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ON THE INTEGRAL OF log xdy
y − log y dx

x

OVER THE A-POLYNOMIAL CURVES

VU THE KHOI

Abstract. In this note, we study the integral of the 1-form log x dy

y
− log y dx

x

over certain plane curves defined by A-polynomials of knots. It is quite sur-
prising that a Chern-Simons type invariant of 3-manifolds, which can be geo-
metrically computed, may be used to get the exact values of those integrals.
The arithmetic nature of these integrals is still unknown at the moment and
deserved further investigation.

1. Introduction

The recent work of D. Boyd and F. Rodriguez-Villegas, [2, 3, 4], has shown a
relationship between the hyperbolic volume of 3-manifolds and the logarithmic
Mahler measure of 2-variable polynomials. The logarithmic Mahler measure of a
non-zero polynomial P ∈ Z[x1, · · · , xn] is defined as:

m(P ) =

∫ 1

0
· · ·

∫ 1

0
log |P (e2πiθ1 , · · · , e2πiθn)|dθ1 · · · dθn.

In particular, Boyd and Rodriguez-Villegas show that if P is the A-polynomial
associated to a knot then, in certain cases, πm(P ) equals the hyperbolic volume
of the knot complement. Consequently, by using a classical formula of Humbert,
they show that for arithmetic hyperbolic manifolds, up to multiplication by a
known constant, m(P ) equals the value of the Dedekind zeta function of a certain
imaginary quadratic extension.

The above results show the rich arithmetic nature of the hyperbolic volume.
It is a well-known philosophy due to W. Thurston that the volume and Chern-
Simons invariant of a hyperbolic 3-manifold correspond to the real and imagine
parts of a holomorphic function. Therefore, it is natural to expect that the
Chern-Simons invariant should give interesting arithmetic consequences.

In this short note, we show that a Chern-Simons type invariant gives us the
exact value of the integral of log xdy

y − log y dx
x over a certain path in the A-

polynomial curve. In the light of Thurston’s philosophy, this integral should be
related to a certain unknown imaginary counterpart of the Mahler measure.
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The paper is organized as follows, in the next section we will briefly review
the A-polynomials and then give an exposition on the Godbillon-Vey invariant,
a kind of Chern-Simons invariant, and a Schläfli-type formula for the Godbillon-
Vey invariant. The last section contains our main result, where we get the exact
values of the integral of the 1-form log xdy

y − log y dx
x over the real part of the

A-polynomials curve of certain hyperbolic knots.

2. The a-polynomials and the Godbillon-Vey invariant

Let X be a manifold whose boundary ∂X is a torus T. For example, if K ⊂ M
be a knot in a 3-manifold then X may be taken as M − η(K), where η(K) is
a tubular neighborhood of K. Let π1(X) be the fundamental group of X. The
fundamental group of ∂X, π1(T ) = Z⊕Z is called the peripheral subgroup. Two
simple, closed curves µ, λ on T which intersect in one point generate π1(T ) and
are called the meridian and longitude of X. The pair (π1(T ) ⊂ π1(X)) is a very
powerful invariant of X, however it is difficult to work with the group alone.
A classical way to study groups is to look at their representations into a linear
space.

For a 3-manifold group, the space of representations into SL(2,C) was first
systematically studied by Culler and Shalen [11] and has found spectacular ap-
plications in geometry and topology of 3-manifolds.

The SL(2,C) character variety of a knot complement X is defined by:

χ(X) = Hom(π1(X),SL(2,C))/ ∼ .

Here, we use the algebro-geometric quotient in which ρ, ρ′ ∈ Hom(π1(X),SL(2,C))
and ρ ∼ ρ′ if and only if tr(ρ(g)) = tr(ρ′(g)) for all g ∈ π1(X).

In general, the character variety is a affine algebraic set of high dimension and
therefore it is hard to work with directly. In [9], a more manageable algebraic set
is introduced by projecting χ(X) into C2 using the eigenvalues of the meridian
and longitude. This algebraic set is defined by a integral polynomial in two
variables.

