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EXISTENCE CONDITIONS FOR QUASIVARIATIONAL

INCLUSION PROBLEMS IN G-CONVEX SPACES

PHAN QUOC KHANH AND NGUYEN HONG QUAN

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. We consider general quasivariational inclusion problems in G-
convex spaces and prove sufficient conditions for the solution existence. The
verifiability of the imposed assumptions is discussed in details. Corollaries and
examples are supplied to show that the obtained results contain and improve
recent existence conditions in the literature, even when applied to particular
cases.

1. Introduction

The quasivariational inclusion problem is a general model which was intro-
duced and studied recently, see [1-5, 11], to include many optimization-related
problems such as quasiequilibrium problems, quasivariational inequalities, vector
minimization problems, fixed-point and coincidence-point problems, etc.

On the other hand, spaces on which the considered problems are defined, have
also been an object to be generalized in order to make the problems encompass a
wide range of practical situations. A generalized convex space or G-convex space
[13] is very general. Its particular forms are a convex subset of a topological
vector space, a convex space [6], an S-contractive space, an H-space, a Komiya
convex space, a metric space with the Michael convex structure, see [12] for more
details.

The aim of this paper is to extend the quasivariational inclusion problem to
being defined on G-convex spaces and to establish sufficient existence conditions
under relaxed assumptions so that when applied even to particular cases these
conditions improve recent existing results. The paper is structured as follows.
The remaining part of this section consists of the problem setting and prelim-
inaries. Section 2 is devoted to the main results. In Section 3 we deal with
particular cases to compare in more details some recent results with our suffi-
cient conditions when applied to the corresponding special cases.
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Definition 1.1. (i) (see [6]) A convex set A in a vector space is called a convex
space if it is equipped with a topology which includes the Euclidean topology on
convex hulls of any nonempty finite subsets of A.

(ii) (see [13]) A generalized convex space or a G-convex space is a triple
(A, D,Γ) of a topological space A, a nonempty subset D of A and a general-
ized convex hull operator Γ from 〈D〉 (the set of all nonempty finite subsets of
D) into 2A (the space of all subsets of A) with nonempty values such that

(a) for each M, N ∈ 〈D〉, M ⊆ N implies Γ(M) ⊆ Γ(N);
(b) for each N ∈ 〈D〉 with |N | = n + 1, there exists a continuous map ΦN :

∆n −→ Γ(N) such that, for each J ∈ 〈N〉, ΦN (∆J) ⊂ Γ(J), where ∆n is the
n-simplex with the vertices being the unit vectors e1, e2, . . . , en+1 which form a
basis of Rn+1 and ∆J is the face of ∆n corresponding to J ∈ 〈N〉.

If D = A we omit D writing simply (A,Γ). (Note that for N ∈ 〈D〉, Γ(N) does
not need to contain N and a convex space A becomes a G-convex space (A,Γ)
by setting Γ(N) = co N for N ∈ 〈A〉.)

(iii) (see [13]) for a G-convex space (A,D,Γ), a subset B of A is said to be
G-convex if, for each N ∈ 〈D〉, N ⊆ B implies Γ(N) ⊆ B. (Note that any subset
C ⊆ A\D is G-convex.)

(iv) for a G-convex space (A,D,Γ) and a nonempty subset B of A, the G-
convex hull of B, denoted by G-coB, is

⋂

{C ⊆ A : C is a G-convex subset of A
containing B}.

Now, we pass to our problem setting. Let (A,Γ) be a G-convex space, A being
Hausdorff, Y and Z be (real) Hausdorff topological vector spaces, B ⊆ Z be
nonempty. Let Si : A −→ 2A, i = 1, 2, T : A −→ 2B , f : B × A × A −→ 2Y

and g : B × A −→ 2Y be multimaps (i.e. multivalued maps). We consider the
following two quasivariational inclusion problems

(IP1) Find x̄ ∈ S1(x̄) such that,∀y ∈ S2(x̄),∀t ∈ T (x̄, y),

f(t, x̄, y) ⊆ g(t, x̄);

(IP2) Find x̄ ∈ S1(x̄) such that,∀y ∈ S2(x̄),∀t ∈ T (x̄, y),

f(t, x̄, y) ∩ g(t, x̄) 6= ∅.

