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THE WEIGHT SYSTEM OF THE MULTIVARIABLE

ALEXANDER POLYNOMIAL

JANA ARCHIBALD

Abstract. We derive a formula for the weight system of the multivariable
Alexander polynomial using determinants, show that it obeys known relations,
and satisfies some of the same relations as the single variable polynomial. This
formula will be computable in polynomial time.

1. Introduction

When Alexander first defined the multivariable Alexander polynomial [1] it
was defined only up to sign and powers of the variables. In [5] Murakami used
Hartleys [4] normalization of the Conway potential function to show that under
an appropriate change of variables the multivariable Alexander polynomial is of
finite type. A recursive definition of this weight system was given in [5] whose
computation requires exponential time. We improve on this result by giving a
closed form formula using determinants, which would be computable in polyno-
mial time.

Our explicit formula makes it possible to verify that the relations from [3],
which hold for the weight system of the single variable Alexander polynomial,
also hold for the weight system of the multivariable Alexander polynomial.

2. Definition of the multivariable Alexander polynomial

Definition 1. A coloured link (or chord diagram) is a link along with a variable
associated to each of the components.

We use the normalization of the multivariable Alexander polynomial given in
[5]; which eliminates the ambiguity of signs and powers of t. This uses the matrix
given by Fox free calculus on the Wirtinger presentation of the link, with the
crossings labeled by the arc starting at that crossing.

To compute the multivariable Alexander polynomial, one first labels all of the
arcs, and then labels the crossings by the exiting lower strand. This allows us
to create a matrix with rows and columns indexed by the arcs. The non zero
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entries of the cth row are given below, where x and y are the colours of the link
components as marked.

   

a

a

b

b

c

c

x

x

y

y
7−→

7−→
a b c

c −1 1 − x y

a b c

c −y x − 1 1

Let M
j
i denote the matrix obtained from M by deleting the ith row and jth

column. Let rot(k) denote the rotation number (Whitney degree) of the kth

component of the link and let µ(k) be the number of times that the kth component
is the over strand in a crossing. Let wi be a word corresponding to a path from a
point to the right of the ath

i crossing to the unbounded region of the plane. Let
ti be the colour assigned to the i’th arc. The following definition is due to [5].

Definition 2. For a coloured oriented link L the Multivariable Alexander Poly-
nomial is given by

∆(L) =
(−1)i+j det(M j

i )

wi(ti − 1)

∏

k

t
rot(k)−µ(k)

2
k

.

Note that for links ti − 1 divides det(M j
i ) so this is indeed a polynomial, and

that for knots this differs from the usual definition by a factor of t1 − 1.

Example 1. For the following labeled link, we construct the given matrix.

a1

a2

a3

a4

a5

x

y

a1 a2 a3 a4 a5

a1 y − 1 0 0 0 1 − x

a2 1 − y x 0 0 −1
a3 −y 0 1 y − 1 0
a4 0 0 −y 1 y − 1
a5 0 0 y − 1 −y 1

The marked point is to the right of the 5th crossing; by following the dotted
path we see that w5 = y−2. Checking that µ(1) = 1, µ(2) = 4, rot(1) = 1,
rot(2) = 3, and det(M5

5 ) = x(y−1)(1−y +y2) gives the multivariable Alexander
polynomial of the link as xy(1 − y + y2).

3. The multivariable Alexander polynomial as a finite type

invariant

We now recall how Murakami [5] shows that under an appropriate change of
variables the multivariable Alexander polynomial is of finite type.
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Definition 3. A singular knot (link) is a knot with double points. It represents
a linear combination of knots, where each double point represents the difference
between a positive and negative crossing.

