ACTA MATHEMATICA VIETNAMICA 493
Volume 33, Number 3, 2008, pp. 493-518

ON TABULATING VIRTUAL STRINGS

ANDREW GIBSON

ABSTRACT. A virtual string can be defined as a closed curve on a surface
modulo certain equivalence relations. Turaev defined several invariants of
virtual strings which we use to produce a table of virtual strings up to 4
crossings. We discuss some progress in extending the tabulation to 5 crossings.
We also provide a counter-example to a statement of Kadokami.

1. INTRODUCTION

In [7] Kauffman introduced the idea of a virtual knot by use of diagrams on
the plane. A virtual knot diagram is an immersion of a circle in R? with a finite
number of self-intersections of the circle. Each self-intersection is a transverse
double point which we call a crossing. There are two types of crossings. A real
crossing is a crossing where one arc is specified to be over-crossing and the other
under-crossing. A virtual crossing is a crossing where no over or under crossing
information is specified. Each virtual crossing in a diagram is marked with a
small circle. Figure 1 shows an example of such a diagram. Virtual knots can
then be defined to be equivalence classes of these diagrams under a relation given
by a set of diagrammatic moves based on the Reidemeister moves.

FIGURE 1. A virtual knot diagram of a virtual knot known as
Kishino’s knot

Carter, Kamada and Saito showed that we can consider virtual knots as equiv-
alence classes of knot diagrams on compact oriented surfaces [1]. Here the knot

Received January 30, 2008; in revised form August 12, 2008.

2000 Mathematics Subject Classification. Primary 57M25; Secondary 57M99.

Key words and phrases. virtual strings, virtual knots.

This work was supported by a Scholarship from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

494 ANDREW GIBSON

diagrams only use real crossings. Knot diagrams are considered equivalent if they
are related by a finite sequence of Reidemeister moves or stable homeomorphisms
(which allow parts of the surface away from the knot to be changed).

If we take a knot diagram on a surface and flatten the crossings to double points
we get a curve on the surface. We can flatten the Reidemeister moves in the same
way. We can then define an equivalence relation on the flattened diagrams using
these flattened Reidemeister moves and stable homeomorphisms. We define a
virtual string to be an equivalence class under this relation. Definitions of the
moves and of stable homeomorphism will be given in the next section. Elsewhere
in the literature virtual strings are also known as projected virtual knots (for
example [6]), flat knots or flat virtual knots (for example [5]), or universes of
virtual knots (for example [1]).

It turns out that this ‘flattening’ operation on knot diagrams on surfaces in-
duces a well-defined map from the set of virtual knots to the set of virtual strings.
In other words, if D; and D5 are knot diagrams on surfaces in the same virtual
knot equivalence class, the flattened versions flat(D;) and flat(Ds) are in the
same virtual string equivalence class. Thus the virtual string underlying a vir-
tual knot is an invariant of that knot and invariants of virtual strings may be
used to distinguish virtual knots.

For a classical knot K it is always the case that the underlying virtual string
is trivial. On the other hand, consider the knot in Figure 1, which is known
as Kishino’s knot. It is known that this virtual knot is indistinguishable from
the trivial virtual knot using certain virtual knot invariants like the Jones poly-
nomial and the fundamental group. Kishino showed that it was non-trivial by
calculating the Jones polynomial of the 3-parallel of the knot [8]. Another way to
show its non-triviality is to show that its underlying virtual string is non-trivial.
Kadokami suggested this approach in [6]. Kadokami’s proof of non-triviality of
the underlying virtual string is based on another theorem in that paper for which
we found a problem with the proof (we discuss this problem in Section 8). Non-
triviality of the virtual string can be shown using Turaev’s primitive based matrix
invariant. Turaev gave the calculation of this invariant for this virtual string in
[10] although the connection with Kishino’s knot is not noted there.

The rest of the paper is organised as follows.

In the next section we give a full definition of virtual strings. In Section 3 we
explain another representation of virtual strings using Turaev’s nanowords. This
representation is useful for giving tables of virtual strings. In Section 4 we briefly
explain some invariants of virtual strings defined by Turaev in [10].

In Sections 5 and 6 we give some details of the algorithms we used for canon-
icalizing the representation of primitive based matrices and for the enumeration
of virtual strings. The main results of this paper appear in Section 7 where the
results of our enumeration are given. In the final section we discuss a statement
in a paper by Kadokami [6] and give a counter-example to it.

ON TABULATING VIRTUAL STRINGS 495

The contents of this paper form part of the author’s thesis submitted to fulfil
a requirement of the Master’s course at Tokyo Institute of Techonology.

2. VIRTUAL STRINGS

A wvirtual string surface diagram is a pair (S, D), where S is a compact oriented
surface and D is an immersion of an oriented circle in S. Self-intersections of the
immersion should be transverse double points. We call these self-intersections
crossings. In this paper, we only consider the case where the number of crossings
is finite. Figure 2 shows an example of such a pair. Here we consider the outer
region to be a disc, and so the surface S is compact and has genus 2.

C

FIGURE 2. A non-trivial virtual string with orientation marked
by an arrow. The point marked O and the crossing labels A, B
and C will be used in Section 3.

We say that two virtual string surface diagrams (S, D) and (S’, D’) are stably
homeomorphic if there is a homeomorphism mapping a regular neighbourhood
of D in S to a regular neighbourhood of D’ in S’ preserving the orientations of
the circle and the surface. Note that if we have two immersions D and D’ on
the same surface S such that D is isotopic to D’ as a graph, (S, D) and (S, D")
are stably homeomorphic. In this way we can consider isotopy of immersions as
a special case of stable homeomorphism.

Figure 3 gives some moves between two virtual string surface diagrams (S, D)
and (S, D’). Each side of each move shows a small area of S homeomorphic to
a disc. These moves are called flattened Reidemeister moves because they are
derived from the usual Reidemeister moves of knot theory (see, for example, [9]
for definitions) by flattening each crossing to a double point. We sometimes call
the flattened Reidemeister moves homotopy mowves.

496 ANDREW GIBSON

FIGURE 3. The flattened Reidemeister moves

We say two virtual string surface diagrams (S, D) and (S, D) are homotopic
if there exists a finite sequence of stable homeomorphisms and flattened Reide-
meister moves transforming one pair to the other. Clearly this relation is an
equivalence relation and we call it homotopy. This equivalence relation is also
known as stable equivalence [6]. We define a virtual string to be an equivalence
class of this relation.

For any move shown in Figure 3 we can consider variants of the move by
swapping the orientation of one or more arcs (and swapping the orientations of
the corresponding arcs on the other side of the move). It is well known that we
can derive all such variants from the moves shown in Figure 3. We showed how
we can do this in [3]. This gives us a larger set of moves. Any move in this set
which adds or removes a single crossing is called a 1-move. Any move in this set
which adds or removes two crossings is called a 2-move. All remaining moves in
the set involve three crossings and we call them 3-moves.

