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NEW RESULTS FOR BOUNDARY VALUE PROBLEMS OF

NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

WITH NON-SEPARATED BOUNDARY CONDITIONS

BASHIR AHMAD

Abstract. In this paper, a boundary value problem of nonlinear fractional
differential equations of order q ∈ (1, 2] with non-separated boundary condi-
tions is studied. Some new existence and uniqueness results are obtained by
using Leray-Schauder degree theory and fixed point theorems. Some interest-
ing observations are presented.

1. Introduction

In this paper, we discuss the existence and uniqueness of the solutions for a
boundary value problem of nonlinear fractional differential equations of order q ∈
(1, 2] with non-separated boundary conditions. Our results are based on Leray-
Schauder degree theory, the contraction mapping principle and Krasnoselskii’s
fixed point theorem. More precisely, we consider the problem

{

cDqx(t) = f(t, x(t)), t ∈ [0, T ], T > 0, 1 < q ≤ 2,
x(0) = λ1x(T ) + µ1, x′(0) = λ2x

′(T ) + µ2, λ1 6= 1, λ2 6= 1,
(1.1)

where cDq denotes the Caputo fractional derivative of order q, and f : [0, T ]×R →
R and λ1, λ2, µ1, µ2 ∈ R.
The theory of boundary value problems for nonlinear fractional differential equa-
tions is still in its initial stages and many aspects of this theory need to be
explored. For some recent results on fractional boundary value problems, see
[1-9, 13, 15] and the references therein.

2. Preliminaries

Let us recall some basic definitions [10, 12, 14].

Definition 2.1. For a function g : [0,∞) → R, the Caputo derivative of fractional
order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,
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where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined
as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a
function g(t) is defined as

Dqg(t) =
1

Γ(n− q)
(
d

dt
)n

∫ t

0

g(s)

(t− s)q−n+1
ds, n = [q] + 1,

provided the right hand side is pointwise defined on (0,∞).

Lemma 2.4 ([12]). For q > 0, the general solution of the fractional differential
equation cDqx(t) = 0 is given by

x(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, ..., n − 1 (n = [q] + 1).

In view of Lemma 2.4 it follows that

Iq cDqx(t) = x(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1 (2.1)

for some ci ∈ R, i = 0, 1, 2, ..., n − 1 (n = [q] + 1).

Lemma 2.5. For h ∈ C[0, T ], the unique solution of the boundary value problem
{

cDqx(t) = h(t), 0 < t < T, 1 < q ≤ 2,
x(0) = λ1x(T ) + µ1, x′(0) = λ2x

′(T ) + µ2,
(2.2)

is given by

x(t) =

∫ T

0
G(t, s)h(s)ds +

µ2[λ1T + (1− λ1)t]

(λ2 − 1)(λ1 − 1)
−

µ1

(λ1 − 1)
,

where G(t, s) is the Green’s function given by

G(t, s) =











(t−s)q−1

Γ(q) − λ1(T−s)q−1

(λ1−1)Γ(q) + λ2[λ1T+(1−λ1)t](T−s)q−2

(λ2−1)(λ1−1)Γ(q−1) , 0 ≤ s ≤ t ≤ T,

−λ1(T−s)q−1

(λ1−1)Γ(q) + λ2[λ1T+(1−λ1)t](T−s)q−2

(λ2−1)(λ1−1)Γ(q−1) , 0 ≤ t ≤ s ≤ T.

(2.3)

Proof. Using (2.1), for some constants c0, c1 ∈ R we have

x(t) = Iqh(t)− c0 − c1t =

∫ t

0

(t− s)q−1

Γ(q)
h(s)ds − c0 − c1t. (2.4)
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In view of the relations cDq Iqx(t) = x(t) and Iq Ipx(t) = Iq+px(t) for q, p >

0, x ∈ L(0, T ), we obtain

x′(t) =

∫ t

0

(t− s)q−2

Γ(q − 1)
h(s)ds − c1.