Note that in [1-5], for quasivariational inclusion problems defined in A being a
topological vector space, weaker models with “∀y ∈ S2(x̄),∀t ∈ T (x̄, y)” replaced
by “∀y ∈ S2(x̄),∃t ∈ T (x̄, y)” or by “∃t ∈ T (x̄, y),∀y ∈ S2(x̄)” were also investi-
gated. However, both the results and the proof techniques are similar as for the
above model. Therefore, in this paper we are concerned only with the model of
(IP1) and (IP2) for the sake of simple presentation. With this remark the reader
will be convinced that our two problems include a wide range of optimization -
related problems by refering to, e.g. [3, 4].

Definition 1.2. Let X, Y be topological spaces and F : X −→ 2Y .
(i) F is said to be upper semicontinuous (usc in short, respectively lower semi-

continuous, lsc in short) at x0 ∈ X if for every open subset U ⊇ F (x0) (respec-
tively, U ∩ F (x0) 6= ∅), there is a neighborhood N of x0 such that ∀x ∈ N,U ⊇
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F (x) (respectively, U ∩ F (x) 6= ∅). F is called usc in A ⊆ X if F is usc at every
x ∈ A. If A = domF = {x ∈ X : F (x) 6= ∅} we omit “in A” in the saying. We
adopt this convention for each property of a multimap.

(ii) F is called transfer open (respectively transfer closed) if for every x ∈ X
and y ∈ F (x) (respectively y /∈ F (x)), there is x′ ∈ X such that y ∈ intF (x′)
(respectively y /∈ clF (x′)).

(iii) Let C ⊆ Y be a cone. F is termed C-usc (respectively C-lsc) at x0 ∈ X if
for every neighborhood V of 0 in Y , there is a neighborhood N of x0 such that
F (x) ⊆ F (x0) + U + C (respectively F (x0) ⊆ F (x) + U + C) for every x ∈ N .

Note that F : X −→ 2Y is lsc at x0 if and only if ∀xλ ∈ dom F : xλ −→
x0,∀y ∈ F (x0),∃yλ ∈ F (xλ), yλ −→ y.

Lemma 1.1 (see [7]). Let X, Y be topological spaces and F : X −→ 2Y be a
multimap. Then the following two assertions are equivalent

(i) the inverse F−1 is transfer open and domF = X;
(ii) X =

⋃

y∈Y intF−1(y).

Lemma 1.2. Let (A,D,Γ) be a G-convex space and B ⊆ A be nonempty. Then
G-coB = {x ∈ A: ∃N ∈ 〈B〉, x ∈ G-coN}.

Proof. For every N ∈ 〈B〉, it is clear that G-coN ⊆ G-coB. Hence

B ⊆
⋃

N∈〈B〉

(G-coN) ⊆ G-coB.

Therefore, it suffices to show that the union in these inclusions, which is now
denoted by C, is G-convex. Assume that N0 ∈ 〈D〉 such that N0 ⊆ C. By the

definition of C, there is {N1, N2, . . . , Nk} ∈ 〈B〉, such that N0 ⊆
⋃k

i=1(G-coNi) ⊆
C. Since

⋃n
i=1 Ni ∈ 〈B〉, one has G-co(

⋃n
i=1 Ni) ⊆ C. As, ∀j = 1, 2, . . . , k,

G-coNj ⊆ G-co(
⋃k

i=1 Ni), one has further N0 ⊆ G-co(
⋃k

i=1 Ni). Since each G-

convex hull is G-convex, by Definition 1.1(iii), Γ(N0) ⊆ G-co(
⋃k

i=1 Ni) ⊆ C.
Hence, again by this definition, C is G-convex. �

We propose the following relaxed generalized convexity for multimaps in G-
convex spaces.