We now wish to compute what happens for the multivariable Alexander poly-
nomial on a knot with one double point. To do this we examine the following
small labeled region of a knot, note that the added kink is to make the number
and labeling of arcs consistent, and does not change the knot. The kink doesn’t
affect the normalization as it adds one to both µ(k) and rot(k). The two matrices
constructed as in Section 1 will differ in only the two rows indexed by a1 and
a2. The only difference in the normalization coefficient for these two knots is the

number of over crossings, which adds an extra factor of x
1
2 or y

1
2 . By multiply-

ing a matrix row by that change we can see that the matrices differ only in the
following rows:

a
3

a

aa

a

3 2

14

a

a

a

2

14

x xy y

a1 a2 a3 a4

a1 y−
1
2 0 −y−

1
2 0

a2 1 − x y 0 −1

a1 a2 a3 a4

a1 1 y − 1 −x 0

a2 0 x−
1
2 0 −x−

1
2

Using row operations we can change the two matrices to the following;
Now we can see that the resulting difference will contain the following rows:

a1 a2 a3 a4

a′1 y−
1
2 x−

1
2 −y−

1
2 −x−

1
2

a′2 1 − x
1
2 y − y

1
2 −x + x

1
2 −1 + y

1
2

.

Now if we use the substitution et1 = x1, et2 = x2 and expand eti as a power
series, omitting terms of degree greater than 1 we get:

a1 a2 a3 a4

a′1 1 − 1
2
t2 − . . . 1 − 1

2
t1 − . . . −1 + 1

2
t2 + . . . −1 + 1

2
t1 + . . .

a′2 −1
2
t1 − . . . 1

2
t2 + . . . −1

2
t1 − . . . 1

2
t2 + . . .

We note that all the entries in the second row are of degree one. Which
means that this singular point will contribute one to the degree of the resulting
polynomial. So if the knot has m singular points the power series we get from
taking the determinant of the matrix starts in degree m. When we apply the



462 JANA ARCHIBALD

same change of variables to the normalization coefficient, we notice that dividing
by xi − 1 will lower the index of ti by one. Since the rest of the coefficient will
have leading term 1, the resulting polynomial will have degree at least m − 1.
Hence after the expansion of xi = eti = 1 + ti + ... the polynomial of degree m is
an m + 1 type invariant.

So the contribution from a singular point will be the following;

a1 a2 a3 a4

a′1 1 1 −1 −1
a′2 −1

2
t1

1
2
t2 −1

2
t1

1
2
t2

4. The weight system

We define a function from coloured chord diagrams to Z[t1, ..., tn]. Given a
coloured chord diagram, choose a marked point on one of the arcs. This divides
that arc into two; we then label the arcs. The chords are indexed by the two
exiting arcs. We now construct a matrix M(D) whose rows and columns are
indexed by the arcs, as follows, all other entries are zero. (If you change roles of
the two sides, you swap the two rows below and multiply by −1 which leaves the
determinant unchanged).

a1 a2

a3 a41 2

7−→

a1 a2 a3 a4

a1
1
2

1
2

−1
2

−1
2

a2 −t2 t1 −t2 t1

Note that the row corresponding to the marked point is zero. As before M i
i (D)

is the matrix M(D) with the ith row and column removed.

Definition 4. The weight system for the multivariable Alexander polynomial is

∆(D) =
det(M i

i (D))

ti
,

where i is the colour of the marked point. 1

To aid in later sections we can extend the definition to allow us to divide arcs
at non chords. To divide the arc a into a1 and a2 the the following row would
need to be added to the matrix; this will not change the value of the determinant.

a1a2
7−→

a1 a2

a1 1 −1

Theorem 1. The above function defines a weight system for the Multivariable

Alexander Polynomial under the substitution xi = eti = 1 + ti + . . . , and is

independent of the chosen marked point.

A proof of this theorem will follow a sample computation.

1Note for links this is divisible by ti since Σtici = 0 where ci is the ith column.
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5. A worked example

a1

a2

a3

a4

a5

a6

a7

∗

On the above diagram we have chosen a marked point ? and labeled the arcs.
We now construct a matrix indexed by those arcs. Here is one of the chords and
the corresponding matrix entries.

a1
a2

a3
a7

a1 a2 a3 a7

a2
−1
2

1
2

1
2

−1
2

a3 −t2 −t2 t1 t1

We can use the rest of the chords to fill in the remainder of the table as follows:

a1 a2 a3 a4 a5 a6 a7

a1

a2 −1
2

1
2

1
2

−1
2

a3 −t2 −t2 t1 t1
a4 t2 t2 −t2 −t2
a5 t2 t2 −t2 −t2
a6 −1

2
1
2

−1
2

1
2

a7 −1
2

1
2

−1
2

1
2

To calculate the weight of this diagram, we simply remove the marked row and
column (a1), take the determinant and divide by t1 to get t2

2.