Applying the boundary conditions for (2.2) we find that

c0 =
λ1

(λ1 − 1)

[

∫ T

0

(T − s)q−1

Γ(q)
h(s)ds

−
Tλ2

(λ2 − 1)

(

∫ T

0

(T − s)q−2

Γ(q − 1)
h(s)ds +

µ2

λ2

)

+
µ1

λ1

]

,

c1 =
λ2

(λ2 − 1)

∫ T

0

(T − s)q−2

Γ(q − 1)
h(s)ds +

µ2

(λ2 − 1)
.

Substituting the values of c0 and c1 in (2.4) we obtain the unique solution of (2.2)
given by

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
h(s)ds −

λ1

(λ1 − 1)

∫ T

0

(T − s)q−1

Γ(q)
h(s)ds

+
λ2[λ1T + (1− λ1)t]

(λ2 − 1)(λ1 − 1)

∫ T

0

(T − s)q−2

Γ(q − 1)
h(s)ds

+
µ2[λ1T + (1− λ1)t]

(λ2 − 1)(λ1 − 1)
−

µ1

(λ1 − 1)

=

∫ T

0
G(t, s)h(s)ds +

µ2[λ1T + (1− λ1)t]

(λ2 − 1)(λ1 − 1)
−

µ1

(λ1 − 1)
,

where G(t, s) is given by (2.3). This completes the proof. �

By Lemma 2.5, problem (1.1) is reduced to the fixed point problem

x = z(x), (2.5)

where z : C[0, T ] → C[0, T ] is given by

(zx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds− ξ1λ1

∫ T

0

(T − s)q−1

Γ(q)
f(s, x(s))ds

+ξ2λ2[λ1T + (1− λ1)t]

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, x(s))ds

+ξ2µ2[λ1T + (1− λ1)t]− µ1ξ1, t ∈ [0, T ],

ξ1 =
1

(λ1 − 1)
, ξ2 =

1

(λ2 − 1)(λ1 − 1)
.

Formula (2.5) will be used to prove the existence of solutions of (1.1) in Section
3. In order to establish existence and uniqueness results for (1.1) in a Banach
space (Section 4), let (X, ‖.‖) be a Banach space and let C = C([0, T ],X) denote
the Banach space of continuous functions [0, T ] → X endowed with the topology
of uniform convergence with the sup-norm denoted by ‖.‖. In this case, the
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operator z in (2.5) will be defined as z : C → C with f : [0, T ] × X → X and
µ1, µ2 ∈ X. To prove Theorem 4.3, we need the operators z1,z2 : C → C which
will be defined later.

3. An existence result via Leray-Schauder criterion

Theorem 3.1. Assume that there exist constants 0 ≤ κ <
Γ(q+1)

(1+|ξ1λ1|+|ξ2λ2(1+λ1)|q)

and M > 0 such that |f(t, x)| ≤ κ
T q |x| +M for all t ∈ [0, T ], x ∈ C[0, T ]. Then,

the boundary value problem (1.1) has at least one solution.

Proof. In view of the fixed point problem (2.5) we just need to prove the existence
of at least one solution x ∈ C[0, T ] satisfying (2.5). Define a suitable ball BR ⊂
C[0, T ] with radius R > 0 as

BR = {x ∈ C[0, T ] : max
t∈[0,T ]

|x(t)| < R},

where R will be fixed later. Then it is sufficient to show that z : BR → C[0, T ]
satisfies

x 6= λzx, ∀ x ∈ ∂BR and ∀ λ ∈ [0, 1]. (3.1)

Let us set
H(λ, x) = λzx, x ∈ C(R) λ ∈ [0, 1].

Then, by the Arzela-Ascoli theorem, hλ(x) = x−H(λ, x) = x−λzx is completely
continuous. If (3.1) is true, then the following Leray-Schauder degrees are well
defined and by the homotopy invariance of topological degree, it follows that

deg(hλ, BR, 0) = deg(I − λz, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I,BR, 0) = 1 6= 0, 0 ∈ Br,

where I denotes the unit operator. By the nonzero property of Leray-Schauder
degree, we have h1(t) = x− λzx = 0 for at least one x ∈ BR. In order to prove
(3.1) we assume that x = λzx for some λ ∈ [0, 1] and for all t ∈ [0, T ] so that

|x(t)| = |λzx(t)|

≤

∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds + |ξ1λ1|

∫ T

0

(T − s)q−1

Γ(q)
|f(s, x(s))|ds

+|ξ2λ2||λ1T + (1− λ1)t|

∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, x(s))|ds

+|ξ2µ2||λ1T + (1− λ1)t|+ |µ1ξ1|

≤
( κ

T q
|x|+M

)

