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THE UNIVERSAL PERTURBATIVE QUANTUM 3-MANIFOLD

INVARIANT, ROZANSKY-WITTEN INVARIANTS

AND THE GENERALIZED CASSON INVARIANT

NATHAN HABEGGER AND GEORGE THOMPSON

Abstract. Let ZLMO be the 3-manifold invariant of [36]. It is shown that
ZLMO(M) = 1, if the first Betti number of M , b1(M), is greater than 3. If
b1(M) = 3, then ZLMO(M) is completely determined by the cohomology ring
of M . A relation of ZLMO with the Rozansky-Witten invariants ZRW

X [M ]
is established at a physical level of rigour. We show that ZRW

X [M ] satisfies
appropriate connected sum properties suggesting that the generalized Casson
invariant ought to be computable from the LMO invariant.

1. Introduction

In [56], E. Witten explained the Jones polynomial using physics. In doing
so, he introduced mathematicians to the partition function ZCS

G,k(M,L) of the
topological quantum field theory associated to the Chern Simons action, for a
Lie group G and coloured1 link L ⊂ M . Its physical definition is given by a
Feynman path integral over the infinite dimensional space of connections.2

In general, one expects that topological field theories defined using the path
integral, or perturbative versions of these, can be given a rigorous definition
through surgery formulae, just as is the case for other quantum invariants, such
as the Reshetikhin-Turaev [43] invariants, ZRT

G,k, or the more recent universal

invariant ZLMO, of T. Le, J. Murakami, and T. Ohtsuki [36] and the Århus

invariant, ZÅ, [4]. Invariants have also been given through integral formulae,
as is the case for the Kontsevich integral ZK (see [30] [3]), the Bott-Taubes
invariant ZBT , [18], [2], and the invariant ZBC of Bott and Cattaneo [17], [1]. (It
is conjectured that ZK = ZBT ).

Our intent in this paper is to study the invariant ZLMO(M). ZLMO(M) lies
in A(∅), the vector space of Feynman diagrams modulo anti-symmetry and IHX
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relations. This vector space is not well-understood, except in low degrees. (See
Vogel, [53], for an attempt to understand the structure of A(∅)).

Quantum invariants (or perturbative versions of these) are a rich source of data
for the study of knots, links, and 3-manifolds. Nevertheless, their relationship
to classical topology remains obscure, hampering their use in problem-solving.
A notable exception is the Alexander polynomial of a knot, which, through its
interpretation as the Conway polynomial (together with the solution of the Con-
way weight system on uni-trivalent graphs [31]), gives a computation of (the
one loop) part of the Kontsevich integral. Another recent advance has been the
computation of the Milnor invariants from the Kontsevich integral [28].

For 3-manifolds, one has the result that the degree one term of the LMO in-
variant, ZLMO

1 , is the Casson-Walker-Lescop invariant [36], [7]. However, beyond
this, the topological significance of ZLMO remains a mystery. For example, it is
not even known whether or not the degree two term of ZLMO vanishes in the
simply connected case (which of course would be implied by a positive solution
of the Poincaré conjecture, since ZLMO(S3) = 1).

One possible programme for attempting to tie the quantum invariants to ho-
motopy data is through generalization of the Casson invariant to groups other
than SU(2), e.g., SU(N). Recent advances on the mathematical side [14], for
SU(3), as well as on the physical side, by Rozansky and Witten [44], may make
this programme tractable. The purpose of this paper is to give a conjectural rela-
tionship between the generalized Casson invariants and ZLMO and some partial
evidence for its veracity. We consider this conjecture to be an explicit form of
the basic philosophical viewpoint of [44], who believe their invariants are of finite
type.

Indeed, we may summarize the underlying ideas of [44] as follows. On the
one hand a comparison of the Rozansky-Witten invariants to the perturbative
Chern-Simons theory indicates that, for b1(M) = 0, they both arise from one
universal theory. The difference between the two rests in the choice of weight
system (in [44] a rigorous mathematical weight system WRW

X is given). On the
other hand, (and perhaps the deepest part of the theory) equivalence between
certain physical theories allows one to identify the Rozansky-Witten invariants
for a particular choice of hyper-Kähler manifold XG with a regularized Euler
characteristic [10] of the moduli space of flat G-connections on the 3-manifold
M, χG(M). The equivalence comes from the work of Seiberg and Witten on 3-
dimensional theories (and is the analogue of their work in four dimensions). The
twist of the first theory yields the gauge theoretic model of the Euler characteristic
while the twist of the second is the Rozansky-Witten model. The equivalence of
the physical theories suggests the equivalence of their twisted topological versions.
Thus, from the physics side, one expects that

ZRW
XG

(M) = χG(M).(1.1)

One important consequence of (1.1) is its potential use in computing χG(M).
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On the mathematical side there are, currently, a number of candidates for
a universal perturbative quantum invariant. These include the LMO invariant,

ZLMO, the Århus invariant, ZÅ, and the invariant of Bott and Cattaneo, ZBC .
It has been suggested [4] that although the LMO invariant agrees with the Århus
invariant, for rational homology spheres, that nevertheless ZLMO is more directly
related to the Rozansky-Witten sigma model theory than to the Chern-Simons
gauge theory.

For b1(M) > 0, (except for b1(M) = 1 and Tor H1(M,Z) 6= 0) the first author
and collaborators, [7] [23], have calculated ZLMO from classical data. Here, we
perform analogous computations in the Rozansky-Witten theory and observe, for
b1(M) > 0, that these results agree. Specifically, we show, for b1(M) > 0, and
under the conditions mentioned above,3 that at the physical level of rigour,

WRW
X

(

ZLMO
n (M)

)

= ZRW
X (M),(1.2)

where X denotes a hyper-Kähler manifold of dimension 4n.

One might naively conjecture that (1.2) holds for all 3-manifolds. However, for
b1(M) = 0, which is the case of most interest, numerous considerations, including
connected sum formulae and normalization conditions, indicate that the equality
(1.2) should be modified. We introduce invariants λk

X(M) for all k and X which
are computed from the Rozansky-Witten theory, and the formulae now suggest4

that

|H1(M,Z)|n−k WRW
X

(

ZLMO
k (M)

)

= λk
X(M).(1.3)

We now propose, that on correcting for the trivial connection, one should
replace (1.1) with the equality

λn
XG

(M) = λG(M),(1.4)

where λG(M) is the, still to be mathematically defined, G-Casson invariant, and
where rank(G) = n. In this way, we obtain the purely mathematical

Conjecture.