Definition 1.3. Let B, C be sets, (A,Γ) be a G-convex space and M ⊆ A. Let
f : B × A × A −→ 2C , g : B × A −→ 2C and T : A × A −→ 2B be multimaps.
f is called g-G-quasiconvex relative to T on M if, for any finite subset N =
{x1, x2, . . . , xn} ∈ 〈M〉 and for any x ∈ G-coN , there is some i ∈ {1, 2, . . . , n}
such that, ∀t ∈ T (x, xi),

(1) f(t, x, xi) ⊆ g(t, x).

A definition of the corresponding g-G-quasiconvexlikeness is obtained by re-
placing (1) by f(t, x, xi) ∩ g(t, x) 6= ∅.

If A is a convex subset of a vector space and G-coN is the usual convex hull
of N , then the g-G-quasiconvexity and g-G-quasiconvexlikeness collapse respec-
tively to the g-quasiconvexity and g-quasiconvexlikeness defined in [3]. If, more
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particular, T (x, y) = {x} and g(t, x) = K(x) with K(x) being a convex cone,
these notions become the strong type 1 and type 2 (respectively) K-diagonal
quasiconvexities proposed in [8].

The following fixed-point theorem is the main tool for proving our results.

Theorem 1.3. (see [9, Theorem 1]) Let (A,Γ) be a G-convex space and Q :
A −→ 2A be a multimap satisfying the conditions

(i) A =
⋃

y∈A intQ−1(y);

(ii) there is a nonempty compact subset D of A such that, for each N ∈ 〈A〉,
there exists a compact G-convex subset LN of A, containing N so that

LN ∩ (A\
⋃

y∈LN

intQ−1(y)) ⊆ D.

Then, G-co Q(.) has a fixed point in A.

2. Main result

For problems (IP1) and (IP2) we set

E = {x ∈ A : x ∈ S1(x)}.

Theorem 2.1. Assume for problem (IP1) that there are h : B × A × A −→ 2Y

and k : B × A −→ 2Y such that the following conditions hold
(i) E is nonempty and closed, S2(x) 6= ∅ and G-coS2(x) ⊆ S1(x) for each

x ∈ A\E;
(ii) for (x, y) ∈ E × S2(x), if h(t, x, y) ⊆ k(t, x) ∀t ∈ T (x, y) then f(t, x, y) ⊆

g(t, x), ∀t ∈ T (x, y);
(iii) for each x ∈ E, h is k-G-quasiconvex relative to T on S2(x);
(iv) S−1

2 and H−1 are transfer open, where H : A −→ 2A is defined by

H(x) = {y ∈ S2(x) : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)} ;

(v) there is a nonempty compact subset D of A such that, for each N ∈ 〈A〉,
there exists a compact G-convex subset LN of A containing N so that, ∀x ∈
LN\D, ∃y ∈ LN : x ∈ intS−1

2 (y), and that, ∀x ∈ S1(x) ∩ (LN\D), ∃y ∈ LN :
x ∈ intH−1(y).
Then (IP1) is solvable.

Proof. Since E 6= ∅, reasoning ab absurdum, suppose ∀z ∈ E, ∃y ∈ S2(x),∃t ∈
T (x, y),

(2) f(t, x, y) 6⊆ g(t, x).

Let Φ, Ψ, P : A −→ 2A be defined by

Φ(x) =

{

H(x) if x ∈ E,
S2(x) if x ∈ A\E,

Ψ(x) = {y ∈ S2(x) : ∃t ∈ T (x, y), f(t, x, y) 6⊆ g(t, x)} ,

(3) P (x) = {y ∈ A : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)} .
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By (2) and assumption (ii), ∅ 6= Ψ(x) ⊆ H(x),∀x ∈ E. Hence, by (i), Φ(x) 6=
∅,∀x ∈ A. For any y ∈ A, one has

Φ−1(y) = [E ∩ H−1(y)] ∪ [(A \ E) ∩ S−1
2 (y)]

= H−1(y) ∪ [(A \ E) ∩ S−1
2 (y)].

