

(21)
{

Find (x1, · · · , xn) ∈ C such that for each i = 1, · · · , n
〈v, y − xi〉 ≥ 0, ∀ y ∈ Ci ∀ v ∈ Fi(x1, · · · , xi−1, y, xi+1, · · · , xn).

As a consequence of Theorem 3.5 we establish the following existence result for
this problem which extends a theorem given in [12].
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Theorem 4.1. Let us consider problem M(F1, · · · , Fn; C1, · · · , Cn). Assume that
there is a compact subset Bi ⊆ Ci, for each i ∈ I = {1, · · ·n}, such that the
following conditions hold:

(a) Fixed xj ∈ Bj for each j ∈ I\{i} the multivalued mapping

x 7→ Fi(x1, · · · , xi−1, x, xi+1, · · · , xn)

verifies condition (A1), for each j ∈ I\{i}, i = 1, · · · , n.
(b) There exists {y1, · · · , yl}such that for each x ∈ Ci\Bi we have

min
1≤j≤l

inf
vj∈Fi(x1,··· ,xi−1,yj ,xi+1,··· ,xn)

〈vj , yj − x〉 < 0.

(c) Fixed yi ∈ Ci, the set-valued function

(x1, · · ·xi−1, xi+1, · · · ) 7→ Fi(x1, · · · , xi−1, yi, xi+1, · · · , xn)

is lower semicontinuous on C1×· · ·Ci−1×Ci+1 · · ·×Cn, for i = 1, · · · , n.

Then, there exists a solution of problem M(F1, · · · , Fn; C1, · · · , Cn).
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