WRW
XG

(

ZLMO
n (M)

)

= λG(M).(1.5)

(N.b., for SU(2) this equality holds by the computation of ZLMO combined
with those on the physics side [44].)

The equalities above are certainly suggestive. On the one hand, ZLMO(M)
satisfies axioms5 of topological quantum field theory (TQFT), see [39], as is the
case for the Chern-Simons theory ZRT

G,k. On the other hand, ZRW
X is given as a

topological sigma-model. As explained in [44], the actions of the Chern-Simons

3The computations that we make for the Rozansky-Witten theory suggest that it is to be
expected that the results of [23] hold even when the manifold has torsion in H1(M,Z).

4This corresponds to the fact that ZRT
G,k/Z

RT
G,k(S3) and

∑

n |H1|
−nZLMO

n are both

multiplicative.
5Actually, the TQFT axioms hold for certain truncations of ZLMO .
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theory, and the Rozansky-Witten theory are formally analogous (see section 4
below).

We begin this paper with a computation, which originally appeared in [26],
of ZLMO(M) for manifolds whose first Betti number, b1(M), is greater than or
equal to 3. Subsequently, computations for b1(M) = 2, [7], and b1(M) = 1,
[23], followed. These computations were inspired by the work of T. Le, [33],
who showed that the invariant ZLMO(M), restricted to homology spheres, is the
universal finite type invariant6 in the sense of Ohtsuki [40].

Specifically, in Section 3, we will give a proof of parts (i) and (ii) of the
following result (part (iii) was proven in [7] and part (iv) in [23]). Let λM denote
the Lescop invariant of M , see [32].

Theorem 1.
(i) Suppose b1(M) > 3. Then ZLMO(M) = 1.
(ii) There are non-zero γn ∈ An(∅), such that if b1(M) = 3, then ZLMO(M) =

Σnλ
n
Mγn.

(iii) [7] There are non-zero Hn ∈ An(∅), such that if b1(M) = 2, then ZLMO(M) =
Σnλ

n
MHn.

(iv) [23] For H1(M) = Z, ZLMO(M) determines and is determined by A(M),
the Alexander Polynomial of M .

Remark. In fact, though not observed in [7], but as suggested from the com-
binatorics of the physical approach, one can show using equality (2) in [7] that
γn = ±Hn.

Sections 5-9 of this paper concern heuristic results, reminiscent of theorem 1
and the hypothetical equality WRW

X (ZLMO
n (M)) = ZRW

X (M). Specifically, we
give a heuristic proof, (i.e. at the physical level of rigour) of the following:

Heuristic Theorem 2.
(i) Suppose b1(M) > 3. Then ZRW

X (M) = 0.

(ii) There are constants cX , such that if b1(M) = 3, then ZRW
X (M) = cXλ

n
M .

(iii) There are constants c′X , such that if b1(M) = 2, then ZRW
X (M) = c′Xλ

n
M .

(iv) For b1(M) = 1, ZRW
X (M) is determined by Reidemeister Torsion.

Actually, the equality WRW
X (ZLMO

n (M)) = ZRW
X (M) suggests that cX =

WRW
X (γn) and c′X = WRW

X (Hn). Our calculations indicate that this is so and
furthermore, show that cX = c′X .

The final sections, 10-12, are devoted to deriving the properties of the λk
X

invariants that are required to motivate (1.3) and our conjecture (1.5).

Let us conclude this introduction with a few remarks on our proof of heuristic
theorem 2. While, for some purposes, the perturbative Feynman diagram expan-
sion may be useful, e.g., for obtaining weight systems, our approach is essentially

6See [27] for an expository account of the theory of finite type invariants.



UNIVERSAL PERTURBATIVE QUANTUM 3-MANIFOLD INVARIANT 367

non-perturbative. In general the path integral formalism may have uses beyond
giving us a definition of invariants. One can define theories via path integrals
and after passing to the perturbation theory completely forgo the path integral
formulation. This leads to an interesting set of combinatorial problems, having
to do with the type of diagrams to be considered, as well as their frequency. On
the other hand, it may happen that the path integral can be performed in a, more
or less, elementary manner. In this case the combinatorial issues are by-passed,
and in addition one obtains nicely re-summed formulae. An example of such a
situation is the derivation of the Verlinde formula [11] for the dimension of the
space of holomorphic sections of the k’th tensor power of the determinant line
bundle over the space of flat connections on a Riemann surface. Similarly, for the
Rozansky-Witten invariants, we will see that it is better to ‘perform’ the path
integral directly rather than to expand out first.

The main thrust of our physical computations is then to avoid working directly
with diagrams. However, in order to make the relationship with [36] somewhat
more transparent we will, on occasion, explain certain phenomena at the dia-
grammatic level.

2. Post-introduction

In the 9 years since this paper was made publicly available the cross fertilization
between mathematics and physics has not diminished. It would also appear that
our effort in this direction retains some interest. Enough interest, we trust, to
warrant finally having a published account. We would like also to take advantage
of this in order to present some of the developments that have occurred since
1999. Unfortunately, there has not been any progress in establishing the main
conjecture, however, there have been advances in certain parts of the theory
though.

Let us begin with the Casson invariant. As far as we are aware there are at
least 4 generalizations of the Casson invariant to the group SU(3). The aim
with all of these is to perturb the moduli space of flat connections so that it is
non-degenerate and then to use spectral flow to count, with signs, the perturbed
flat connections. A compensating term is required to eliminate dependence on
the perturbation and possibly on the path of the flow.

Cappell, Lee and Miller [20] announced the first such invariant, λCLM , in 1990
with the full details appearing in 2000 [21]. Their construction makes use of
Floer theory (a variant of which should have the Casson invariant as its Euler
characteristic which, in turn, would fit in with the physics view point). Their
invariant has a number of nice properties: 4λCLM ∈ Z, it does not depend on the
orientation of the manifold and it satisfies a nice connected sum formula. λCLM

was determined for the 3-manifold S3
K,n obtained on performing 1/n surgery on

the (2, q) torus knots K in [21] with q = 3, 5, 7 and 9, and one may show, by
inspection, that λCLM in these cases cannot be given as a sum of coefficients of
the Jones polynomial of the knot, vi, for i ≤ 3.
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The Boden-Herald generalisation, λBH , discussed in the text, uses a particular
set of perturbations which are ‘small’ keeping the perturbed moduli space quite
close to the unperturbed one. Unfortunately, with this technique, it is no longer
obvious that the invariant is integral. A slightly different proposal was made by
Boden, Herald and Kirk, λBHK , which differs from λBH in the correction term.
With the new corrections λBHK ∈ Z. These invariants also have the correct, from
the LMO point of view, orientation and connected sum properties. However, as
shown in [16] by example these invariants cannot be of finite type. So, sadly from
our point of view, none of λCLM , λBH nor λBHK are finite type invariants, and
so cannot be the SU(3) Casson invariant that we are searching for.