[

∫ t

0

(t− s)q−1

Γ(q)
ds+ |ξ1λ1|

∫ T

0

(T − s)q−1

Γ(q)
ds

+|ξ2λ2||λ1T + (1− λ1)t|

∫ T

0

(T − s)q−2

Γ(q − 1)
ds

]

+|ξ2µ2||λ1T + (1− λ1)t|+ |µ1ξ1|

≤
( κ

T q
|x|+M

)T q(1+|ξ1λ1|+|ξ2µ2(1+λ1)|q)

Γ(q+1)
+|ξ2µ2(1+λ1)|T+|µ1ξ1|,
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which, by taking norm (supt∈[0,T ] |x(t)| = ‖x‖) and solving for ‖x‖, yields

‖x‖ ≤
MT q(1 + |ξ1λ1|+ |ξ2µ2(1 + λ1)|q) + (|ξ2µ2(1 + λ1)|T + |µ1ξ1|)Γ(q + 1)

Γ(q + 1)− κ(1 + |ξ1λ1|+ |ξ2µ2(1 + λ1)|q)
.

SettingR = MT q(1+|ξ1λ1|+|ξ2µ2(1+λ1)|q)+(|ξ2µ2(1+λ1)|T+|µ1ξ1|)Γ(q+1)
Γ(q+1)−κ(1+|ξ1λ1|+|ξ2µ2(1+λ1)|q)

+1 it follows that

(3.1) holds. This completes the proof. �

Example 3.2. Consider the boundary value problem

{

cDqx(t) = 1
(4π) sin(

2πx
T q ) +

|x|
1+|x| , t ∈ [0, T ], 1 < q ≤ 2,

x(0) = −1
2u(T ) + µ1, x′(0) = −4

5u
′(T ) + µ2.

(3.2)

Clearly,

∣

∣

∣
f(t, x)

∣

∣

∣
=

∣

∣

∣

1

(4π)
sin(

2πx

T q
) +

|x|

1 + |x|

∣

∣

∣
≤

1

2T q
‖x‖ + 1

with κ = 1
2 <

Γ(q+1)
(1+|ξ1λ1|+|ξ2λ2(1+λ1)|q)

= 27Γ(q+1)
4(q+9) for 1 < q ≤ 2 and M = 1. Thus,

the conclusion of Theorem 3.1 applies to (3.2).

Remark 3.3. For a positive constant N1, we can modify the assumption on the
nonlinear function f(t, x) in Theorem 3.1 so that

|f(t, x)| ≤
Γ(q + 1)N1

T q(1 + |ξ1λ1|+ |ξ2µ2(1 + λ1)|q)
∀t ∈ [0, T ], x ∈ [−N1, N1].

4. Existence and uniqueness results in a Banach space

Throughout this section, let (X, ‖.‖) be a Banach space and let f : [0, T ]×X →
X. Furthermore, we assume that

(A1) |f(t, x)− f(t, y)| ≤ L|x− y|,∀t ∈ [0, T ], x, y ∈ X;
(A2) |f(t, x)| ≤ µ(t), ∀(t, x) ∈ [0, T ]×X, and µ ∈ C([0, T ], R+);

(A3) γ1 =
LT q(1+|ξ1λ1|+|ξ2λ2(1+λ1)|q)

Γ(q+1) < 1.

Theorem 4.1. Assume that f : [0, T ]×X → X is a jointly continuous function,
and that the assumptions (A1) and (A3) are satisfied. Then, the boundary value
problem (1.1) has a unique solution.