Virtual strings can be represented as planar diagrams which we call virtual
string diagrams. Given a virtual string surface diagram (S, D) we can project
D to a plane in such a way that any self-intersections of the image of D are
transverse double points and there are a finite number of them. Any crossings in
the image that correspond to crossings on S are called real crossings. Any other
crossings in the image are called virtual crossings. We mark a virtual crossing
with a small circle (see Figure 4). We can convert a planar diagram back to a
virtual string surface diagram by replacing any virtual crossings with handles.
Figure 5 shows this local transformation.

We can think of a virtual string diagram as a virtual knot diagram [7] where the
real crossings have been ‘flattened’ to double points, removing the over and under
crossing information. In the same way we can flatten the generalized Reidemeister
moves of virtual knot theory [7] to get moves for virtual string diagrams (see, for
example, [6]). We can define a relation on virtual string diagrams by saying

ON TABULATING VIRTUAL STRINGS 497

XX

FIGURE 4. A real crossing (left) and a virtual crossing (right)

FIGURE 5. Changing surface with a hollow handle (left) to a pla-
nar diagram with a virtual crossing (right)

that two virtual strings are related if there is a finite sequence of these flattened
moves tranforming one diagram to the other. This relation is an equivalence
relation. Following Carter, Kamada and Saito [1], Kadokami showed that the set
of virtual strings is equivalent to the set of equivalence classes of virtual string
diagrams under this equivalence relation [6]. This equivalence relation is also
called homotopy.

The crossing number of a virtual string surface diagram is the number of
crossings appearing in it. We define the minimal crossing number of a virtual
string surface diagram (.S, D) to be the minimum crossing number of all virtual
string surface diagrams that are homotopic to (S, D). Clearly this is a virtual
string invariant.

3. NANOWORDS

Turaev defined the concept of a nanoword in [12]. He showed how nanowords
can be used to represent virtual strings in [11]. In general we can use nanowords
to represent other kinds of objects such as virtual knots but in this paper we will
always use the term nanoword to mean a nanoword representing a virtual string.

A nanoword is a pair (w,7) where w is a Gauss word and 7 is a map from
the letters appearing in w to the set {a,b}. Recall that a Gauss word is a finite
sequence of letters where each letter that appears, appears exactly twice. We
follow Turaev and write | X| for m(X) for a letter X appearing in the Gauss word
w.

Given a virtual string surface diagram we construct a nanoword to represent
it. We first pick some non-double point as a base point and label all the crossings.
Starting at the base point we follow the curve according to its orientation. We
read off the label of each crossing as we pass through it, stopping when we get back
to the base point for the first time. The result is a Gauss word. For example,

498 ANDREW GIBSON

the Gauss word associated with the diagram in Figure 2 with base point O is
ABCBAC.

1st 2nd 2nd 1st

FIGURE 6. The two types of crossing

Because we have a base point, we can classify crossings into types depending
on the direction which the second arc going through the crossing crosses the first.
This is shown in Figure 6. In the diagram in Figure 2 the types of A and B are
a and the type of C is b. This defines a map 7 and we write |A| = |B| = a and
|C| =b.

The Gauss word and the map together give a nanoword representing the dia-
gram. We can write the nanoword compactly as ABC BAC :aab where the types
are listed in alphabetical order of the letters in the Gauss word. In other words
ABCBAC:aab = ABCBAC':|A||B||C|. Note that a virtual string surface dia-
gram with no double points has an empty Gauss word and the map 7 is a map
from the empty set to {a,b}. We write this nanoword compactly as 0.

An isomorphism between two nanowords (wi,71) and (we,72) is a bijection
i between the sets of letters appearing in w; and ws such that ¢ maps the nth
letter of w; to the nth letter of wq for all n and for each letter X in wq, m1(X) is
equal to mo(X). Informally, an isomorphism is just a relabelling of the crossings.

Turaev defined the following moves for nanowords. In these move descriptions,
the upper case letters A, B and C represent arbitrary individual letters. The
lower case letters x, y, z and t represent arbitrary sequences of letters such that
both sides of each move are Gauss words.

Shift move:
AxAy «— xzByB,

where A and B map to opposite types.

Homotopy move 1 (H1):
TAAy — zy,
where A maps to a or b.
Homotopy move 2 (H2):
rAByBAz «— xyz,
where A and B map to opposite types.

ON TABULATING VIRTUAL STRINGS 499

Homotopy move 3 (H3):
rAByACzBCt «—— xBAyCAzCBt,
where A, B and C all map to the same type.

Turaev derived some other moves from the moves H1, H2 and H3. We quote
the moves here. The proofs appear in Lemmas 3.2.1 and 3.2.2 in [12].

Homotopy move 3a (H3a)
rAByCAzBCt +— xBAyACzCBt,
where A and C' map to the same type and B maps to the opposite type.
Homotopy move 3b (H3b)
rAByCAzC Bt «+— xBAyACzBCH,
where A and B map to the same type and C maps to the opposite type.
Homotopy move 3¢ (H3c)
rtAByACzCBt «+—— xBAyCAzBC't,
where B and C' map to the same type and A maps to the opposite type.
Homotopy move 2a (H2a)
rABYyABz «—— xyz,
where A and B map to opposite types.

Remark 3.1. The set of homotopy moves on nanowords corresponds to the flat
Reidemeister moves and all possible variants of those moves derived by changing
orientations of arcs. See [3] for a detailed description of the correspondence
between these sets of moves.

As for moves on virtual string surface diagrams, we collectively refer to any of
the moves given above involving 1, 2 or 3 letters as 1-moves, 2-moves or 3-moves
respectively.

Two nanowords are said to be homotopic if there exists a finite sequence of
the moves H1, H2 and H3, shift moves and isotopies starting at one nanoword
and finishing at the other. This defines an equivalence relation called homotopy.
Turaev proved that there is a bijection between the equivalence classes of the set of
nanowords under this relation and the set of virtual strings [11]. In particular this
means that homotopy invariants of nanowords are invariants of virtual strings.

500 ANDREW GIBSON

4. INVARIANTS

In this section we briefly describe three invariants of virtual strings defined by
Turaev in [10], the u-polynomial, primitive based matrices and coverings.

In a given nanoword « we define the linking number of two distinct letters A
and B as follows. If A and B alternate in « (that is a has the form uAvBxAyBz
or uBvAxByAz) then A and B are said to be linked. In any other cases A
and B are said to be unlinked. When A and B are linked, we can use the shift
move to transform the nanoword « into the form uwAvBxzAyBz, where |A| is a.
Then, if |B| is a we say that B links A positively and if |B] is b we say that B
links A negatively. We define I(A, B) as 0 if A and B are unlinked, 1 if B links
A positively and —1 if B links A negatively. We define I(X, X) to be 0 for all
letters X in a.

Now for a letter X in o we define

n(X)=> I(X,)Y).

Yea

Next, for k an integer greater than or equal to one, we define
up(a) = #{X € aln(X) = k} — #{X € aln(X) =k},

where # indicates the number of elements in the set. We then define the u-
polynomial of « as
ua(t) = ug(a)th,
E>1
Turaev showed that the u-polynomial is a homotopy invariant of «.

The second invariant we consider is the primitive based matrix invariant.