The fourth invariant λLim introduced by Lim [37] is an integral invariant but
takes its correction terms from a slightly different source; the U(2) Seiberg-
Witten equations. There is yet another physics inspired conjecture that states
that Seiberg-Witten equations of rank 2 on a 3-manifold are proportional to the
second Rozansky-Witten invariant [12]. So from this conjectural viewpoint there
is some consistency in combining the invariants. However, we know of no calcu-
lations with this invariant and have no clue as to whether it is of finite type or
not.

The generalisation of the Casson invariant that we refer to in the text as λSU(3)

should agree with the physics definition and so an understanding of the correction
term to take would follow from an understanding of the definition of the path
integral on the physics side. Here we encounter another problem; there have been
no direct physics computations of χG for any non-Abelian G that do not go to the
low energy limit, that is that do not pass through the Rozansky-Witten theory.

The situation therefore is that we are overly blessed, having many choices for
the generalization of the Casson invariant, but equally we are damned as we do
not have a clear idea of how to determine what the preferred procedure for dealing
with reducible connections is!

There has been an advance in the calculation of the Chern-Simmons path
integral for 3-manifolds that are U(1) bundles over a Riemann Surface in [5, 13].
There is hope that similar techniques can be applied to the Rozansky-Witten
theory which will then give us non-perturbative information in these cases. In
particular we would, in this way, be able to settle the issue of what the value of
ZRW

X (S3) is, for arbitrary holomorphic symplectic X, which vexes us in section
10 below.

One would also like to know to which mathematical topological field theory
the Rozansky-Witten path integral for a 3-manifold with boundary S2 belongs.
One approach was taken by J. Sawon [45] who applied the hyper-Kähler weight
system to the Murakami-Ohtsuki construction [39]. We heavily used the physics
topological field theory in section 10. The corresponding mathematical topolog-
ical field theory, when X is a holomorphic symplectic manifold of real dimension
4, turns out to be one associated to the LMO invariant that was introduced by
J. Murakami [38]. The details and some generalizations can be found in [51].
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Finally, there has been progress in the study of Rozansky-Witten invariants
per se. Two interesting steps forward were achieved by J. Roberts and J. Sawon
[42] and by R. Goto [25]. Roberts and Sawon showed how a part of the curva-
ture of a quaternionic-Kähler manifold could be used for a weight system. Goto
showed that there exist ‘log-symplectic manifolds’ with associated curvature 2-
forms which satisfy the AS and IHX relations. Log symplectic manifolds are
compact manifolds which admit closed non-degenerate meromorphic symplectic
2-forms with logarithmic poles on a divisor. These two constructions give one
many more manifolds with which to construct Rozansky-Witten invariants.

Apart from this section, an update of the references and the correction of some
small typographical errors this version is a replica of the 1999 preprint.

3. The invariant ZLMO(M).

The invariant ZLMO(M) is computed in general from the Kontsevich integral

(denoted here by ZK(L)) of any framed link L :
∐j=l

j=1 S
1 → R3, such that surgery

on L, denoted by S3(L), produces M . ZK(L) lies in A(
∐j=l

j=1 S
1).

Before stating the result, we recall (see, e.g., [3], [34], [35], [53]) that A(X)
denotes the graded-completed Q-vector space of Feynman diagrams X ∪ Γ on
the compact 1-manifold X. The space A(X) is graded by the degree, where the
degree of a diagram is half the number of vertices of Γ. Using the notation of

[28], we let
∐j=l

j=1 Ij denote the disjoint union of l copies of the interval, and we

set A(l) = A(
∐j=l

j=1 Ij). A(l) is a Hopf algebra, and one has that A(1) = A(S1).

Moreover, any embedding I → X gives rise to a well defined action of A(1) on

A(X). In particular, A(1)⊗l acts on A(l) and on A(
∐j=l

j=1 S
1).

For 1 ≤ i, j ≤ l, we let ξij be the degree 1 diagram X ∪ Γ, with X =
∐j=l

j=1 Ij,

where Γ is a chord with vertices on the i-th and j-th components (i may be equal
to j). We set ξ123 = [ξ12, ξ23], where [a, b] = ab− ba denotes the Lie bracket of a

and b. (ξ123 is represented by the diagram X ∪ Γ, with X =
∐j=3

j=1 Ij, where Γ is

the Y -graph of degree 2 with one vertex on each component of X.)

In [36], maps in : Anl+i(
∐j=l

j=1 S
1) → Ai(∅) were defined for i ≤ n. (We set in =

0 otherwise.) We denote by pl : A(l) → A(
∐j=l

j=1 S
1) the quotient mapping. We

set γ0 = 1, and γn = in

(

p3

(

ξ2n
123

(2n)!

))

∈ An(∅). Note that A1(∅) is 1-dimensional

and A1(∅)⊗n is a direct summand of An(∅). Moreover, it is easily seen from the
definition of in that the image of γn in A1(∅)⊗n is nonzero. Hence γn is nonzero.

For a set A, we set |A| to be the cardinality of A, if this is finite, and 0 otherwise.

For a 3-manifoldM with b1(M) = 3, we define λM = |Tor(H1(M))|
∣

∣

∣

H3(M)
i(H1(M)⊗3)

∣

∣

∣

2
,

where i : H1(M)⊗3 → H3(M) is given by the cup product a⊗ b⊗ c 7→ a ∪ b ∪ c.
This is Lescop’s invariant, for b1(M) = 3, see [[32], Section 5.3].

Theorem 1.
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(i) Suppose b1(M) > 3. Then ZLMO(M) = 1.
(ii) Suppose b1(M) = 3. Then ZLMO(M) = Σnλ

n
Mγn.

The theorem will be proven in the next section. We first recall here how
ZLMO(M) is defined. One puts ν = ZK(U), where U is the trivial knot with
faming zero. Then ZLMO

n (M) is the degree n part of the expression

in(ZK(L)ν⊗l)

(in(ν2exp( ξ11
2 ))b+(in(ν2exp(−ξ11

2 ))b−
(3.1)

considered to lie in A≤n(∅), where b+, b− denote the number of positive and
negative eigenvalues of the linking matrix of L. (It was shown in [36] that the
expressions in the denominators are invertible.)