Proof. Let us set supt∈[0,T ] |f(t, 0)| = M and choose r ≥ γ2
(1−γ1)

, where

γ2 =
MT q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
+ |ξ2µ2(1 + λ1)|T + |µ1ξ1|,
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and γ1 is given by the assumption (A3). Now we show that zBr ⊂ Br, where
z : C → C is defined by (2.5) and Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br we have

‖(zx)(t)‖ ≤

∫ t

0

(t− s)q−1

Γ(q)
‖f(s, x(s))‖ds + |ξ1λ1|

∫ T

0

(T − s)q−1

Γ(q)
‖f(s, x(s))‖ds

+|ξ2λ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|

∫ T

0

(T − s)q−2

Γ(q − 1)
‖f(s, x(s))‖ds

+|ξ2µ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|+ |µ1ξ1|

≤

∫ t

0

(t− s)q−1

Γ(q)
(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖)ds

+|ξ1λ1|

∫ T

0

(T − s)q−1

Γ(q)
(‖f(s, x(s))− f(s, 0)‖+ ‖f(s, 0)‖)ds

+|ξ2λ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|

∫ T

0

(T − s)q−2

Γ(q − 1)
(‖f(s, x(s))− f(s, 0)‖

+‖f(s, 0)‖)ds + |ξ2µ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|+ |µ1ξ1|

≤
(

Lr +M
)[ 1

Γ(q)

∫ t

0
(t− s)q−1ds+ |ξ1λ1|

1

2Γ(q)

∫ T

0
(T − s)q−1ds

+|ξ2λ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|

∫ T

0
(T − s)q−2ds

]

+|ξ2µ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|+ |µ1ξ1|

≤
LT q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
r +

MT q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)

+|ξ2µ2(1 + λ1)|T + |µ1ξ1|

= γ1r + γ2 ≤ r.

Now, for x, y ∈ C and for each t ∈ [0, T ] we obtain

‖(zx)(t) − (zy)(t)‖

≤

∫ t

0

(t− s)q−1

Γ(q)
‖f(s, x(s))− f(s, y(s))‖ds

+|ξ1λ1|

∫ T

0

(T − s)q−1

Γ(q)
‖f(s, x(s))− f(s, y(s))‖ds

+|ξ2λ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|

∫ T

0

(T − s)q−2

Γ(q − 1)
‖f(s, x(s))− f(s, y(s))‖ds
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≤ L‖x− y‖
[ 1

Γ(q)

∫ t

0
(t− s)q−1ds+ |ξ1λ1|

1

2Γ(q)

∫ T

0
(T − s)q−1ds

+|ξ2λ2| sup
t∈[0,T ]

|λ1T + (1− λ1)t|

∫ T

0
(T − s)q−2ds

]

≤
LT q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
‖x− y‖ = γ1‖x− y‖.

Observe that γ1 depends only on the parameters involved in the problem. As
γ1 < 1, therefore z is a contraction. Thus, by the contraction mapping principle
(Banach fixed point theorem), it follows that the boundary value problem (1.1)
has a unique solution. �

Now, we prove the existence of solutions of (1.1) by applying Krasnoselskii’s
fixed point theorem [11].

Theorem 4.2 (Krasnoselskii’s fixed point theorem). Let M be a closed convex
and nonempty subset of a Banach space X. Let A,B be operators such that (i)
Ax+By ∈ M whenever x, y ∈ M ; (ii) A is compact and continuous; (iii) B is a
contraction mapping. Then, there exists z ∈ M such that z = Az +Bz.

Theorem 4.3. Let f : [0, T ]×X → X be a jointly continuous function mapping
bounded subsets of [0, T ] × X into relatively compact subsets of X, and assume
that (A1) and (A2) hold with

LT q(|ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
< 1.

Then, the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. Let us fix

r ≥
‖µ‖T q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
+ |ξ2µ2(1 + λ1)|T + |µ1ξ1|),

where ‖µ‖ = supt∈[0,T ] |µ(t)| and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the
operators z1 and z2 on Br as

(z1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, u(s))ds,

(z2x)(t) = −ξ1λ1

∫ T

0

(T − s)q−1

Γ(q)
f(s, u(s))ds

+ξ2λ2[λ1T + (1− λ1)t]

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s))ds

+ξ2µ2[λ1T + (1− λ1)t]− µ1ξ1.