More precisely, let i∗ : χ(X) → χ(∂X) be the restriction map induced by the
inclusion π1(∂X) → π1(X) and t : C∗ ×C∗ → χ(∂X) defined by associating to a
pair (x, y) a character ρ such that

ρ(µ) =

(
x 0
0 1/x

)
, and ρ(λ) =

(
y 0
0 1/y

)
.

Let Z be the union of all the connected component C of χ(X) such that i∗(C)
is 1-dimensional then the closure of t−1(i∗(Z)) ⊂ C × C is a plane curve. The
defining equation of this affine curve, up to multiplication by a non-zero constant,
is an integral polynomial AX(x, y) called the A-polynomial of X. Thus the A-
polynomial parameterizes the restriction of the character variety to the peripheral
subgroup.
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In general, the A-polynomial has a factor of (y − 1) which corresponds to the
abelian representations. Without ambiguity, we will take the A-polynomials to
be the normalized one by dividing out this factor.

In the following, we list some basic properties of the A-polynomials.

- The A-polynomial detects the unknot ([5, 12])
- Let X be the complement of a knot in a homology sphere, then AX(x, y)

involves only even power of x.
- The A-polynomial is reciprocal, i.e., AX(x, y) = AX(1/x, 1/y) up to some

power of x and y.
The reader can consult [5, 9, 10, 11, 12] for more details about character variety,

A-polynomial and their applications in topology.

We recall the notion of the Godbillon-Vey class of a codimension 1 foliation.
Let F be a codimension 1 foliation on a manifold M which is defined by a 1-form
τ. The Frobenius integrability condition asserts that there is a 1-form θ such that
dτ = θ ∧ τ. Godbillon and Vey [14] observe that the form θ ∧ dθ is closed and
that its cohomology class [θ ∧ dθ] ∈ H3(M ;R) depends only on the foliation F
and is a cobordism invariant of F .

Given an oriented closed 3-manifold M and a representation ρ : π1(M) −→
PSL(2,R), we can associate to ρ a flat connection on the principal PSL(2,R)

bundle over M , Pρ = M̃ ×ρ PSL(2,R). As PSL(2,R) acts on S1, the flat connec-

tion on Pρ induces a flat connection on the S1-bundle over M , Eρ = M̃ ×ρ S1.
Let F be the codimension-one foliation determined by the horizontal distribution
of the flat connection on Eρ and GV (F) be its Godbillon-Vey class. Under the
assumption that the Euler class of Eρ is torsion, Brooks-Goldman show that we
can obtain from GV (F), in a natural way, a 3-form on M. The Godbillon-Vey
invariant of ρ, denoted by GV (ρ), is defined to be the integral of this 3-form over
M.

The Seifert volume of a 3-manifold M , denoted by {M}, was first defined by
R. Brooks and W. Goldman in 1984 as follows:

{M} = max{ |GV (ρ)| | ρ : π1(M) −→ PSL(2,R), e(ρ) is torsion }.
For a Seifert fibered manifold, the Seifert volume can be computed from its Seifert
data as follows.

Let M −→ F be a closed Seifert fibered manifold over a surface F. If M −→ F
has r singular fibers then the Seifert data of M is given by

(g; (p1, q1), (p2, q2), · · · , (pr, qr)),

where g = genus (F ) and (pi, qi) are integers encoding the singular type of the ith

singular fiber. Define the Euler number and the Euler characteristic of M −→ F
respectively by

e(M −→ F ) = −
r∑

1

qi

pi
, χ(M −→ F ) = 2 − 2g −

r∑

1

p1 − 1

pi
.
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It is well-known that when e(M −→ F ) = 0 or χ(M −→ F ) ≥ 0 then M admits

one of the five Seifert fibered geometries other than the ˜SL(2,R) geometry. In
these cases, [8] shows that {M} = 0.

In the case that χ(M −→ F ) < 0 and e(M −→ F ) 6= 0 we know that M

admits the ˜SL(2,R) geometry. It follows from [8] that {M} equals the volume of
M in this geometry which is given by

(2.1)
4π2χ(M −→ F )2

|e(M −→ F )| .