Given a virtual string I', we pick a virtual string surface diagram (.S, D) which
represents it. We label the crossings appearing in (S, D) and define G to be the
set, of crossing labels union a special element s. For each element g in G we define
a curve which we denote g..

We define s. to be the whole curve in (S, D). Any other element g in G
corresponds to a crossing X, in (S,D). We can always orient the crossing so
that it appears as in the left of Figure 4. We then define g. to be a curve on S
parallel to the curve starting at X, leaving on the right hand outgoing arc, and
returning to X, on the right hand incoming arc.

We define a map b from G x G to Z by using the curves we have defined. We
define b(g, h) to be equal to the number of real crossings for which h. crosses g.
from right to left minus the number of real crossings for which k. crosses g. from
left to right. This is just the homological intersection number of g. with h.. By
the anti-symmetry in the definition it follows that b is skew-symmetric, that is
b(g,h) = —b(h,g) for all g and h in G. The based matriz of (S, D) is defined to
be the triple (G, s,b).

ON TABULATING VIRTUAL STRINGS 501

Two based matrices (G1,s1,b1) and (Ga, s2,b2) are said to be isomorphic if
there is a bijective map f from G; to G2 which maps s; to so and for which
b1(g,h) equals ba(f(g), f(h)) for all g and h in Gy.

Turaev defined some moves on based matrices which allow us to derive smaller
based matrices by removing one or two elements under specific conditions. A
based matrix for which no moves are available is called primitive. By applying
moves to the based matrix of virtual string surface diagram (S, D), we can derive
a primitive based matrix. Turaev proved that, up to isomorphism, this primi-
tive based matrix is a homotopy invariant of the virtual string I" which (S, D)
represents [10].

Any invariant of the primitive based matrix of a virtual string I' is thus an
invariant of I'. The simplest example of such an invariant is the size of the
primitive based matrix. None of the moves on based matrices allows us to remove
the special element s, and so all based matrices have size greater than or equal
to one. We define p(I") to be the size of the primitive based matrix of I minus 1.
In [10], Turaev suggested some other invariants of primitive based matrices.

Turaev showed that the primitive based matrix of a virtual string determines
the u-polynomial of the virtual string. In fact, the primitive based matrix invari-
ant is stronger than the u-polynomial. Turaev showed this in [10] and it can also
be seen in Section 7.

The third invariant we consider is a covering of a virtual string. For a nanoword
o and a positive integer 7 we construct a new nanoword (") by deleting all letters
X in o where n(X) is not equal to kr for some k in Z. We call a!") the r-covering
of a. In [10], Turaev showed that if «; and ag are homotopic nanowords then
ong) and ozg) must also be homotopic. This means that the r-covering of a virtual

string I' is well-defined and we write it as (). If o represents I', o) represents
).

Remark 4.1. When r is 1, I'®) is equal to T for all virtual strings I'. Thus in this
case the operation of covering is just the identity operation.

5. CANONICAL DESCRIPTION OF PRIMITIVE BASED MATRICES

To effectively use primitive based matrices as an invariant of virtual strings
we need an easy way to determine whether two primitive based matrices, P; and
P, of size n are isomorphic or not. In specific cases this may just be a simple
case of observing that P; contains some integer x which does not appear in Ps.
However, in general, a systematic approach will be more useful.

One such approach would consist of testing all (n — 1)! different bijections
between the sets associated with P; and P, that map the special element in P; to
the special element in P, to see whether we have an isomorphism. One downside
of this approach is that as n gets larger the number of bijections we have to
consider increases exponentially. Another downside is that we have to repeat the
process each time we want to compare P, to another based matrix.

502 ANDREW GIBSON

The approach we have adopted is to find a canonical description for each based
matrix. Two primitive based matrices are equivalent under isomorphism if and
only if their canonical descriptions are the same. This description is easy to
calculate by computer and two such descriptions are easy to compare even by
hand. This section explains how the canonical description is calculated.

Let B,, denote the set of equivalence classes of based matrices of size n under
isomorphism. We will define an injective map ¢ from B,, to Z* where k is %n(n —
1).

For a based matrix (G, s,b), we can pick an ordering of the elements of G
and then write b as a skew-symmetric matrix. When we write b in this way, by
convention we always pick the special element s to be first in the ordering. Thus
any based matrix can be written as a skew-symmetric matrix in up to (n — 1)!
different ways.

We can define a map 6 from the set of n by n skew-symmetric matrices S,, to
ZF as follows. Given a skew-symmetric matrix A with entries a; ; we map A to
the k-tuple

(@2,1,a3,1,--.,0n,1,032,042,..,0n,2, 043, 0nn—1)

where we have listed the entries in the lower left triangular area, below the main
diagonal. We list the entries in each column from top to bottom, starting from
the left column. For example, if M is the skew-symmetric matrix

0o -1 2 -1
1 0 2 0
-2 -2 0 -1}
1 0 1 0

then (M) is (1,-2,1,-2,0,1).

Note that given an element p in ZF we can use skew-symmetry to construct a
unique skew-symmetric matrix A such that 6(A) is p. It is then easy to see that
0 is a bijection.

Standard numerical order on Z induces an order on ZF as follows. Assume p
and q are different elements in Z*. We write p as (p1,...,px) and g as (q1, . . ., qx).
We say p is less than ¢ if there exists some 7 less than or equal to k such that p;
is less than ¢; and for all j less than 4, p; and g; are equal.

To get a canonical description of a based matrix we could just consider all
(n—1)! associated skew-symmetric matrices, take 6 of each matrix and then take
the minimal value in Z¥. However, this means that we must consider (n — 1)!
matrices for each based matrix. We take a different approach which, at the cost
of some complexity, tries to reduce the number of matrices we have to consider.
Of course, the canonical description we output depends on the approach that we
take.

Our strategy is to break up the elements of the set associated with the based
matrix P into equivalence classes, invariant under isomorphism, and then order

ON TABULATING VIRTUAL STRINGS 503

those equivalence classes in a way that is also invariant under isomorphism. Then
we consider all possible permutations of elements within each equivalence class
for all of the equivalence classes. If there are [such classes and the numbers of
elements in each class are given by nq,ns9,...,n; then the total number of cases

we consider is
l
[T
i=1

which is bounded above by (n—1)!. In each case we get a skew-symmetric matrix
A and we can calculate §(A). We then take the minimal value of 0(A) in ZF over
all the cases and set this to be ¢(P). As the equivalence classes and the order
on them are invariant under isomorphism and we take the minimal value over all
possible cases, it is clear that ¢(P) is injective. That is, if ¢(P;) equals ¢(P),
P, and P, must be isomorphic as based matrices.

We note that in the best case we may end up with equivalence classes each
only containing a single element. In the worst case we may just have a single
equivalence class containing all the elements.

We now define an equivalence relation on the elements in the set associated
with a based matrix (G, s,b). As by convention the element s always comes first
in the matrix we just need to consider the other elements.

We use two properties of an element g in G which are invariant under isomor-
phism. The first property is simply the value b(g, s). Considering an isomorphism
f from (G, s,b) to (G',s',V'), we have

b(g,s) =V (f(9), f(s)) =V (f(9),5),
which shows invariance under isomorphism.