Remark. For later use we note that for k ≤ n, in [36] the degree k part of the

above expression (3.1) was denoted by Ωn(M)(k). Thus in particular, ZLMO
n (M) =

Ωn(M)(n).

In the proof of the theorem, we will need to make use of certain facts.

1) in satisfies the property that it vanishes on diagrams which have fewer than
2n vertices on some component.

2) Let σ be a string link whose closure is L. Then ZK(L) = pl(Z
K(σ)νl) (see

[35]). Here ZK(σ) lies in A(l) and νl ∈ A(l) is obtained from ν = ν1 by the
operator which takes a diagram on the interval to the sum of all lifts of vertices
to each of the l intervals. It is known that ν and hence νl is a sum of diagrams
each of which has each component of Γ non-simply connected (see [28]).

3) Let σ be an l-component string link. Then ZK(σ) = exp(ξt + ξh), where
ξt is a linear combination of diagrams for which Γ is a tree, and ξh is a linear
combination of diagrams for which Γ is connected, but not simply connected. If
we denote by At(X) the quotient of A(X) obtained by setting to zero all diagrams
for which some component of Γ is not simply connected, and denote by Zt(σ),
the image in At(l) of ZK(σ), then it was shown in [28] that the Milnor invariants
of σ determine, and are determined by Zt(σ) = exp(ξt). We will need the fact
that if the linking numbers and framings are zero, then ξt has degree ≥ 2, and
moreover, the coefficient of ξ123 is the Milnor invariant µ123. (See [28]).

4. Proof of Theorem 1

The theorem will be proven progressively, starting from the case where M is
obtained via surgery on an algebraically split link L (i.e., one with vanishing
linking numbers) having 3 components all of which are zero-framed. In this case,
H1(M) = Z3, so that Tor(H1(M)) = 0. Moreover, using the Poincaré dual
interpretation of cup product, one easily checks from the definition of the Milnor
invariant µ = µ123(L) in terms of intersections of Seifert surfaces (which can be

completed to surfaces in M), that |µ| =
∣

∣

∣

H3(M)
i(H1(M)⊗3)

∣

∣

∣
. It follow that λM = µ2 in

this case.
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The theorem in this case is an immediate consequence of the observation that

the only term contributing to ZLMO
n (M) is p3

(

µ2nξ2n
123

(2n)!

)

. To see this let σ be a

zero framed string link whose closure is L. Then by 3) above and [28] (since the
linking and framings are zero and µ = µ123(L)), ZK(σ) = exp(µξ123 + ξ′), where
ξ′ is a linear combination of diagrams, all of which consist of diagrams for which
Γ is either not simply connected, or is a tree of degree ≥ 3. Note that in each
case, such a diagram has a ratio of external vertices (the univalent vertices of
Γ) to internal vertices which is < 3, whereas this ratio for ξ123 is 3. It follows
that every term of ZK(L)ν⊗l = p3(Z

K(σ)ν3)ν
⊗l, which has at least 2n vertices

on every component, must have at least 6n
3 = 2n internal vertices. Hence such a

term has degree at least 6n+2n
2 = 4n, and has degree precisely 4n if and only if

that term is p3

(

µ2nξ2n
123

(2n)!

)

.

Now suppose that M = S3(L), where L is an algebraically split link having l
components, and such that L contains a 3-component sublink L0 which is zero-
framed. We set L1 = L \ L0.

We first suppose that L0 and L1 are separated by a 2-sphere, so that M
is a connected sum. Recall from ([36], 5.1), that if M is a connected sum
of M ′ and M ′′ such that b1(M

′) > 0, then one has the formula ZLMO
n (M) =

ZLMO
n (M ′)|H1(M

′′)|n. Setting M ′ = S3(L0) and M ′′ = S3(L1), then this for-
mula shows that the result for M is implied by the result for M ′ shown earlier.
(This includes the vanishing result if b1(M) > 3, since in this case b1(M

′) > 0,
and hence |H1(M

′′)| = 0.)

If L0 and L1 are not separated by a 2-sphere, i.e., L 6= L0
∐

L1, the result
still follows, since one has that in(ZK(L)ν⊗l) = in(ZK(L0

∐

L1)ν
⊗l). To see

this, let σ be a string link, whose closure is L, such that the first 3 components,
σ0, close up to give L0. Set σ1 = σ \ σ0. Let σ0 × σ1 denote the juxtaposition
of σ0 and σ1. We wish to compare ZK(σ) and ZK(σ0 × σ1). One has that
ZK(σ0) = exp(ξ0), Z

K(σ1) = exp(ξ1), and hence that ZK(σ0×σ1) = exp(ξ0+ξ1).
Moreover, ZK(σ) = exp(ξ0 + ξ1 + ξ′), where ξ′ is a sum of diagrams for which
Γ is connected, has degree ≥ 2 (since L is algebraically split), and has a vertex
on σ0 and on σ1. Since ξ0 is also of degree ≥ 2, it follows that every term of
(ZK(L)−ZK(L0

∐

L1))ν
⊗l = pl((Z

K(σ)−ZK(σ0 ×σ1))νl)ν
⊗l is a sum of terms

which satisfy that each component of Γ, with a vertex on one of the 3 components
of L0, has degree at least 2 and that some such component must also have a vertex
lying on L1. It follows that any such term, having at least 2n external vertices
on each component of L, must have more than 2n internal vertices, and hence
that such a term is in the kernel of in (since it is of degree > nl + n).

Now suppose that M = S3(L), where L is arbitrary. Let B be the linking
matrix of L. It is well known that B becomes diagonalizable after taking the
direct sum with a certain diagonal matrix D having non-zero determinant. Let
L′ denote a link whose linking matrix is D. Then if M ′′ denotes S3(L

∐

L′), the
theorem holds for M ′′, since L

∐

L′ is equivalent to an algebraically split link L′′,
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via handle sliding (so that M ′′ = S3(L′′)). Then the theorem holds also for M ,
using the formula ZLMO

n (M ′′) = ZLMO
n (M)|H1(S

3(L′)|n (since |H1(S
3(L′)| =

|det(B)| 6= 0).