6. Proof of Theorem 1

We need to show that the weight system defined above on chord diagrams, is
the same the one defined by the MVA on singular knots. That is for a given chord
diagram, we must take a corresponding singular knot and show that the MVA on
that knot (under the appropriate substitution, and up to the appropriate degree)
is the same as the weight system evaluated at that chord diagram.

Suppose we have an m singular link and its underlying chord diagram. We
first label the arcs on the chord diagram x1, ..., xn. We then lift this labeling to
the arcs of the link, so that the arcs which map to xi, will be labeled in order
as xi,j as in the diagram below. Then we mark the same arc on the link and
chord diagram to corresponding to the row and column that we will delete. Each
crossing is indexed by the under arc leaving it.
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a1

a2

a3

a4

a5

a6

a7

∗∗

x1,1

x2,1

x2,2

y3,1

y4,1

y5,1

y5,2

y6,1

y7,1 7−→

As in the proof in Section 3, we will be using the substitution xi = eti =
1 + ti + . . .. Since we are interested in the terms of order m − 1, we take a row
of order 1 in the rows corresponding to the double points, and terms of order
zero elsewhere. We note that up to order 0 the rows corresponding to over and
undercrossings are the same after this substitution. So to we will create a matrix
with the following rows;

   

and

x1,1

x2,1

x1,n−1

x1,n−1

x4,n

x3,m

x2,kx2,k

x1,n

x1,n

7−→

7−→
x1,1 x2,1 x3,n x4,m

x1,1
1
2

1
2

−1
2

−1
2

x2,1 t2 −t1 t2 −t1

x1,n x1,n−1 x2,k

x1,n 1 −1 0

We can think of the matrix as being in blocks corresponding to the arcs in the
underlying chord diagram. This gives us a matrix that is mostly zeros with 1 and
−1’s near the diagonal. The only variables occur in the rows xi,1 the top row of
each block. Each block will be of the form shown below with zeros omitted.

x1,1 x1,2 x1,3 ... x1,n−1 x1,n

x1,1 ∗ ∗
x1,2 −1 1
x1,3 −1 1
...

. . .
. . .

x1,n−1 −1 1
x1,n −1 1

Then for all of the blocks except for the marked one, we can switch to the
following using column operations:
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x1,1 x1,2 x1,3 ... x1,n−1 x1,n

x1,1 Σ∗ ∗
x1,2 0 1
x1,3 0 1
...

. . .
. . .

x1,n−1 0 1
x1,n 0 1

Note that rows x1,2 to x1,n are zero except with a 1 on the diagonal, so we
may delete those rows and columns without changing the determinant. But we
must remember that the xth

1,1 column is replaced with the sum of columns x1,1

and x1,n. That sum will be the contribution of the arcs x1,1 and x1,n from double
points; note that those arcs map to a1 in the chord diagram.

In the case that one of the arcs is marked, we must remember that we will be
deleting that column before we take the determinant. We will always mark an
arc that is not near a double point. Let us look at the block where one of the
arcs is marked; with out loss of generality we choose x1,2. Then when we reduce
the matrix we get:

x1,1 x1,3 ... x1,n−1 x1,n

x1,1 ∗ ∗
x1,3 0 1
...

. . .
. . .

x1,n−1 −1 1
x1,n −1 1

which can then be changed using row and column operations to:

x1,1 x1,3 ... x1,n−1 x1,n

x1,1 ∗ ∗
x1,3 0 1
...

. . .
. . .

x1,n−1 0 1
x1,n 0 1

Then once again we can delete the rows and columns corresponding to x1,3,

..., x1,n−1. But note that there is no change in the xth
1,1 column. So the contribu-

tion of the xth
1,n column is lost, this is equivalent to deleting the column associated

to the marked arc.
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This is the matrix that was described in Theorem 12.