The second is a map my from Z to Zx>q. It is defined as follows

my(i) = #{h € G —{s}|b(g, h) = i}
where # indicates the number of elements in the set. We check how m, behaves
under the isomorphism f defined above. As f is a bijection, for each h in G'—{s'}
there exists exactly one k in G — {s} such that f(k) is h. By the definition of
isomorphism we also have b(g, k) = b'(f(g), f(k)). Putting these together we get
myg) (i) =#{h € G' = {'HV'(f(9), h) = i}

=#{k € G — {s}V'(f(g), f(k)) = i}

=#{k € G —{s}|b(g, k) = i}

=myg(i).
This shows that mg is invariant under isomorphism.

We note there are a finite number of non-zero values of mgy(i). Say there are [

of them. Then we can represent mg as [pairs of the form (i,m4(7)). We use the

first element in each pair to sort the pairs so that 7 increases as we go through the
list. By concatenating the pairs into a 2[-tuple we can summarise m, uniquely.

504 ANDREW GIBSON

As an example, suppose my(2) = 1, my(—1) = 2, my(0) = 3 and mgy(i) = 0
for all other values of 7. Then just considering the non-zero values we get the
pairs (2,1), (—1,2) and (0,3). Sorting these we get (—1,2), (0,3) and (2,1).
Concatenating gives the 6-tuple (—1,2,0,3,2,1).

If p = (p;) is a k-tuple and g = (¢;) is an [-tuple, we say p is less than g if there
exists a j such that p; is less than ¢; and p; equals g; for all 7 less than j, or p;
equals ¢; for all i less than or equal to k and k is less than [. We can then define
an ordering on the maps m, by saying my is less than my, if the tuple associated
with my is less than the tuple associated with my,.

We define our equivalence relation on G — {s} by saying that g and h are
equivalent if and only if b(g, s) is equal to b(h,s) and mg(i) is equal to my (i) for
all i. We write [g] for the equivalence class of g under this relation. We can then
define an ordering on the equivalence classes in G — {s} by saying that [g] is less
than [h] if b(g, s) is less than b(h, s), or if b(g, s) is equal to b(h,s) and my is less
than my,.

To conclude this section we calculate ¢ of a based matrix as an example.

Example 5.1. Let (G, s,b) be a based matrix, where G is {s, A, B,C} and the
table

s A B C
s 0 -1 2 -1
A 1 0o 2 0
B -2 -2 0 -1
c 1 0O 1 0

defines b.

As b(B,s) is —2 and b(A, s) and b(C, s) are both 1, B is in a different equiva-
lence class to A and C'. In particular [B] is less than [A] and [C].

The map my4 is given by ma(0) = 2, ma(2) = 1 and ma(i) = 0 for all
other . We summarise this as the 4-tuple (0,2,2,1). The map m¢ is given by
mc(0) =2, me(1) =1 and m4(i) = 0 for all other i. We summarise this as the
4-tuple (0,2,1,1). Comparing the two tuples we see that the one for C is less
than the one for A and so [C] is less than [A].

In this case we are able to order the letters completely. The order we get is s,
B, C, A. The corresponding matrix is

0 2 -1 -1
-2 0 -1 -2
11 0 0|
12 0 0

and so ¢((G,s,b)) is (—2,1,1,1,2,0).

ON TABULATING VIRTUAL STRINGS 505

6. ALGORITHM FOR ENUMERATION

For any given non-negative integer n our aim is to enumerate all distinct virtual
strings with minimal crossing number equal to n. We give an algorithm to do this
by using nanowords. Before explaining the algorithm we make some definitions.

An alphabet A is a finite ordered set. We call the elements of A letters. We
call the ordering on A alphabetical order. For use in examples below we define B
to be the 3 letter alphabet {A, B, C'} with the standard alphabetical order.

A Gauss word on an alphabet A is a sequence of letters in A where each letter
of A appears exactly twice. If A has n letters, a Gauss word on 4 necessarily
has 2n letters. For example, BBAA and CACBCA are not Gauss words on B,
but BCACBA is.

Note that the ordering on 4 induces an ordering on Gauss words on 4. Given
two Gauss words on A, v and v, we compare initial sequences of letters in the
words until we find the first pair of letters that differ. The order of u and v are
determined by the order of the differing letters. If there is no such differing pair,
u and v are the same Gauss word. As with the ordering on the letters in A, we
call this ordering on Gauss words alphabetical order. As an example, BCACBA
comes before BOCCABA and after BCACAB in the alphabetical order induced
by B.

Two Gauss words w and x on A are said to be isomorphic if there exists a
bijection f from A to itself such that x is the result of applying f letterwise to
w. For example C BAAC B is isomorphic to ABCCAB by the bijection mapping
C to A, B to B and A to C. It is clear that isomorphism defines an equivalence
relation on the set of Gauss words on a fixed alphabet A.

We say that a Gauss word w on A is increasing if the first occurence of each
letter of A in w appears in alphabetical order. For example, on B the Gauss word
ABACBC is increasing and the Gauss word CACBAB is not.

Lemma 6.1. Given an alphabet A, every Gauss word on A is isomorphic to an
increasing Gauss word on A.

Proof. Assume A has n letters. We write N for the set {1,2,...,n}. Then the
order on A gives a bijection o which maps N to A. For example, for B, o(1) = A,
0(2) = B and o(3) = C.

Given a Gauss word w on A, we can define a map p from N to A by defining
p(i) to be the ith new letter in w. For example, with B as above, p for the Gauss
word CACBAB is given by p(1) = C, p(2) = A and p(3) = B.

As a Gauss word on A contains all letters in A, p must be surjective. As p(i)
is the ith new letter in the Gauss word, p(i) = p(j) implies i« = j and so p is
injective. Thus p is bijective.

We define a map f from A to A by setting

F(X) = o(p™ (X))

506 ANDREW GIBSON

As o and p are bijections, so is f. We can thus apply f letterwise to the Gauss
word w to get an isomorphic Gauss word w’. In w’ the ith new letter will be

F(p(@) = o(p™ " (p(i))) = o(i).
Thus the first occurence of each letter in w’ appears in alphabetical order and so
w' is increasing. O

A nanoword on A is a Gauss word on A with a map from A to {a,b}. By
Lemma 6.1 we need only deal with nanowords that have increasing Gauss words.
Whenever we apply a shift move or a homotopy move to a nanoword « to get
a nanoword J that does not have an increasing Gauss word, we can apply an
isomorphism to to get a nanoword with an increasing Gauss word.

As A contains a finite number of letters, the set of nanowords on A up to
isomorphism is finite. We give an explicit calculation of its size here. If A has n
letters, the number of different Gauss words on A is given by

(2n)!
on
We note that each equivalence class of Gauss words on A under isomorphism
contains n! words. This is because the order of the first occurence of each letter
of A in the Gauss word determines the Gauss word within the equivalence class.
Thus the number of increasing Gauss words on A is
(2n)!
nl2n’
The number of nanowords on A with a given Gauss word is equal to the number
of maps from A to {a,b}. This is just 2". Thus the total number of nanowords

on A with increasing Gauss words, and thus the total number of nanowords on
A up to isomorphism is

(2n)!

n!
We define the $-class of a nanoword a as the equivalence class under shift
moves and 3-moves. We write [a], for the 3-class of a.