For more details about the Seifert volume see [7, 8]. The main results of [15]
is the development of a cut-and-paste method for computing the Godbillon-Vey
invariant and Seifert volume. The cut-and-paste method is originated from gauge
theory (see [16, 17]). Its main steps consist of the followings:

- Interpret the Godbillon-Vey invariant of a representation as a kind of Chern-

Simons invariant associated to the universal covering group ˜SL(2,R).
- Define the Godbillon-Vey invariant on a manifold with boundary X by gauge-

fixing a normal form of the flat connection near ∂X.
- On X, we prove a formula which expresses the difference between the Godbillon-

Vey invariants of two representations in a family in terms of the boundary
holonomies.

- To apply the formula in the previous step to compute the Godbillon-Vey
invariant of surgery manifolds, for each representation ρ we have to find a path
which connects ρ|X to a a representation whose Godbillon-Vey invariant is already
known.

In this paper, we will need the following result.

Theorem 2.1. ([15], Theorem 5.1(c)) Suppose that At is a normal form purely
hyperbolic path of flat connections on a manifold with toral boundary X. Let

ρt : π1(X) −→ ˜SL(2,R), be the corresponding path of holonomies. Denote by µ
and λ the generators of π1(∂X) ∼= Z ⊕ Z. If ρt(µ) = (tanh a(t), kπ) and ρt(λ) =
(tanh b(t), lπ) then :

GV (ρ1) − GV (ρ0) = 4

∫ 1

0
(ȧb − aḃ)dt.

Some explanations about the terminology are needed here. The normal form
of a flat connection is a nice form of the connection near the torus boundary ob-
tained by using gauge transformation. A path of flat connections is called purely
hyperbolic if its boundary holonomies ρt(µ) and ρt(λ) are hyperbolic elements of

˜SL(2,R) for all t.

Here we work with the group ˜SL(2,R) instead of PSL(2,R) since ˜SL(2,R) is
simply connected and therefore we can trivialize all the principal bundle. The
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group ˜SL(2,R) can be described as ˜SL(2,R) = {(γ, ω)| |γ| < 1,−∞ < w < ∞}
with the group operation defined by: (γ, ω)(γ′, ω′) = (γ′′, ω′′) where

γ′′ = (γ + γ′e−2iω)(1 + γ̄γ′e−2iω)−1,(2.2)

ω′′ = ω + ω′ +
1

2i
log{(1 + γ̄γ′e−2iω)(1 + γγ̄′e2iω)−1}.(2.3)

Here log z is defined by its principal value. We then call an element of ˜SL(2,R)
elliptic, parabolic or hyperbolic if it covers an element of the corresponding type
in SL(2,R).

The ˜SL(2,R) character variety of a knot complement X is defined by

χ ˜SL(2,R)
(X) := Hom(π1(X), ˜SL(2,R))/ ˜SL(2,R).

As the knot complement X satisfies H2(X,Z) = 0, any PSL(2,R) representation

of π1(X) can be lifted to an ˜SL(2,R) representation. In fact, it was shown in [15]

section 6, that the ˜SL(2,R) character variety of a knot complement is basically a
periodic family of PSL(2,R) character variety which is part of the real component
of the A-polynomial curve. The reader should consult [15] for more details about
the Godbillon-Vey invariant and method to compute it.

3. Values of some logarithmic integrals

In this section we will consider some examples of 2-bridge knots whose excep-
tional Dehn surgeries yield Seifert fibered manifolds. We will find the Seifert vol-
ume of the surgery manifolds in two ways. On one hand the Seifert volume is com-
puted by the integral of log xdy

y − log y dx
x over certain paths of the A-polynomial

curve by using Theorem 2.1 above. On the other hand for a Seifert fibered

manifold M which admits the ˜SL(2,R)-geometry the Seifert volume equals the
geometric volume given by formula (2.1). Thus we get the value of the integrals.
The reader can consult [15] section 7 for a detail study of these examples. For
the results on Dehn surgeries see [1, 6].