7. Testing known relations

As a test of this method, we wish to show that this function obeys certain
known relations, such as the 4T relation and the recursive relations in Murakami’s
paper. Each of these relations involve chord diagrams that differ only in one small
area. This means that the matrices formed in computing the invariant will differ
in only one block. The following lemma shows that the relations need only hold
among certain minors of that block.

Lemma 1 (A linear algebra lemma). Let B be an n×n block matrix of the form

where A is an m × l matrix, and k < l.

Then det(B) =
∑

k<i1<...<in−k

(±) det(A1,2,...,k,i1,...,in−k) det(Mi1,...,in−k
),

where A1,2,...,k,i1,...,in−k refers to the matrix formed from the 1, 2, . . . , k, i1, ..., in−k

columns of A and Mi1,...,in−k
refers to M with the i1, ..., in−k columns removed.

Proof. Expand B along the rows of A using cofactor expansion, and collect like
terms. �

Lemma 2. Let Bi be matrices as in the previous lemma, with the same M but

different Ai. To show a relation of the form
∑

ai det(Bi) = 0,

it is enough to show the relation holds on the appropriate minors the Ai’s.

Proof. Follows from previous lemma. �

When we wish to show relations between chord diagrams differing in a region,
we note that the matrices used to compute their weight will be of the above form.
Using lemma 2 let us show the following relation holds:

To use the previous lemma we make both sides of the relation have the same
number of arcs, so we divide the arcs in the left term in three. The matrices
involved are:

2∆(D) is independent of the choice of marked point. The sum of the columns in the matrix
M(D) is 0, changing the column deleted changes the determinant by a factor of −1. If you divide
every arc in the diagram so that each arc touches only one chord, and sum the columns which
end at chords multiplied by the label of that arc gives the row for the marked point multiplied
by the label of the marked point. So changing the marked point will change the determinant by
±ti, which is canceled by the coefficient.
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( ( (( = ∆∆

i j

(ti + tj)
2

4

1
2

1
2

0 0 −1
2

−1
2

0
−t2 t1 0 0 −t2 −t1 0
−1

2
−1

2
1
2

1
2

0 0 0
−t2 t1 −t2 t1 0 0 0
0 0 a1 a2 a3 a4 M

1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
−1 0 +1 0 0 0 0
0 −1 0 1 0 0 0
0 0 a1 a2 a3 a4 M

For the first matrix in the example above the minors in question are as follows:

1
2

1
2

0 0
−t2 t1 0 0
−1

2
−1

2
1
2

1
2

−t2 t1 −t2 t1

=

(

t1 + t2

2

)2

1
2

1
2

0 −1
2

−t2 t1 0 −t2
−1

2
−1

2
1
2

0
−t2 t1 −t2 0

= 0

1
2

1
2

0 −1
2

−t2 t1 0 −t1
−1

2
−1

2
1
2

0
−t2 t1 −t2 0

= −

(

t1 + t2

2

)2

1
2

1
2

0 −1
2

−t2 t1 0 −t2
−1

2
−1

2
1
2

0
−t2 t1 t1 0

=

(

t1 + t2

2

)2

1
2

1
2

0 −1
2

−t2 t1 0 −t1
−1

2
−1

2
1
2

0
−t2 t1 t1 0

= 0

1
2

1
2

−1
2

−1
2

−t2 t1 −t2 −t1
−1

2
−1

2
0 0

−t2 t1 0 0

=

(

t1 + t2

2

)2

.

The corresponding minors for the second matrix are {1, 0,−1, 1, 0, 1}. You can

see that the first are precisely
(

t1+t2
2

)2
times those of the second, so the relation

holds.
If we cross the chords we get the following two relations:

( ( (( = ( ( (( = ∆∆∆∆

ii jj

titj
(ti − tj)

2

4

This allows us to derive the following useful relations:

( ( ( (=( ( ( (=∆∆ ∆∆

i

ti
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The first relation is a direct consequence of the previous. Since it doesn’t
matter how these components connect we can omit the connections from our
diagrams. We can draw elements as in the second relation with the understanding
that there will always be an even number of such elements in a diagram.