So there are two possibilities for x ∈ Φ−1(y). If x ∈ H−1(y), then by (iv), there
is y′ ∈ A such that

x ∈ intH−1(y′) ⊆ intΦ−1(y′).

If x ∈ (A\E) ∩ S−1
2 (y), (iv) implies also the existence of y′ ∈ A such that

x ∈ (A\E) ∩ intS−1
2 (y′) ⊆ int[((A\E) ∩ S−1

2 (y′)) ∪ H−1(y′)] = intΦ−1(y′).

Consequently, Φ−1 is transfer open and hence A =
⋃

y∈A intΦ−1(y) by Lemma
1.1.

We claim that assumption (ii) of Theorem 1.3 is satisfied for Q = Φ with D and
LN obtained from assumption (v) of this theorem. Let x ∈ LN and, ∀y ∈ LN ,

(4) x /∈ int Φ−1(y).

Suppose to the contrary that x /∈ D. If x ∈ A\E, assumption (v) yields y ∈ LN

with x ∈ int S−1
2 (y) ∩ (A\E) ⊆ intΦ−1(y) as A\E is open. This contradicts (4).

If x ∈ E, then x ∈ S1(x) ∩ (LN\D) and (v) gives y ∈ LN with x ∈ int H−1(y) ⊆
intΦ−1(y), a contradiction again. Thus, both assumptions of Theorem 1.3 are
fulfilled.

Finally, suppose there exists x0 ∈ A such that x0 ∈ G-coΦ(x0). If x0 ∈
A\E, x0 ∈ G-coS2(x0) ⊆ S1(x0), i.e, x0 ∈ E, which is impossible. If x0 ∈ E,
then x0 ∈ G-coH(x0). By Lemma 1.2 , N ∈ 〈H(x0)〉 ⊆ 〈S2(x0)〉 exists such that
x0 ∈ G-coN . According to assumption (iii), one has xi ∈ N such that, ∀t ∈
T (x0, xi), h(t, x0, xi) ⊆ k(t, x0). This contradiction with the fact that xi ∈ H(x0)
completes the proof. �

Now we go further into details of the assumptions of Theorem 2.1 to see that
although they look seemingly complicated, they are in fact relaxed and satisfied
in many situations which are often met. We begin with assumption (iii).

Proposition 2.2. Let A, B, Y and T be as in problem (IP1). Let h : B × A ×
A −→ 2Y and k : B ×A −→ 2Y . Assume that for each x ∈ A, h(t, x, x) ⊆ k(t, x)
for all t ∈ T (x, x) and the set

Ux = {y ∈ A : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)}

is G-convex. Then h is k-G-quasiconvex relative to T on A.

Proof. Suppose to the contrary the existence of N ∈ 〈A〉 and x ∈ G-coN such
that, ∀xi ∈ N , ∃t ∈ T (x, xi), h(t, x, xi) 6⊆ k(t, x). Then N ⊆ Ux and, as Ux is G-
convex, x ∈ Ux, i.e. h(t, x, xi) 6⊆ k(t, x) for some t ∈ T (x, x), a contradiction. �

Passing to the transfer openness assumption we have
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Proposition 2.3. Let A, T be as in problem (IP1) and h, k, H be defined as in
Theorem 2.1. For y ∈ A, if S−1

2 (y) is open and the set

Vy = {x ∈ A : ∀t ∈ T (x, y), h(t, x, t) ⊆ k(t, x)}

is closed, then H−1(y) is open. Hence, if this is satisfied for all y ∈ A, H−1is
transfer open.

Proof. For y ∈ A we have H−1(y) = S−1
2 (y)∩P−1(y), where P is defined by (3).