Denote by Xp/q the result of p/q-surgery on a knot K ⊂ S3. To compute
the Godbillon-Vey invariant on Xp/q, we write Xp/q = X ∪ S, where X is the
knot complement and S is the solid torus. As [15] Corollary 6.2 tells us that
on the solid torus the Godbillon-Vey invariant vanishes, we only need to do the
computation on the knot complement X.

Figure eight knot The A-polynomial curve of the figure eight knot is

A(x, y) = y + y−1 − (x4 + x−4) + x2 + x−2 + 2.

Note that we write here the A-polynomial using negative power of x and y to
show the symmetric form of it.
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Computation in [15] shows that the image i∗(χ ˜SL(2,R)
(X)) in χ ˜SL(2,R)

(∂X) of

the character variety can be parameterized as follows:

ρ(µ) = (tanh a(s), kπ), k ∈ Z and ρ(λ) = (tanh b(s), 0),

where a(s) and b(s) are given by

cosh(2a) =
s2 + 3s + 3

2(s + 1)
and cosh(b) =

s4 + 5s3 + 7s2 + 4s + 2

2(s + 1)2
, s ≥ 0.

Note that the covering map ˜SL(2,R) → SL(2,R) sends ρ(µ) = (tanh a(s), kπ)

and ρ(λ) = (tanh b(s), 0) to

(
ea(s) 0

0 e−a(s)

)
and

(
eb(s) 0

0 e−b(s)

)
respectively.

Under this covering map, the curve i∗(χ ˜SL(2,R)
(X)) above corresponds to a

curve C lying in the real part of the A-polynomial curve A(x, y) = 0 (see figure

1 below for the plot of the curve C). Moreover the form (ȧb− aḃ)dt, in Theorem

2.1, descends to the form log y dx
x − log xdy

y on the A-polynomial curve.

Recall that a character ρ ∈ χ(X) extends to χ(Xp/q) if and only if ρ(pµ+qλ) =
1. Therefore, the points (x, y) on the A-polynomial curve such that xpyq = 1
correspond to the characters in χ(Xp/q).

It is well-known that 0-surgery on the figure eight knot gives a torus bundle.
As the torus bundle admits a self map of degree bigger than 1, it follows from
[8] that {X0} = 0. To find the points on the A-polynomial curve corresponding
to characters in χ(X0), we solve the equations A(x, y) = 0, y = 1. The result is

that there is a unique character ρ0 represented by the point P0 = (1+
√

5
2 , 1) on

the curve C in Figure 1.

1

2

3

4

5

y

1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
x

Figure 1. The curve C lying in the A-polynomial curve of the
figure eight knot
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(-1)- surgery. It is known that (-1)-surgery on the figure eight knot gives the

homology sphere Σ(2, 3, 7). This homology sphere carries the ˜SL(2,R) geometry

whose volume is computed to be 2π2

21 by using formula (2.1). The intersection
point between the curve C and the line y/x = 1 corresponds to a represen-
tation ρ1 of χ(Σ(2, 3, 7)). The coordinate of this point is P1 = (α,α), where
α ≈ 1.635573130.

Now using Theorem 2.1 we get:

GV (ρ1|X) − GV (ρ0|X) = 4

∫ α

1+
√

5

2

log y
dx

x
− log x

dy

y
,

where the integral is taken over the curve C from P0 to P1. We have noticed earlier
that the contribution from the solid torus is zero, hence GV (ρ1) = GV (ρ1|X).
On the other hand, since {X0} = 0, we find that GV (ρ0|X) = 0. Moreover, since

ρ1 is the unique character in χ(X−1), we get that {X−1} = |GV (ρ1)| = 2π2

21 .
Consequently, we obtained the identity:

∫ α

1+
√

5

2

log x
dy

y
− log y

dx

x
=

π2

42
.

(-2)-surgery. For (-2)-surgery , the resulting manifold is the Seifert fibered space
over S2 with three exceptional fibers of indices 2, 4 and 5. We find that X−2

admits the ˜SL(2,R) geometry with the volume equals π2

5 . The unique intersection

point between the curve C and the curve x−2y = 1 corresponds to a representation
of the surgery manifold. We compute this intersection point to be P2 = (β, β2)
where β ≈ 1.700015776. Arguing similarly as in the (-1)-surgery case, we get :

∫ β

1+
√

5

2

log x
dy

y
− log y

dx

x
=

π2

20
.