5. Review of Rozansky-Witten theory.

The theory whose partition function is believed to yield the G-Casson invariant
is a twisted version of N = 4 super-Yang-Mills theory in 3-dimensions [55], [10].
Seiberg and Witten [48] have given a solution of the physical theory with G =
SU(2) in the coulomb branch. The coulomb branch of a theory corresponds to
an analysis at a particular (low) energy scale. This solution has, as its moduli
space, the reduced SU(2) 2-Monopole moduli space, that is the Atiyah-Hitchin
space XAH . Since the topological theory should not depend on which scale we
are looking at, we can twist the low energy theory of Seiberg and Witten and
in this way we are led to equating the SU(2) Casson invariant with a particular
path integral over the space of maps from a 3-manifold to XAH .

Rather more generally it is believed that the moduli space for the physical
theory with group G is some monopole moduli space. For example for SU(n)
it is believed to be the reduced SU(2) n-monopole moduli space. These moduli
spaces are all hyper-Kähler. We denote those hyper-Kähler manifolds that arise
as the moduli space of the coulomb branch of the G physical theory by XG.
From this point of view the G Casson invariant is then equated with a particular
path integral over the space of maps from a 3-manifold to some hyper-Kähler
XG. The path integral in question, ZRW

XG
[M ], was described and analysed in [44].

Given some subtleties that we will address later, one expects that ZRW
XG

[M ] and

λG(M) if not equal are very closely related. (The exact statement was given in
the introduction (1.3)).

5.1. The Rozansky-Witten model. Rozansky and Witten [44] defined a path
integral, and so invariants for a 3-manifold, for any hyper-Kähler X. This section
is devoted to describing the objects that go into defining that path integral.

Let φ be a map from the 3-manifold M to a hyper-Kähler manifold X. In
local coordinates on X, the map is denoted φi, i = 1, . . . , 4n.7 We write φ ∈
Map(M,X). Denote by TφMap(M,X) the tangent space of Map(M,X) at φ.
One may identify Tφ Map(M,X) with Ω0 (M,φ∗ (TX)). Since one has, TX ≡R

T (1,0)X ≡ V , for the tangent bundle of X (see the review in Appendix A). We de-
fine η to be a Grassman variable8 on Ω0 (M,φ∗ (V )), that is η ∈ Λ1

(

Ω0 (M,φ∗ (V ))∗
)

which is, in local coordinates, denoted by ηI(x), I = 1, . . . , 2n. Let χ be a Grass-
man variable on Ω1 (M,φ∗ (V )), that is it is an element of Λ1

(

Ω1 (M,φ∗ (V ))∗
)

which, in local coordinates, we denote by χI .

7φi is the composite of φ, restricted to the inverse image of the coordinate neighborhood,
with the i-th coordinate function. Thus φi is not a function defined on all of M , but only on
some open set.

8The definition of what it means to be a Grassman variable on a vector space is explained in
Appendix B
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We define a Lagrangian (density on M) L = L1 + L2,

L1 =
1

2
gij(φ) dφi ∗ dφj + εIJ(φ)χI ∗ ∇ηJ(5.1)

L2 =
1

2

(

εIJ(φ)χI∇χJ +
1

3
ΩIJKL(φ)χIχJχKηL

)

.(5.2)

The covariant derivative ∇ is defined with the pullback of the Levi-Civita con-
nection on V ,

∇I
J = dδI

J + (dφi)ΓI
iJ ,(5.3)

and ∗ is the Hodge star operator on M thought of as a Riemannian manifold. The
two Lagrangians are separately invariant under a pair of BRST transformations.
One does not need to pick a complex structure to exhibit these, however that
level of generality is not required and we pick now a complex structure on X
so that the φI are local holomorphic coordinates with respect to this complex
structure. In this complex structure we can pick a basis, Q, Q for the BRST
charges which act by

QφI = 0, QφI = T I
J η

J , QηI = 0, QχI = −dφI ,(5.4)

and

QφI = ηI , QφI = 0, QηI = 0, QχI = T I
J
dφJ − ΓI

JK ηJχK .(5.5)

These BRST operators satisfy the algebra

Q2 = 0, {Q , Q} = 0, Q
2

= 0.(5.6)

The BRST invariant sigma model action is

S =

∫

M
(L1 + L2) .(5.7)

We note that L1 is both Q and Q exact. Indeed one has

(5.8) L1 = 〈dφ, dφ〉 + 〈χ, T∇η〉 = −Q〈χ, dφ〉 = QQ

(

1

2
εIJ χ

I ∗ χJ

)

,

where the inner product for X ∈ Ω1(M,T (1,0)X) and Y ∈ Ω1(M,T (0,1)X), is
defined to be

〈X,Y 〉 = gIJ X
I ∗ Y J .(5.9)

In order to write L1 we needed to pick a metric on M . However, as L1 is BRST
exact, nothing depends on the choice made (see [9] section 2 for how this is
established) and, ultimately, this explains why this theory produces a 3-manifold
invariant.

Now we have a gauge theory interpretation of the sigma model action (5.7) as
a gauge fixed action. Firstly, L2, is BRST invariant (and metric independent).
However, it is not BRST exact. So we may consider it to be the initial gauge
invariant Lagrangian that needs to be augmented with a gauge fixing term, in
order to arrive at a well defined theory. The gauge fixing term should be BRST
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exact and we see that L1 fits the bill. In section 9.1 we will, for b1(M) = 1, take
this point of view and gauge fix an invariant Lagrangian. In fact what one finds
is a theory that looks a great deal like the Chern-Simons theory of Witten. This
suggestive analogy will be taken up again when we make a more comprehensive
comparison with Chern-Simons theory below.

The action (5.7) at first sight defines quite a complicated theory. However, as
it is a topological theory, one may expect rather drastic simplifications. This is,
indeed, the case.

There are various arguments that are available (see [44] and [50]) that establish
that one may as well instead consider the Lagrangians

L1 → L1 =
1

2
gij(φ0)dφ

i
⊥ ∗ dφj

⊥
+ εIJ(φ0)χ

I ∗ dηJ
⊥

−ΩIJKL(φ0)T
J
M
χI ηL

0 φ
M
⊥ ∗ dφK

⊥(5.10)

L2 → L2 =
1

2

(

εIJ(φ0)χ
IdχJ +

1

3
ΩIJKL(φ0)χ

IχJχKηL
0

)

.(5.11)

The notation in these formulae is as follows. Set φ⊥ ∈ Ω0 (M,φ∗0(TX)), where
the φi

0 are the constant maps and the φi
⊥ are required to be orthogonal to the

φi
0, that is

∫

M ∗φj
⊥ = 0. The ηI are also expanded as, ηI = ηI

0 + ηI
⊥ , where the

ηI
0 are harmonic 0-forms with coefficients in the fibre Vφ0 of the Sp(n) bundle

V → X and the ηI
⊥ are orthogonal to these

∫

M ∗ ηJ
⊥ = 0. Though not indicated

in the formulae we will, below, also decompose the χI fields in a similar fashion,
χI = χI

0 + χI
⊥ where the χI

0 are harmonic 1-forms with coefficients in the fibre

Vφ0 and the χI
⊥ are orthogonal to these in the obvious way.