For x, y ∈ Br we find that

‖z1x+z2y‖ ≤
‖µ‖T q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
+|ξ2µ2(1+λ1)|T+|µ1ξ1| ≤ r.
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Thus, z1x+z2y ∈ Br. It follows from the assumption (A1) that z2 is a contrac-

tion mapping for LT q(|ξ1λ1|+|ξ2λ2(1+λ1)|q)
Γ(q+1) < 1. The continuity of f implies that

the operator z1 is continuous. Also, z1 is uniformly bounded on Br as

‖z1x‖ ≤
‖µ‖T q

Γ(q + 1)
.

Now we prove compactness of the operator z1. In view of (A1), we define

sup
(t,x)∈[0,T ]×Br

|f(t, x)| = f,

and consequently we have

‖(z1x)(t1)− (z1x)(t2)‖ = ‖
1

Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds

+

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds‖

≤
f

Γ(q + 1)
|2(t2 − t1)

q + t
q
1 − t

q
2|,

which is independent of x. Thus, z1 is equicontinuous. Using the fact that f

maps bounded subsets into relatively compact subsets, we see that z1(A)(t) is
relatively compact in X for every t, where A is a bounded subset of C. So, z1 is
relatively compact on Br. Hence, by the Arzela-Ascoli theorem, z1 is compact
on Br. Thus, all the assumptions of Theorem 4.2 are satisfied. So, the conclusion
of Theorem 4.2 implies that the boundary value problem (1.1) has at least one
solution on [0, T ]. �

Example 4.4. Consider the anti-periodic boundary value problem
{

cDqx(t) = 1
(t+9)2

|x|
1+|x| , t ∈ [0, 2π], 1 < q ≤ 2,

x(0) = 1
4x(2π) + µ1, x′(0) = 1

2x
′(2π) + µ2.

(4.1)

Here, f(t, x) = 1
(t+9)2

|x|
1+|x| , T = 2π, and µ1, µ2 are arbitrary elements of X. As

‖f(t, x)−f(t, y)‖ ≤ 1
81‖x−y‖, assumption (A1) is satisfied with L1 =

1
81 . Further,

LT q(1 + |ξ1λ1|+ |ξ2λ2(1 + λ1)|q)

Γ(q + 1)
=

1

243

(2π)q(4 + 5q)

Γ(q + 1)
< 1.

Thus, by Theorem 4.1, the boundary value problem (4.1) has a unique solution
on [0, 2π].

5. Discussion

In this paper, we have presented some existence and uniqueness results for
nonlinear fractional differential equations of order q ∈ (1, 2] with non-separated
boundary conditions. Our results give rise to various interesting situations. Some
of them are listed below:
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(i) The results for an anti-periodic boundary value problem of fractional
differential equations of order q ∈ (1, 2] follow as a special case by taking
λ1 = −1 = λ2, µ1 = 0 = µ2 in (1.1). In this case, the operator z :
C[0, T ] → C[0, T ] takes the form

(zx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, u(s))ds−

1

2

∫ T

0

(T − s)q−1

Γ(q)
f(s, u(s))ds

+
1

4
(T − 2t)

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s))ds, t ∈ [0, T ],

and Theorem 3.1 reduces to the corresponding result of [7].
(ii) For q = 2 we obtain new results for a second order boundary value prob-

lem with non-separated boundary conditions. In this case, the Green’s
function G(t, s) is

G(t, s) =











−λ1(λ2−1)(T−s)+λ2[λ1T+(1−λ1)t]
(λ1−1)(λ2−1) , 0 ≤ t < s ≤ T,

(λ1−1)(λ2−1)(t−s)−λ1(λ2−1)(T−s)+λ2[λ1T+(1−λ1)t]
(λ1−1)(λ2−1) , 0 ≤ s ≤ t ≤ T,

which takes the following form for the second order anti-periodic bound-
ary value problem (λ1 = −1 = λ2):

G(t, s) =







1
4(−T − 2t+ 2s), 0 ≤ t < s ≤ T,

1
4(−T + 2t− 2s), 0 ≤ s ≤ t ≤ T.

(iii) The results for an initial value problem of fractional order q ∈ (1, 2] can be
obtained by taking λ1 = 0 = λ2 in the present results with the operator
of the form

(zx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, u(s))ds + µ2t+ µ1.

These results correspond to the non-impulsive part of the results of [1].
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