Here the integral is taken over the curve C from P0 to P2.
The 52 knot. This knot is the (7,3) 2-bridge knot and is indexed by 52 in the

knot table. Its A-polynomial is given by:

A(x, y) = 1+y(−1+2x2+2x4−x8+x10)+y2(x4−x6+2x10+2x12−x14)+y3x14.

Computation from [15] shows that in this case, the image i∗(χ ˜SL(2,R)
(X)) in

χ ˜SL(2,R)
(∂X) of the character variety consists of three parts. We only interest in

the following curve C in i∗(χ ˜SL(2,R)
(X)) since it contains characters which extend

to characters on the surgery manifolds:

ρ(µ) = (tanh a(s), kπ), a < 0, k ∈ Z and ρ(λ) = (tanh b(s), 0), b > 0.
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Here a(s) and b(s) are given by

cosh(2a) =
4s2 + 6s + 4 + 2

√
s2 + 4

8s

cosh(b) = 1 +
s5

4
+ s4 +

3s3

2
+

3s2

2
− (

s4

4
s3 + s2)

√
s2 + 4, s > 0.

We plot the curve C as part of the real part of the A-polynomial curve in Figure.
2 below.

0

1

2

3

4

5

y

-0.6 -0.4 -0.2 0.2 0.4 0.6
x

Figure 2. Part of the A-polynomial curve corresponds to the
curve C in the image i∗(χ ˜SL(2,R)

(X)).

We consider two surgery manifolds X1 and X2. It follows from the computation in
[15] that on each surgery manifold there is a unique character and both characters
have hyperbolic boundary holonomies. The intersection between the curve C and
the curve xy = 1 is the point Q1 = (α, 1/α), α ≈ 0.4474073272, which corresponds
to the representation ρ1 on X1. The intersection between the curve C and the
curve x2y = 1 is the point Q2 = (β, 1/β2), β ≈ 0.4845486882, which corresponds
to the representation ρ2 on X2.

It follows from [15] that X1 is the homology sphere Σ(2, 3, 11) and GV (ρ1|X) =

−50π2

33 and that X2 is the Seifert fibered space over S2 with three exceptional fibers

of indices 2, 4 and 7 and GV (ρ2|X) = −9π2

7 . Now, using Theorem 2.1, we get
the following identity

GV (ρ2|X) − GV (ρ1|X) = 4

∫ β

α
log y

dx

x
− log x

dy

y
= −9π2

7
+

50π2

33
=

53π2

231
.
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So we get the identity
∫ β

α
log x

dy

y
− log y

dx

x
= −53π2

924
.

Here the integral is taken over the curve C from Q1 to Q2.
Remarks and questions: 1) If the A-polynomial curve is of genus 0, then we

can integrate the 1-form log xdy
y − log y dx

x in terms of the dilogarithm function.

Unfortunately, all the knots that we consider here have the A-polynomial curves
of genus bigger than 1 and we do not know how to write this kind of integrals
in terms of the dilogarithm function. However we expect that one may do so

since the volume of ideal simplexes in the ˜SL(2,R) geometry can be expressed in
terms of the Roger dilogarithm function [13]. This would gives a new method for
producing dilogarithm identities.

2) In [3, 4], by writing the hyperbolic volume as sum of the Bloch-Wigner dilog-
arithms, the authors can express the Mahler’s measure in terms of Bloch-Wigner
dilogarithm. Our result here is in the same direction as [3, 4], but the paths over
which we integrate are in the real part of the A-polynomial curve whereas the
integrals appearing in the Mahler’s measure are taken over the imaginary part.

3) Using the method in [15] one can find the exact value of the Godbillon-Vey
invariant of a representation on any Seifert fibered manifold as a rational multiple
of π2. So whenever surgery on a knot gives a Seifert fibered manifold, one would
expect to find integration identity as we did above.

4) Can the value of the integrals above be predicted by results from number
theory?
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