A type word is a sequence of letters in the set {a,b}. By defining a to be less
than b, we can define an order on type words in the same way as we defined an
order on Gauss words. Given a nanoword « on A, we consider each letter of A
in alphabetical order. For each letter we write the type of that letter in a. The
concatenation of the resultant sequence of letters is defined to be the type word of
a nanoword « on A. For example, the type word of the nanoword ABACBC :aab
on B is aab.

We define an order on nanowords on A in the following way. We say that «
is less than (if its Gauss word is less than that of 3, or if the Gauss words of «
and [are equal and the type word of « is less than that of 3. So, for example,
ABACBC :bba is less than ABC BCA:aab but greater than ABACBC :aab.

ON TABULATING VIRTUAL STRINGS 507

We say that a nanoword « is alphabetically minimal in [o]4 if there does not
exist a nanoword [less than « such that [§], is equal to [a]5.

We say that a nanoword is reducible if there exists a crossing reducing 1-move
or 2-move which can be applied to the nanoword. We say that the 3-class of a
nanoword « is reducible if there exists a reducible nanoword [such that [3]4 is
equal to [a]5. A nanoword or a 3-class is irreducible if it is not reducible.

To generate all the virtual string candidates with n crossings we first pick some
ordered set of n elements A. We could just use the set of integers from 1 to n.
However, to display the nanowords in compact form it is useful to be able to
represent each letter in the alphabet with a single character. Thus, when n is less
than or equal to 26, we use the initial n letters of the 26 letter English alphabet
and inherit the usual ordering.

The generating algorithm works in the following way:
1. Enumerate all increasing Gauss words on A.

2. For each Gauss word in the list we consider all possible assignments of the
crossing types a and b to the n letters. This gives us 2" possible nanowords for
each Gauss word.

3. For each nanoword « in the list, we generate the set of elements in equiva-
lence class of o under shift and 3-moves.

4. If « is not alphabetically minimal in the equivalence class, we discard « and
then consider the next nanoword in the list.

5. If any nanoword in the equivalence class is reducible, we discard « and then
consider the next nanoword in the list.

6. Add « to the list of virtual string candidates and then consider the next
nanoword in the list.

We note that Step 4 is required to prevent duplicates appearing in the list.
Step 5 is required to check for minimality of the crossing number. If o is homo-
topic to a reducible n letter nanoword 3 then « is homotopic to some nanoword
3 with less than n crossings. Thus the minimal crossing number of the virtual
string represented by « is less than n.

We note that there are ways to optimise the algorithm. We consider two simple
ways here.

Firstly we can reduce the number of nanowords that we have to consider. Let
w be a Gauss word of the form yX Xz for some letter X and some (possibly
empty) sequences of letters y and z. When we derive a nanoword « from w by
assigning crossing types, no matter whether we assign type a or type b to X, «
will be reducible by a 1-move. We can either avoid generating such Gauss words,
or eliminate them as they are generated during Step 1.

Secondly we can make the checks in Step 4 and Step 5 as we generate the set
of elements in the equivalence class of a nanoword « in Step 3. If we generate a

508 ANDREW GIBSON

nanoword [that is alphabetically less than « or is reducible, we can discard «
straight away. There is no need to continue calculating the 3-class.

Once we have a list of virtual string candidates for minimal crossing number n
we need to determine whether they are distinct from each other and whether they
are distinct from virtual string candidates of smaller minimal crossing number.
One approach is to use virtual string invariants and we consider this in the next
section.

7. RESULTS OF ENUMERATION

It is clear that there is a unique virtual string with 0 crossings. Methodical
examination of nanowords of 1 and 2 letters shows that they are all homotopic
to the trivial nanoword. Thus there are no virtual strings with minimum cross-
ing number of 1 or 2. For 3 letters we use the algorithm to get the following
two nanowords ABACBC:aab and ABACBC:abb. We can calculate the u-
polynomials of these nanowords. For the trivial virtual string the u-polynomial
is 0. For ABACBC':aab, the u-polynomial is 2t — t>. For ABACBC':abb, the u-
polynomial is ¢2—2¢. Thus these three nanowords are all mutually non-homotopic.
Thus the number of virtual strings with minimum crossing number 3 is 2. Turaev
has already pointed out this fact in [10].

When we consider virtual strings with minimum crossing number of 4 we find
examples of strings that cannot be distinguished by the u-polynomial alone. For
example, the nanowords ABACBDCD :abab and ABCADCBD :aaab have u-
polynomial 0 which is the same as the trivial virtual string. However, the primi-
tive based matrices of these two nanowords are different to each other and differ-
ent to the primitive based matrix of the trivial virtual string. This implies that
the virtual strings they represent are all distinct.

For minimum crossing number of 4 we used a computer to find 26 virtual string
candidates. We can show that these are all distinct from each other and from
the 3 virtual strings of lower minimum crossing number by using primitive based
matrices. We show the results in Table 1. As far as we are aware, the total of
26 for minimum crossing number of 4 was previously unknown. We summarise
the number of distinct virtual strings for minimum crossing number of 4 or less
in Table 2.

We can calculate the coverings of the virtual strings in Table 1. All of the
virtual strings in the table except for one have trivial r-coverings for all r other
than 1. The exception is 496 which is fixed under 2-covering. For r not 1 or 2 its
r-coverings are also trivial.

Given a virtual string surface diagram (S, D), we can define a virtual string
surface diagram (—S, D) where —S is S with the orientation reversed. We can
think of (=S, D) as a mirror image of (S, D). It is easy to see that if (S1,D;)
and (S92, Dy) are homotopic virtual string surface diagrams then (—Si, Dy) is
homotopic to (—S3, D2). Thus, for a virtual string I' represented by a virtual

ON TABULATING VIRTUAL STRINGS

509

ID Nanoword u(t) p Based matrix

0, 0 0 0 0

31 ABACBC:aab —t24+2t |3 -2,1,1,1,2,0

39 ABACBC:abb 2 — 2t 3 -1,-1,2,0,2,1

4; | ABABCDCD:aaaa 0 4(-1,-1,1,1,0,1,0,0,1,0
45 | ABABCDCD:aabb 0 41-1,-1,1,1,-1,1,1,1,1,1
43 | ABABCDCD:bbbb 0 41 —-1,-1,1,1,0,1,2,2,1,0
4, | ABACBDCD:aaaa 0 4| -=1,0,0,1,1,1,0,—1,1,1
45 | ABACBDCD:aaab 242t |4 -=2,0,1,1,1,2,1,1,1,1

4¢ | ABACBDCD:aaba —t2 42t |4 -=2,0,1,1,2,1,1,1,0,0

47 | ABACBDCD:abaa 2 — 2t 4| —-1,-1,0,2,0,0,1,1,1,2
4g | ABACBDCD:abab 0 4 1 0, 0 1 1 1,1,0,0,0