We also have

P−1(y) = {x ∈ A : ∃t ∈ T (x, y), h(t, x, y) 6⊆ k(t, x)} = A\Vy,

which is open. By the assumption, H−1 is open. �

To ensure the closedness of Vy we have

Proposition 2.4. Let A, T , h, k, and Vy be defined as in Proposition 2.3. Then
Vy is closed if one of the following conditions holds

(i) T (·, y) and h(·, ·, y) are lsc and k has a closed graph;
(ii) Y is a locally convex space; k has the form k(t, x) = k1(t, x) + K with

K ⊆ Y being a closed convex cone; T (·, y) is lsc, h(·, ·, y) is K-lsc and k1 is
K-usc and compact-valued.

Proof. (i) Let xγ ∈ Vy, xγ −→ x0. Then by the assumption, ∀t0 ∈ T (x0, y), ∀v0 ∈
h(t0, x0, y),∃tγ ∈ T (xγ , y) : tγ −→ t0,∃vγ ∈ h(tγ , xγ , y) ⊆ k(tγ , xγ) : vγ −→ v0.
Since the graph of k is closed, v0 ∈ k(t0, x0). Hence, ∀t0 ∈ T (x0, y), h(t0, x0, y) ⊆
k(t0, x0), i.e. x0 ∈ Vy.

(ii) Suppose the existence of xγ ∈ Vy, xγ −→ x0 but x0 /∈ Vy, i.e., ∃t0 ∈
T (x0, y), h(t0, x0, y) 6⊆ k1(t0, x0)+K. Then there is h0 ∈ h(t0, x0, y) such that 0 /∈
k1(t0, x0)+K−h0 =: M . Since k1(t0, x0) is compact, Y \M is open. Consequently
there exists a neighborhood U of 0 such that U ⊆ Y \M . As Y is a locally convex
space we can assume that U is convex and U = −U . Then

(5)

(

−
1

2
U −

1

2
U

)

∩ (k1(t0, x0) + K − h0) = ∅.

By the lower semicontinuity of T (·, y) and K-lower semicontinuity of h(·, ·, y),
there is tγ ∈ T (xγ , y) : tγ −→ t0 such that, for all γ,

(6) h(t0, x0, y) ⊆ h(tγ , xγ , y) +
1

2
U + K.

As xγ ∈ Vy, h(tγ , xγ , y) ⊆ k1(tγ , xγ) + K. The K-upper semicontinuity of k1 in
turn implies that, for all γ,

(7) k1(tγ , xγ) ⊆ k1(t0, x0) +
1

2
U + K.

(6) and (7) imply that, ∀h ∈ h(t0, x0, y),
(

−
1

2
U −

1

2
U

)

∩ (k1(t0, x0) + K − h) 6= ∅,

contradicting (5). �
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Theorem 2.1 together with Theorem 2.5 below are easily modified to become
corresponding results for the other variants of problems (IP1), (IP2) mentioned
in Section 1.

Observe that E is closed if S1 has closed graph (but not vice versa) and that
assumption (v) of Theorem 2.1 becomes an usual coercivity assumption if A is a
convex subset of a real topological vector space. Therefore, taking into account
Propositions 2.2 and 2.3 one sees that Theorem 2.1 includes Theorems 3.1 and
3.3 of [3] and Theorem 2.1 of [4].

Passing to problem (IP2) we have the following result.

Theorem 2.5. Impose the assumptions of Theorem 2.1 with the following re-
placements: h(t, x, y) ⊆ k(t, x) replaced by h(t, x, y) ∩ k(t, x) 6= ∅; the generalized
quasiconvexity is replaced by the generalized quasiconvexlikeness and H is replaced
by H1 defined as

H1(x) = {y ∈ S2(x) : ∃t ∈ T (x, y), h(t, x, y) ∩ k(t, x) = ∅}.

Then problem (IP2) has solutions.

By the similarity we omit the proofs of this theorem and of the conditions
below for its assumptions to hold, corresponding to Propositions 2.2 - 2.4. Notice
that Vy is now replaced by V1

y = {x ∈ A : ∀t ∈ T (x, y), h(t, x, y) ∩ k(t, x) 6= ∅}.