The theory that we will analyze in the following sections is the one defined in
terms of L1 +L2. This theory is rather simple to get a handle on, as we will see.

5.2. Path Integral Properties. Before proceeding we should mention that we
will normalize the bosonic part of the path integral measure as done in [44].
This means that on occasion certain factors of 2π will make an appearance and
those can always be traced back to our choice of normalization. Somewhat more
involved is the question of sign of the path integral. Different approaches to fixing
this have been explained in [44] and [50], and we will take the signs to be as given
in those references. The question of framing in the path integral is not adressed
here. The issues involved are spelt out in [44].

5.3. Relationship with Chern-Simons theory. In this section we review
the relationship between Chern-Simons theory and the Rozansky-Witten model.
Though this relationship has already been explained in [44], we include it here so
that we may refer back to it as we go along.

Recall that the Chern-Simons action is

LCS = Tr

(

AdA +
2

3
A3

)

(5.12)
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where the trace is understood to be normalized so as to agree with the standard
inner product on the Lie algebra. We compare this with (5.11). Notice that there
is almost a direct match if we make the following substitutions

Aa → χI

TrTaTb → εIJ

fabc → ΩIJKL(φ0)η
L
0 ,(5.13)

where Ta are the generators of the Lie algebra. Also note that the symmetry prop-
erties of the various objects are reversed. TrTaTb is symmetric in its arguments
while εIJ is antisymmetric, fabc is totally antisymmetric while ΩIJKL(φ0)η

L
0 is

totally symmetric. This is as it should be since Aa is an anti-commuting object
while χI is commuting.

In any gauge theory, before performing a perturbative expansion, one needs to
gauge fix, that is to pick a section locally in the space of connections. In Chern-
Simons theory, since we are on a 3-manifold, we have the trivial connection to
use as origin of the affine space of connections. A reasonable gauge choice, about
the trivial connection, is then

d ∗A = 0(5.14)

which is implemented in the path integral by a delta function constraint9

δ(∗d ∗ A) =

∫

Dt exp

(

i

∫

M
t d ∗ A

)

(5.15)

One should compare this with the second term in (5.10), with t → ηI . Fur-
thermore (see our review in Section 9.1), when gauge fixing, in order to balance
measures, one must also introduce the so called Fadeev-Popov ghosts, c and c̄,
into the path integral. These, Lie-algebra valued Grassmann odd zero-forms,
enter in the action as

∫

M
Tr (c̄ d ∗ (d+A) c).(5.16)

Now compare this with (5.10). The correspondence is readily seen to be

ca → φI

c̄a → φ
I
.(5.17)

Moreover, we will see in section 9.1 that the topological supersymmetry of
the Rozansky-Witten theory is the natural analogue of the BRST symmetry of
Chern-Simons theory. Even more is true. There is in any gauge theory an Sp(1)’s
worth of BRST symmetry [22], which comes by exchanging the rôle of the ghosts

9Recall that in dimension 1,
∫

e ipx dp = 2πδ(x), is an integral representation of the Dirac
delta ‘function’. In a lattice approximation of M (5.15) is understood as

∏

x∈M δ (∗d ∗ A(x))

where the product is over all nodes of the lattice.
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c and c̄ and this Sp(1) goes over to the Sp(1) of the Rozansky-Witten theory10.
The analogy is even more remarkable when one notes that the symmetric gauge
fixing is in fact implemented by adding,

QQ (Tr A ∗ A) ,(5.19)

to the action, which should be compared with (5.8).

Given the intimate relationship with Chern-Simons one would expect that
both the IHX and the AS relations would hold in the Rozansky-Witten theory.
That the IHX relation is satisfied was established in [44] and corresponds to the
geometric analogue of the Jacobi identity, namely to the Bianchi identity for the
Ω tensor. At a naive level the AS relation does not appear to be true in Rozansky-
Witten theory, however it holds in the most meaningful way. Recall that the AS

=  -

Figure 1. The AS Relation

relation in Chern-Simons theory amounts to the anti-symmetry property of the
structure constants, fabc, of the Lie algebra, that is, fabc = −facb, as depicted
in Figure 1. On the other hand, in the Rozansky-Witten theory the “structure
constant” which appears in diagrams is the completely symmetric tensor ΩIJKL

and so the identity implied by Figure 1 appears to be violated. However, one must
recall that, in reality, the vertices in the Rozansky-Witten theory are connected to
Grassmann odd objects and that if one thinks of the vertices as incorporating this
Grassmann character then the vertex obeys the AS relation. So for example in
the Rozansky-Witten theory, any diagram which has a loop centered at a vertex,
as shown in Figure 2, vanishes which is a fact completely consistent with the AS
relation. The reason it vanishes is that while Ω is symmetric, the labels in the
loop are contracted by εIJ which is anti-symmetric and that the contraction is
anti-symmetric is due to the fact that we had Grassmann odd variables there.
In section 7.1 we will be quite explicit about how the AS relation arises for
b1(M) = 3.

For all the similarity there is one important difference between the two theories.
The vertex in the Rozansky-Witten model carries a Grassmann odd harmonic
mode, ηI

0 . This means that this vertex may never appear more than 2n times in

10One also expects that the peculiar supersymmetry that exists in Chern-Simons theory [8]
also holds here. It would correspond to

δφ
I

= εµ T I
I χ

I
µ, δχI

µ = εµνλ ε
ν∂λφI , δηI = εµDµφ

I .(5.18)

and a casual glance at the action seems to show that indeed the symmetry is present, at least
in the case of flat space.



UNIVERSAL PERTURBATIVE QUANTUM 3-MANIFOLD INVARIANT 377

=  0
Figure 2. The Tadpole Diagram

any diagram. Thus there is a cut-off built into the perturbative expansion of the
Rozansky-Witten theory.