8. Testing relations using mathematica

Obviously for more complicated relations we are unable to compute by hand
all of the minors involved. The solution to this is to use Mathematica to do all
of the computations for us. For example, here is a computation that shows the
4Y relation holds:

( (
2 3

1 4
( (

2 3

1 4

( (
2 3

1 4
( (

2 3

1 4

  − + − ∆∆ ∆ ∆

Using the previous relation we can rewrite the relation as

( (
2 3

1 4

( (
2 3

1 4

( (
2 3

1 4
( (

2 3

1 4

+ −− ∆∆ ∆ ∆t1t2t3 t4

In the following calculation, we have used the substitution x = t1, y = t2,
z = t3 and w = t4, and a common factor of 1

8
has been factored from all of the

matrices.

Mat[1]={

{1,1,0,0,0,-1,-1,0,0},

{-x,y,0,0,0,y,-x,0,0},

{-1,0,1,0,1,0,0,0,-1},

{0,0,0,-1,0,0,0,1,0},

{-w,0,-w,0,y,0,0,0,y}};

Mat[2]={

{w,0,0,0,-y,0,w,0,-y},

{-1,1,1,0,0,-1,0,0,0},

{x,-y,x,0,0,-y,0,0,0},

{0,0,0,-1,0,0,0,1,0},

{1,0,0,0,1,0,-1,0,-1}};

Mat[3]={

{z,0,0,-w,0,0,0,-w,z},

{-1,1,0,0,1,-1,0,0,0},

{0,0,-1,0,0,0,1,0,0},

{1,0,0,1,0,0,0,-1,-1},

{x,-w,0,0,x,-w,0,0,0}};

Mat[4]={

{x,-w,0,0,0,-w,0,0,x},

{1,1,0,0,0,-1,0,0,-1},

{0,0,-1,0,0,0,1,0,0},

{-1,0,0,1,1,0,0,-1,0},

{z,0,0,-w,z,0,0,-w,0}};
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Mat[5]={

{z,0,0,-w,0,0,0,-w,z},

{0,-1,0,0,0,1,0,0,0},

{-y,0,w,0,-y,0,w,0,0},

{1,0,0,1,0,0,0,-1,-1},

{-1,0,1,0,1,0,-1,0,0}};

Mat[6]={

{1,0,1,0,0,0,-1,0,-1},

{0,-1,0,0,0,1,0,0,0},

{-y,0,w,0,0,0,w,0,-y},

{-1,0,0,1,1,0,0,-1,0},

{z,0,0,-w,z,0,0,-w,0}};

Mat[7]={

{1,1,0,0,0,-1,-1,0,0},

{-x,y,0,0,0,y,-x,0,0},

{z,0,z,-y,0,0,0,-y,0},

{-1,0,1,1,0,0,0,-1,0},

{0,0,0,0,-1,0,0,0,1}};

Mat[8]={

{z,0,0,-y,0,0,z,-y,0},

{-1,1,1,0,0,-1,0,0,0},

{x,-y,x,0,0,-y,0,0,0},

{1,0,0,1,0,0,-1,-1,0},

{0,0,0,0,-1,0,0,0,1}};

z*(Minors[Mat[1],5]-Minors[Mat[2],5])-y*(Minors[Mat[3],5]-

Minors[Mat[4],5])+x*(Minors[Mat[5],5]-Minors[Mat[6],5])-

w*(Minors[Mat[7],5]-Minors[Mat[8],5]);

L=Simplify[%];

Take[Transpose[L],70]

{{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},

{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},

{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},

{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},{0},

{0},{0},{0},{0},{0},{0}}

From our lemma, since the relation holds for the minors, it holds for the de-
terminants of the original matrices. So the relation holds for the weight system.

9. Additional relations

In [3], additional relations where shown to hold for the weight system of the
Alexander polynomial, these can be shown to hold for the multivariable Alexander
polynomial weight system as well.

No internal vertices

( (=  0 ( (=  0∆∆

IHX
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( ( ( ( ( ( =
_ ∆∆∆

We use the same method to verify that the five relations in Murakami’s paper
[5] hold. This shows that we have indeed given an alternate directly computable
definition for the same weight system.
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