Corresponding to Proposition 2.4, conditions for the closedness of V1
y are given

in the following

Proposition 2.6. Let A, T , h, k be as in Proposition 2.4 and V1
y be as above.

Then each of the following conditions is sufficient for V1
y to be closed.

(i) T (·, y) and h(·, ·, y) are usc and compact-valued and k has a closed graph;
(ii) Y is a locally convex space; k has the form k(t, x) = k1(t, x) + K with

K ⊆ Y being a closed convex cone; T (·, y) is usc and compact-valued, h(·, ·, y)
and k1 are K-usc and k1 has compact values.

With these propositions, it is easy to see that Theorem 2.5 improves Theorems
3.2 and 3.4 of [3] and Theorem 2.1 of [4] when it is applied to the particular cases
considered in [3, 4]. The following example shows that Theorems 2.1 and 2.5
contain properly the mentioned recent results.

Example 2.1. Let A = [−1, 1], Y = Z = R+, T (x, y) ≡ R, g(t, x) ≡ (−∞, 0),

S1(x) =







[−1, x] if − 1 6 x 6 −0.5,
(0, 1) if − 0.5 < x < 0,
(0, x) if 0 6 x 6 1,

S2(x) =







[−1, x) if − 1 6 x 6 −0.5,
(0, 1) if − 0.5 < x < 0,
(0, x) if 0 6 x 6 1,

f(t, x, y) =

{

[0, 1] if 0 6 y 6 1,
{−xy} if − 1 6 y < 0.
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Then for y = −1, Vy = V1
y = [−1, 0) are not closed. Taking arbitrarily N =

{x1, x2, ..., xn} ⊆ (0, 1), for every x ∈ coN and i ∈ {1, 2, ..., n} one sees that ∀t ∈
T (x, xi), f(t, x, xi) ⊆ Y \g(t, x), i.e. f is neither g-quasiconvex relative to T on A
nor g-quasiconvexlike relative to T on A. Hence, Theorems 3.1 - 3.4 of [3] cannot
be applied. Moreover, for any x ∈ [0, 1], any t ∈ T (x, x), f(t, x, x) ⊆ Y \g(t, x).
So Theorem 2.1 of [4] cannot be employed either.

Now we check the assumptions of Theorems 2.1 and 2.5 with h = f and k = g.
(v) and (i) are satisfied since A is compact and E = [−1,−0.5]. For (iii), taking
any x ∈ E,N ∈ 〈S2(x)〉 = 〈[−1, x)〉, x0 ∈ coN,xi ∈ N and t ∈ T (x0, xi) one
has f(t, x0, xi) ⊆ g(t, x0). To verify assumption (iv) one easily computes the
following preimages:

S−1
2 (y) =







(y,−0.5) if − 1 6 y < −0.5,
∅ if − 0.5 6 y 6 0,
(−0.5, 0) ∪ (y, 1] if 0 < y 6 1,

H−1(y) = S−1
2 (y) ∩ {x ∈ A : ∃t ∈ T (x, y), f(t, x, y) 6⊆ g(t, x)}

=

{

S−1
2 (y) ∩ [−1, 1] if 0 6 y 6 1,

S−1
2 (y) ∩ [0, 1] if − 1 6 y < 0,

=

{

∅ if − 1 6 y 6 0,
(y, 1] if 0 < y 6 1,

to see that these sets are open in A for all y ∈ A. Furthermore it is easily seen
that H−1

1 (y) = H−1(y) for all y ∈ A. Thus Theorems 2.1 and 2.5 say that both
the problems (IP1) and (IP2) have solutions.