49 | ABACBDCD:abba 0 4 2 -1,1,2,0,1,3,0,1,0
419 | ABACBDCD:abbb 2 _ 9ot 4 -1,0,2,-1,0,2,0,1,1
411 | ABACBDCD:baaa — 2t 4 -1,0,2,-1,1,2,1,1,1
415 | ABACBDCD:baab 0 4 2, -1,1, ,1,2,1,2,2,1
4,5 | ABACBDCD:baba 0 4| -1,0,0,1,0,0,1,0,1,1

414 | ABACBDCD:babb t2 — 2t 4| -1,-1,0,2,0,1,2,0,2,0
415 | ABACBDCD:bbab | —t2 42t |4 2,0,1,1,0,2,2,1,0,0

46 | ABACBDCD:bbba | —t2+2t |4 2,0,1,1,1,2,1,0,0,1

4,7 | ABACBDCD:bbbb 0 4 1,0,0,1,0,0,2,1,0,0

415 | ABACDBCD:aabb | —t3 +t2 41t | 4 3,0,1,2,2,1,3,0,1,0

419 | ABACDBCD:abbb | #3—¢t2—¢t |4] —2,-1,0,3,0,1,3,0,1,2
490 | ABACDBCD:baaa | t>—t>—¢t |4| —2,—-1,0,3,1,1,2,1,3,1
491 | ABACDBCD:bbaa | —t34+¢2+t | 4| -3,0,1,2,1,3,2,1,1,1

499 | ABACDBDC:aabb 343t |4 -3,1,1,1,1,2,3,0,0,0

493 | ABACDBDC:abbb — 3t 41|-1,-1,-1,3,0,0,3,0,2,1
49, | ABCADBCD:aaab | —t3 +2t2 —¢ | 4| —3,-1,2,2,1,2,3,1,2,0
495 | ABCADBCD:abbb | 3 —2t2+t |4| —2,-2,1,3,0,2,3,1,2,1
496 | ABCADCBD:aaab 0 4| —2,-2,2,2,0,2,3,1,2,0

TABLE 1. Virtual strings up to 4 crossings

Crossings | Number
0 1
1 0
2 0
3 2
4 26

TABLE 2. Numbers of virtual strings

string surface diagram (S, D), we can define the mirror of I' to be the virtual

510 ANDREW GIBSON

string represented by (—S, D). We write this virtual string I'. As swapping the
orientation on a surface twice gets us back to the original surface, this reflection

operation is an involution. Thus T is I

Similarly, given a virtual string surface diagram (S, D), we write —D to denote
D with its orientation reversed. We then define (S, —D) to be the inverse of
(S, D). Again, this operation is well-defined under homotopy. Thus, for a virtual
string I represented by (.S, D), we can define the inverse of I', —I", to be the virtual
string represented by (S, —D). As the inverse of (S, —D) is (S,D), —(-TI') is I.

The two operations, reflection and inversion, are commutative. We can com-
pose these two operations to get the mirror inverse of I', written —I".

Given a nanoword « representing a virtual string I' it is easy to calculate
nanowords representing —I', T' and —I'. Swapping the type of each letter in «
derives a new nanoword swap(a) which represents I'. We define —a to be the
nanoword given by reversing the order of the letters in the Gauss word of «
and swapping the types of the letters. Then —a« represents —I' and — swap(«)
represents —T.

Usually, when tables of classical knots are given, reflections and inversions of
knots are considered to be the same knot type. It is therefore natural to define
an unoriented equivalence of virtual strings where I', —I", T and —I are consid-
ered to be the same. Table 3 lists distinct virtual strings under this unoriented
equivalence and indicates which virtual strings from Table 1 are derived under
the operations of reflection, inversion and reflected inversion. Under this kind
of equivalence there is 1 virtual string with no crossings, 1 virtual string with
minimal crossing number 3 and 11 virtual strings with minimal crossing number

4.

We note that the homotopy types of some virtual strings are unchanged under
some operations. We call a virtual string I' invertible if I" is homotopic to —I" and
noninvertible if it is not. We call a virtual string I' amphicheiral if T' is homotopic
to I or —I and chiral if it is not. A virtual string I" which is homotopic to T is
called positive amphicheiral (sometimes written +amphicheiral). A virtual string
I' which is homotopic to —I is called negative amphicheiral (sometimes written
—amphicheiral). If a virtual string I" is amphicheiral and invertible we call it fully
amphicheiral.

We can thus classify virtual strings into five different types depending on their
behaviour under the three operations, reflection, inversion and reflected inversion.
This classification is summarised in Table 4. Note that the list is complete because
if two different operations do not change the homotopy type of the virtual string,
the third operation cannot either. We remark that symmetries of classical knots
also can be classified into five different types depending on whether the knot is
equivalent or not to its mirror image, inversion or the mirror image of its inversion.
This is discussed in a paper by Hoste, Thistlethwaite and Weeks [4]. We have

ON TABULATING VIRTUAL STRINGS 511

Virtual String | Mirror | Inverse | Mirror-Inverse | Symmetry Type

0 = = = a
31 = 39 39 +
44 43 43 = —
49 = = = a
44 417 417 = -
45 416 410 411 ¢
4 415 414 47 ¢
4s 413 = 413 i
49 419 419 = -
418 491 420 419 c
499 = 493 4o3 +
494 = 45 do5 +
426 = = = a

TABLE 3. Virtual strings under reflection and inversion. Here ‘=’
means the homotopy type of the virtual string is unchanged by
the operation.

used their terminology to describe these symmetry types and Table 4 is based on
a table from their paper.

Virtual strings of all five types do actually exist. The final column in Table 3
indicates the type of each virtual string.

Type | Unchanged Under Description
c None Chiral, noninvertible
i Inversion only Chiral, invertible
+ | Reflection only +Amphicheiral, noninvertible
— | Inverted reflection only | —Amphicheiral, noninvertible
a | Al Amphicheiral, invertible

TABLE 4. Classification of virtual strings by their behaviour under
reflection, inversion and reflected inversion.

When we consider virtual strings with minimum crossing number of 5, primitive
based matrices are no longer enough to distinguish distinct virtual strings. We
now give an example of a pair of virtual strings having minimum crossing number
5 which cannot be distinguished by their primitive based matrices. We show that
they are different by considering their 2-coverings.

We write « for the the nanoword ABACBDEDCE:baabb and 3 for the
nanoword ABACDECDBE :bbaaa. The primitive based matrices for these two
nanowords are isomorphic. As the u-polynomial is derived from the primitive
based matrix, the u-polynomials for o and § are equal. In fact, uq(t) = ug(t) = 0.

512 ANDREW GIBSON

We will now calculate the 2-covering of o and (. In each case we will remove
letters X for which n(X) is odd.

For o we have n(4) = —1, n(B) = 2, n(C) = =2, n(D) = 1 and n(£) = 0.
We remove the letters A and D to get BOBECE:aab which represents o). Tt
is then easy to calculate that the u-polynomial of a® is —t2 + 2¢. Thus a(® is
non-trivial. In fact, since the nanoword we obtained only has 3 letters we can use
Table 1 to identify a(? as the virtual string 3;.