5.4. Compact and non-compact X. The spaces XG that are associated to a
group G really correspond to certain moduli spaces of monopoles. These spaces
are hyper-Kähler but non-compact. Nevertheless, they are asymptotically flat.
The dependence that one finds on XG is through terms of the form

∫

XG

Tr

(

R(XG)

2π

)2j1

. . . Tr

(

R(XG)

2π

)2jn

,(5.20)

with
∑

i ji = n, or with explicit dependence on the holomorphic 2-form, such that
the integrand is a top form. Since the manifolds are asymptotically flat integrals
of this type will make sense. To be sure that the invariants do not trivially vanish
we need to know if integrals of the form (5.20) are zero or not.

Non-compact hyper-Kähler manifolds abound. Examples include the Atiyah-
Hitchin manifold XAH , which is the SU(2) 2-monopole moduli space as well
as T ∗CPn for which Calabi [19] exhibited hyper-Kähler metrics. More gener-
ally, one has a procedure for producing examples. Suppose that one is given a
hyper-Kähler manifold X admitting a Lie group action of isometries G which
preserve the hyper-Kähler structure with µ : X → g

∗ × R3 the corresponding
moment map, where g

∗ is the dual of the Lie algebra of G. Then, the hyper-
Kähler quotient construction [29] guarantees that if G acts freely on µ−1(0) with
a Hausdorff quotient then the quotient manifold µ−1(0)/G (denoted X//G) is
once more hyper-Kähler (with the hyper-Kähler metric being the induced one).
Starting with the hyper-Kähler manifold Cm × Cm and quotienting with various
groups gives rise to many known examples of hyper-Kähler manifolds including
the monopole moduli spaces of interest. For n > 1 we are unaware of any calcula-
tions for integrals of the form (5.20). There appears to be a dearth of information
on the properties of such integrals. We will proceed under the assumption that
there are sufficiently many manifolds for which integrals of the type (5.20) are
finite and non-vanishing.

Of course, once one has the invariants at one’s disposal, they are defined for any
hyper-Kähler X and not just XG. So that, in particular, one may also consider
compact manifolds. However, while non-compact hyper-Kähler manifolds are
plentiful the compact variety are rare birds indeed. There are essentially two
series of examples [6]. The first is made up of a resolution of the n-fold symmetric

product of K3 surfaces and is denoted by S[n]. The Douady space, S[n], is a (real)
4n dimensional irreducible hyper-Kähler manifold. The second series, denoted by
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Kn, is related to the Douady space, T [n], of the n-fold symmetric product of the
four dimensional torus T . T [n] is not irreducible while Kn is. There is only one
known example which is neither of type S[n] or Kn.

What we would really like is to get a handle on integrals of the form (5.20).
Fortunately, very recently, computations of the even Chern numbers for the S[n]

series have been made for n = 1, . . . , 7.11 It is quite remarkable that these
are all non-zero and positive. One can check to see that the Chern characters
of the tangent bundle in these cases do not vanish. As far as we are aware
there are no similar computations available for the Kn series except for the Euler
characteristic, which is again strictly positive and again due to L. Göttsche [24].

5.5. Product groups (manifolds). Since the Generalized Casson invariant can
be morally viewed as the Euler characteristic of the moduli space of flat G connec-
tions, one has immediately that the invariant for a product group is the product of
the invariant of each group factor. Let the group have the form G = G1×G2, then
Hom(π1(M), G)/G = Hom(π1(M), G1)/G1 × Hom(π1(M), G2)/G2, or M(G) =
M(G1) ×M(G2) and consequently χ(M(G)) = χ(M(G1)) . χ(M(G2)).

How does the Rozansky-Witten invariant behave when we consider product
groups? The answer is that it factorizes as it should. To pass from the gauge
theory to the sigma model one uses the dictionary G → XG, which for products
reads G1×G2 → XG1×XG2 . The hyper-Kähler structure of a product manifold is
the natural product hyper-Kähler structure. The path integral factorizes since the
space of maps factorizes and the Lagrangians split into the sum of two pieces, one
of which only involves objects associated with XG1 , the other involving objects
only depending on XG2 . We have then that

ZRW
X1×X2

[M ] = ZRW
X1

[M ] . ZRW
X2

[M ].(5.21)

This simple observation has immediate consequences for the invariant, if the
dependence on X is only through characteristic classes. For, if this is the case,
then we may expand the partition function as

(5.22)

ZRW
X [M ] =

∫

X

n
∑

j1≥···≥jn

Tr

(

R(X)

2π

)2j1

. . . Tr

(

R(X)

2π

)2jn

In
(j1,...,jn)(M).

(It is understood that in (5.22) one picks out the form of degree 4n in the inte-
grand, that is

∑n
k=1 jk = n. The actual form of the integrals In

j1,...,jn
(M) depends

very much on the first Betti number of M .) Now the factorization property (5.21)
implies that, in fact,

ZRW
X [M ] =

∫

X
e

∑n
j=1 Tr

(

R(X)
2π

)2j
Ij(M)

,(5.23)

11We thank L. Göttsche for making these computations available to us.
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where

Ij(M) = Ij
(j,0,...,0)(M).(5.24)

Consequently, the In
(j1,...,jn)(M) are completely determined by the Ij(M) for

j ≤ n.12 This has quite drastic implications. Since at any n we are claiming
that there is only one new integral In(M) that arises, there is then only at most
one new invariant at the given n. Consequently there are only, maximally, a Z’s
worth of invariants! We will see, in the following sections, that if M has rank ≥ 1
then both the hypothesis that X enters only through its Chern numbers and the
conclusions drawn hold.

The interesting case then is b1(M) = 0. In this case we cannot show that the
X only enters through its Chern numbers. This is just as well since it is believed
that the number of LMO invariants grows rather more rapidly than linearly with
dimension (degree). However, for n = 1, Rozansky and Witten showed that the
invariant is proportional to TrR2 and one can also show that the double theta at
n = 2 is proportional to TrR4. Since the Mercedes Benz diagram is proportional
to the double theta this means that also at n = 2 there is only one new invariant.

Figure 3. The Double Theta Diagram

While the main thrust of our physical computations is to avoid working directly
with diagrams, one aspect of the factorization property for any M is very simple
to describe in terms of the diagrammatic expansion. One deduces from (5.21) that
for product manifolds the connected diagrams vanish while the product diagrams
factor to reproduce the formula. The vanishing of the connected diagrams is a
simple consequence that one gets from considering how the ηI zero modes enter
into the diagram.