3. Particular cases

As mentioned in Section 1, our problems (IP1) and (IP2) (and their modified
weaker models) include many quasivariational inclusion problems, quasiequilib-
rium problems, etc, considered recently in the literature, since both the formula-
tion and the involved spaces are general. Therefore, we can derive from Theorems
2.1 and 2.5 consequences for special cases to include many recent results. In Sec-
tion 2 we mentioned several theorems of [3, 4] as examples (these theorems were
shown in [3, 4] to contain many other results, see also [5, 11]).

In this section we derive several theorems for cases of G-convex spaces and
convex spaces of [8, 10] also as examples. Let (A,Γ) be a G-convex space, Y
be a Hausdorff topological vector space, F : A × A −→ 2Y and C : A −→ 2Y .
Consider the following problems

(I) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) ⊆ C(x̄);

(II) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) ∩ C(x̄) 6= ∅;
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(III) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) 6⊆ −intC(x̄);

(IV) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) ∩ −intC(x̄)) = ∅.

In [8], problems (I) - (IV) were studied for the case where A is a convex space.
The following problem

(II’) Find x̄ ∈ A such that, ∀y ∈ A,

F (x̄, y) 6⊆ C(x̄),

where C: A −→ 2Y , was investigated in [10] for the case where (A,Γ) is a G-
convex space. By setting C(x) = Y \C(x), problem (II’) becomes problem (II).

Corollary 3.1. Assume the existence of H: A × A −→ 2Y and K : A −→ 2Y

such that
(i) for x, y ∈ A,H(x, y) ⊆ K(x) implies F (x, y) ⊆ C(x);
(ii) H is K-G-quasiconvex relative to T , where T (x) = {x};
(iii) H−1 is transfer open, where H: A −→ 2A is defined by

H(x) = {y ∈ A : H(x, y) 6⊆ K(x)};

(iv) there is a nonempty compact subset D of A such that for each N ∈ 〈A〉,
there exists a compact G-convex subset LN of A, containing N so that, ∀x ∈
LN\D, ∃y ∈ LN , x ∈ intH−1(y).
Then Problem (I) has solutions.

Corollary 3.1 is the special case of Theorem 2.1 with A ≡ B, f(t, x, y) =
F (x, y), g(t, x) = C(x), h(t, x, y) = H(x, y) and k(t, x) = K(x). This corollary
contains properly Theorem 4.2 and Corollary 4.2 of [8], where A is a convex space
and the assumptions are stronger.

Corollary 3.2. Assume for Problem (II) the conditions of Corollary 3.1 with the
following modifications: “quasiconvex” in (ii) is replaced by “quasiconvex-like”;
“H(x, y) 6⊆ K(x)” in (iii) is replaced by “H(x, y)∩K(x) = ∅” and (i) is replaced
by“for x, y ∈ A, H(x, y) ∩ K(x) 6= ∅ implies F (x, y) ∩ C(x) 6= ∅”.
Then Problem (II) is solvable.

This corollary is derived from Theorem 2.5 with the same setting as for Corol-
lary 3.1. It includes Theorem 4.6 of [8] and Theorems 3.3 - 3.4 of [10] (the
convexity assumption in (iii) here is more relaxed than in [10]).

Corollary 3.3. Assume for Problem (III) the conditions (ii), (iii) and (iv) and
replace (i) by “for x, y ∈ A, H(x, y) ∩ K(x) 6= ∅ implies F (x, y) 6⊆ −int C(x)”.
Then Problem (III) has a solution.

To prove this corollary simply set B, f, h, k as for Corollary 3.1 and g(x, y) =
Y \ − int C(x) in Theorem 2.5. This corollary contains Theorem 4.8 of [8].
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Corollary 3.4. Impose for Problem (IV ) assumptions (ii), (iii) and (iv) as in
Corollary 3.1 and replace (i) by “for x, y ∈ A, H(x, y) ⊆ K(x) implies F (x, y)∩
(−intC(x)) = ∅”. Then Problem (IV ) is solvable.

To prove this corollary set B, f , h, k and g as for Corollary 3.3 into Theorem
2.1. This corollary includes Theorem 4.10 of [8].
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