For 8 we have n(A) = 1, n(B) = —2, n(C) = 2, n(D) = 0 and n(E) = —1.
We remove the letters A and F to get BCDCDB:baa which represents 5.
Calculating the u-polynomial of), we find that it is 0. Using Table 1 it is clear
B2 is trivial. Thus a(? and 8@ are not homotopic and this implies that o and
(G are not homotopic either.

Nanoword Based matrix 2-covering
ABACBDECDE:abbbb | —2,-1,0,1,2,-1,1,1,3,1,0,1,0,1,0 0
ABACDECEBD:aaaba | —2,-1,0,1,2,—-1,1,1,3,1,0,1,0,1,0 39
ABACBDEDCE:aaaab | —2,-1,0,1,2,0,1,1,3,0,0,1,1,1, -1 31
ABACDECDBE:aabbb | —2,-1,0,1,2,0,1,1,3,0,0,1,1,1, -1 0
ABACBDEDCE:baabb | —2,-1,0,1,2,1,1,2,1,1,2,2,0,1,2 31
ABACDECDBE:bbaaa | —2,—1,0,1,2,1,1,2,1,1,2,2,0,1,2 0
ABACBDECDE:baaaa | —2,-1,0,1,2,2,1,2,1,0,2,2,1,1,1 0
ABACDECEBD:baabb | —2,-1,0,1,2,2,1,2,1,0,2,2,1,1,1 39

TABLE 5. Pairs of virtual strings with 5 crossings that can be
distinguished by coverings but not by their primitive based ma-
trices.

In fact, for virtual strings of 5 crossings, including the example given above,
there are four pairs of virtual strings which have the same primitive based ma-
trices but can be distinguished by coverings. We list them in Table 5.

In our enumeration of virtual strings with 5 crossings we discovered 8 pairs
and a triplet of nanowords which cannot be distinguished by the u-polynomial,
primitive based matrices or coverings. We list these nanowords in Table 6. All
the nanowords in the list have trivial u-polynomial and trivial r-covering for any
r other than 1. Of course, it is possible that each pair or triplet of nanowords are
actually homotopic to each other, in which case it would be no surprise that their
invariants are identical. However, we have not yet found a sequence of homotopy
moves relating any pair of nanowords in the list. It is also possible that there
is another invariant we can use to distinguish the nanowords. For example, we

ON TABULATING VIRTUAL STRINGS

Nanoword p Based matrix
ABABCDCD:aabb 4 -1,-1,1,1,-1,1,1,1,1,1
ABABCDCEDE:bbaba | 4 -1,-1,1,1,-1,1,1,1,1,1
ABABCDCEDE:aabab | 4 -1,-1,1,1,-1,1,1,1,1,1
ABABCDCD:aaaa 4 -1,-1,1,1,0,1,0,0,1,0
ABABCDCEDE:aaaba | 4 -1,-1,1,1,0,1,0,0,1,0
ABABCDCD:bbbb | 4 ~1,-1,1,1,0,1,2,2,1,0
ABABCDCEDE:bbbab | 4 ~1,-1,1,1,0,1,2,2,1,0
ABACBDCD:bbbb 4 -1,0,0,1,0,0,2,1,0,0
ABACBDCEDE:babab | 4 -1,0,0,1,0,0,2,1,0,0
ABACBDCD:aaaa 4 -1,0,0,1,1,1,0,—-1,1,1
ABACBDCEDE:ababa | 4 -1,0,0,1,1,1,0,—-1,1,1
ABACBDCD:abba 4 -2,-1,1,2,0,1,3,0,1,0
ABCADBECDE:bbbbb | 4 -2,-1,1,2,0,1,3,0,1,0
ABACBDCD:baab | 4 —2,-1,1,2,1,2,1,2,2,1
ABCADBECDE:aaaaa | 4 -2,-1,1,2,1,2,1,2,2,1
ABACDBDECE:abbab | 5| -1,-1,0,1,1,-1,0,1,1,0,1,1,1,1,1
ABACDBECED:ababb | 5 | -1,-1,0,1,1,-1,0,1,1,0,1,1,1,1,1
ABACDBDECE:abaab | 5| —-1,—-1,0,1,1,—-1,1,1,1,1,1,1,0,0, 1
ABACDBECED:babaa | 5 | —-1,—-1,0,1,1,—-1,1,1,1,1,1,1,0,0, 1

TABLE 6. Groups of nanowords with 5 letters that cannot be dis-
tinguished by primitive based matrices or coverings. It is an open
question as to whether they are homotopic to each other within

each group.

513

have not considered the invariants derived from Weyl algebras defined by Fenn

and Turaev in [2].

8. KADOKAMI'S STATEMENT

We defined a virtual string surface diagram as an oriented circle immersed
in a surface with self-intersections limited to transverse double points. We can
generalize this definition by allowing multiple oriented circles to be immersed
in the plane. For a natural number n we define an n-component virtual string
surface diagram to be a pair (S, D) where S is a surface and D is the immersion
of n oriented circles immersed in S with self-intersections limited to transverse

514 ANDREW GIBSON

double points. In this section we just consider virtual string surface diagrams
with a finite number of double points. As before we can define an equivalence
relation on such diagrams by stable homeomorphisms and homotopy moves. We
define an n-component virtual string to be an equivalence class of such diagrams
under this equivalence relation. Note that, since applying stable homeomorphisms
or homotopy moves to an n-component virtual string surface diagram does not
change the number of components, the number of components is invariant under
this equivalence relation.

We note that, just as for the single component case, we can also define n-
component virtual strings via planar diagrams of n curves where virtual cross-
ings are permitted. There is also a representation for n-component virtual string
diagrams which corresponds to the nanoword representation. Details of this rep-
resentation can be found in [11].

From now on, in this section we will simply write diagram to mean a virtual
string surface diagram with one or more components.

Given a diagram (S, D), we can cut out the regular neighbourhood N (D) of D
in S. As S is oriented, N (D) is an oriented surface with one or more boundaries.
To each boundary of N (D) we attach a disk. The result is an oriented surface S’
in which D is embedded. Then (S’, D) is a diagram which is stably homeomorphic
to (S, D). The surface S’ is called the canonical surface for D. This surface has
the minimum genus over all surfaces on which D can be drawn without needing
virtual crossings. The construction of this surface is well known. For example, it
is mentioned in [6] and [10].

We note that if there is a 1-move, 3-move or crossing reducing 2-move that can
be made on a diagram (S, D), the move can also be made on the diagram (S’, D)
where S’ is the canonical surface for D. This is because the moves can be drawn on
the plane without requiring virtual crossings. In some cases a crossing introducing
2-move necessitates adding a handle to the surface. Kadokami explains this
further in [6].

We say that two diagrams are in the same 3-class if they are related by a finite
sequence of 3-moves and stable homeomorphisms.

We say that a diagram is reducible if it is stably homeomorphic to a diagram
to which we can apply a crossing reducing 1-move or 2-move. We say that a
diagram is reduced if it is not reducible and it is not in the same 3-class as a
reducible diagram.

In [6], Kadokami makes the following statement (his Theorem 3.8) which we
paraphrase to use terminology from this paper.

Statement 8.1. For any n, two reduced homotopic n-component diagrams are
in the same 3-class.

In the case where n is 1 we can interpret this as follows. If o and (3 are
nanowords representing the same virtual string and both nanowords are in irre-
ducible 3-classes, a and 3 are in the same irreducible 3-class. In other words,

ON TABULATING VIRTUAL STRINGS 515

Statement 8.2. A virtual string is represented by a unique irreducible 3-class.

If true, Statement 8.2 would imply that all nanowords generated in the com-
puter enumeration of virtual string candidates are in fact distinct. This is because
the computer enumeration searches for irreducible 3-classes and only outputs the
minimal nanoword in each such class. The statement implies that we can com-
plete the enumeration without having to calculate invariants. The statement
also implies that to discover whether two nanowords « and (3 are homotopic, it
is enough to find the corresponding irreducible 3-class in each case and compare
them. Nanowords « and are homotopic if and only if their irreducible 3-classes
are the same.

€Y (b)

X
X

!

REIREL

==

FIGURE 7. A pair of five component diagrams each drawn on a
torus. In each case the torus is formed by identifying opposite
edges of the rectangle according to the arrows.

Unfortunately, there is a problem. We have found a counter-example for the
multiple component case. We have the following proposition.

Proposition 8.3. The two diagrams in Figure 7 form a counter-example to
Statement 8.1.

Proof. To show that this is indeed a counter-example we must first check that the
two diagrams are not isomorphic. That is, we need to establish that the diagrams
are actually distinct. Secondly, we should check that the diagrams are homotopic.
Thirdly, we need to show that the two diagrams are reduced. Together these show
that the two diagrams satisfy the conditions of Statement 8.1. If the statement
is true then the diagrams should be related by a sequence of 3-moves. We will

516 ANDREW GIBSON

AiX:l*_Z,

i
iSO 3 A
— —
3 3
— —

LI L ¢ >—|

FIGURE 8. A sequence of homotopy moves showing how to swap
the positions of two components. In each diagram the left and
right edges are identified to make a cylinder. Labels on the ar-
rows between the diagrams indicate which kind of move was used.
Here ‘iso’ means isotopy achieved by pushing a crossing across the
identified edges.

show that this is not the case by showing that the two diagrams are in different
3-classes.

To check that there is not an isomorphism between the two diagrams we con-
sider the vertical component in each diagram. It is the only component that
intersects with all the other components in each diagram. We now note that
in each diagram there are exactly two components with which the vertical com-
ponent intersects only once. We consider the two points of intersection between

ON TABULATING VIRTUAL STRINGS 517

these three components. Notice that in Figure 7(a) these two points are joined by
an edge. This property is preserved under isomorphism. However, in Figure 7(b)
the two points are not joined by an edge. So there cannot be an isomorphism
between the two diagrams and they are indeed distinct.

The sequence of diagrams in Figure 8 show how these two diagrams are related
by a sequence of homotopy moves. Thus the two diagrams are homotopic. Note
that in this sequence we have to use a 2-move to temporarily increase the number
of crossings and later another 2-move to reduce them again.

Both diagrams in Figure 7 are drawn on their canonical surfaces. In each
diagram the curves divide the surface up into regions. For each region we can
count the number of edges. If there was a 1-move available we would be able to
find a monogon. If there was a 2-move available we would be able to find a bigon.
It is easy to check that there are no monogons or bigons in either diagram. Thus
both diagrams are irreducible. To verify that they are both reduced we must now
consider their 3-classes.

=

=

FIGURE 9. The diagram from Figure 7(a) with triangular regions labelled.

To find possible 3-moves on a diagram we can look for triangular regions on
the canonical surface. There must be a triangular region on the surface for each
possible 3-move. Figure 9 shows the diagram in Figure 7(a) with all the triangular
regions labelled. There are four such regions which means there are four 3-moves
available. However, we note that if we make the 3-move associated with any of
the regions we get a diagram which is isotopic to the diagram we started with.
Thus the 3-class of the diagram in Figure 7(a) just contains a single diagram. It
is easy to check that the same thing is true for the diagram in Figure 7(b).

518 ANDREW GIBSON

Thus both diagrams are reduced. As the diagrams are not isomorphic, it is clear
from the preceding paragraph that the two diagrams are in different 3-classes.
Thus the two diagrams are indeed a counter-example to Statement 8.1. O

As yet, we have not found a counter-example for the single component case.
However, we note that if any pair of nanowords in Table 6 were shown to be
homotopic, the pair would be a counter-example.

As the proof in Kadokami’s paper considers only the general case of n com-
ponents and we have given a counter-example to Statement 8.1, it is clear that
there is a problem with the proof. It is still possible that Statement 8.2 is true,
but we can not use it until it has been proved. We hope to consider this problem
further in the future.

ACKNOWLEDGEMENTS

The author would like to thank the organizers of the International Conference
on Quantum Topology 6-12th August 2007 for organizing an interesting confer-
ence. He is also grateful to the members of the Institute of Mathematics, Hanoi
for their hospitality during the conference. The author also thanks his supervisor
Hitoshi Murakami and Yuji Terashima for their help.

REFERENCES

[1] J. S. Carter, S. Kamada and M. Saito, Stable equivalence of knots on surfaces and virtual
knot cobordisms, J. Knot Theory Ramifications 11 (3) (2002), 311-322.
[2] R. Fenn and V. Turaev, Weyl algebras and knots, J. Geometry and Physics (5) (2007),
1313-1324.
[3] A. M. Gibson, Enumerating virtual strings, Master’s thesis, Tokyo Institute of Technology,
2008.
[4] J. Hoste, M. Thistlethwaite and J. Weeks, The first 1,701,936 knots, Math. Intelligencer
20 (4) (1998), 33-48.
[5] D. Hrencecin and L. H. Kauffman, On filamentations and virtual knots, Topology Appl.
134 (2003), 23-52.
[6] T. Kadokami, Detecting non-triviality of virtual links, J. Knot Theory Ramifications 12
(6) (2003), 781-803.
[7] L. H. Kauffman, Virtual knot theory, Furopean J. Combin. 20 (7) (1999), 663-690.
[8] T. Kishino and S. Satoh, A note on non-classical virtual knots, J. Knot Theory Ramifica-
tions 13 (7) (2004), 845-856.
[9] W. B. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol.
175, Springer-Verlag, New York, 1997.
[10] V. Turaev, Virtual strings, Ann. Inst. Fourier 54 (7) (2004), 2455—2525.
[11] V. Turaev, Knots and words, Int. Math. Res. Not. (2006), Art. ID 84098, 23 pp.
[12] V. Turaev, Topology of words, Proc. London Math. Soc. 95 (2) (2007), 360-412.

DEPARTMENT OF MATHEMATICS,

TOKYO INSTITUTE OF TECHNOLOGY,
OH-OKAYAMA, MEGURO, TOKYO 152-8551, JAPAN
E-mail address: gibson@math.titech.ac. jp