12One might have thought that by suitably juggling terms proportional to,

Tr

(

R(X)

2π

)2j

Tr

(

R(X)

2π

)2p

(5.25)

with j + p ≤ n in the exponent, one might still be able to satisfy (5.21). However, since we
can find hyper-Kähler manifolds Xj , Xp and X4n−4j−4p of dimension 4j, 4p and 4(n − j − p)
respectively, such a term would spoil the factorization property. In the text we will see explicitly
that the partition function indeed takes the form of (5.23), when b1(M) ≥ 1.
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Figure 4. The Mercedes Benz Diagram

On a product manifold, X = X1 ×X2, with dimRX1 = 4n1, dimRX2 = 4n2

and n1 + n2 = n, the 2-form εIJ becomes the sum of the holomorphic symplectic
2-forms of each factor, i.e. εIJ = ε1IJ + ε2IJ . Likewise, the curvature tensor splits
as ΩIJKL = Ω1

IJKL +Ω2
IJKL. However, one must remember that in diagrams the

curvatures are connected by εIJ (coming from propagators). Which means that
vertices with Ω1

IJKL assigned to them can only be connected to other vertices

with Ω1
IJKL assigned to them since the εIJ do not ‘mix’ manifolds. This, in turn,

means that for connected diagrams one has assigned Ω1
IJKL to every vertex or one

has assigned Ω2
IJKL to every vertex. There are 2n1 harmonic ηI modes, denoted

ηI
1 , from X1 and 2n2 harmonic ηI modes, denoted ηI

2 , from X2.

Hence, in any given connected diagram with m vertices one has exactly m ηI
1

or m ηI
2 zero modes appearing. In order to get a non-vanishing answer for the

integral over the harmonic modes the product of connected diagrams appearing
in one Feynman diagram must be such that exactly 2n1 vertices can have Ω1

IJKL

assigned to them and 2n2 vertices can have Ω2
IJKL assigned to them. For a

completely connected Feynman diagram, with 2n vertices, this is not possible if
both n1 and n2 are non-zero.

5.6. Observables and Q-cohomology. There are a number of observables that
can be defined. The expectation value of each of these is potentially a new
invariant, though, as we will see, they may be invariants that we have already
encountered.

For us, the basic set of observables involves powers of the holomorphic sym-
plectic 2-form ε, taken at some point of M by pull-back. However as will be seen
below, the precise point on M at which the form is evaluated is immaterial and
therefore will be suppressed from the notation. Let13

O(k) = dk

(

−1

2
ηIεIJη

J

)k

.(5.26)

13That the following observables make sense can be seen by noting that they should be viewed
as the pull back of the evaluation of the k-th wedge product of the holomorphic 2-form on 2k
(Grassmann odd) tangent vectors.
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The coefficients dk will be fixed below. The invariants of the manifold M are
defined by a path integral which has an insertion of O(k), that is

ZRW
X [M,O(k)] =

∫

DφDηDχ e−S O(k).(5.27)

Let < A > denotes the expectation value of A, with respect to some set of
fields Φ and some action S(Φ),

< A >=

∫

DΦ e−S(Φ)A.(5.28)

The measure on the harmonic ηI modes is determined by

< ηI1 . . . ηI2n >= εI1 ... I2n ,(5.29)

where we mean that one integrates only over the harmonic ηI modes and for
which the action is taken to be zero.

We, partially, fix the coefficients dk by demanding that

d0 = 1,(5.30)

and that

1

(2π)2n

∫

X

√
g d4nφ0 < O(k)O(n − k) >= 1,(5.31)

where
√
g d4nφ0 is the Riemannian measure on X. Notice that when dimRX = 4,

that this specifies the value of d1, while for dimRX = 8, d0, and d2 are determined
and d1 is fixed up to a sign.

One of the most important properties of this class of observables is that
∫

DφDηDχe−S O(n) = (|H1(M,Z)|)n .(5.32)

This follows from the normalization that we have chosen in (5.31) as well as the
observation in [44] that the Ray-Singer torsion provides a natural volume form
which includes the Riemannian volume of X times |H1(M,Z)|′ = |TorH1(M,Z)|.
The reason that it is |H1(M,Z)| rather than |H1(M,Z)|′ that appears in (5.32) is
that the observables, O(k), vanish for manifolds that are not QHS’s (this follows
by a count of vertices similar to those made in section 6).

We can take the coefficients dk, to be

dk =
(2π)2k

(Vol(X)n!)k/n
= (dn)k/n ,(5.33)

so that the observables enjoy the following property

O(p)O(q) = O(p+ q).(5.34)

We should explain why these are good operators to consider in the theory. Let
O(ω) be defined by

O(ω) = ωI1...Ik
ηI1 . . . ηIk(5.35)
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where the ωI1...Ik
are both the components of a ∂ closed (k, 0) form as well as

being the components of a ∂ closed (0, k) form. (Here ∂ and ∂ are the holomorphic
and anti-holomorphic Dolbeault operators on X and the correspondence is given
by the isomorphism between TX(1,0) and TX(0,1).) In equations this means that
we want

∂I ωI1...Ik
dzIdzI1 . . . dzIk = 0,(5.36)

and

∂I ωI1...Ik
dz̄Idz̄I1 . . . dz̄Ik = 0,(5.37)

where

ωI1...Ik
= ωI1...Ik

T I1
I1
. . . T Ik

Ik
,(5.38)

and T I
I

= gIJε
JI (see the appendix for more details about hyper-Kähler manifolds

and for our conventions).

The important property of such operators is that they are both Q andQ closed.
That is,

QO(ω) = Qφi ∂O(ω)

∂φi
= ηI ∂IωI1...Ik

ηI1 . . . ηIk = 0,(5.39)

where the third equality follows from the fact that ω is ∂ closed. (While these
operators are Q closed they are not Q exact, if ω is non-trivial in cohomology,
since Q exactness would imply ∂ exactness of ω.) Similarly

QO(ω) = T J̄
Jη

J ∂J̄O(ω) = ηI ∂IωI1...Ik
ηI1 . . . ηIk = 0,(5.40)

Another important property of such observables is that they are essentially d
closed as well, where d is the exterior derivative on M . Here essentially means
that this holds because the path integral is concentrated along the constant maps.
But since the dependence of the observables on M is via pullback with respect
to φ, they do not depend on the point at which they sit on M .

6. Outline of the proof of Heuristic Theorem 2

The strategy of the proof will be to decide which types of Feynman diagrams
can contribute and then to find a way of encoding all the relevant information
without doing any expansions. The one piece of information that we will use
continuously is that, on expanding out the interaction part of the action, the
interaction terms will be of the form

V p
1 V

q
2 ,(6.1)

where

V1 =
1

6

∫

M
ΩIJKL(φ0)χ

IχJχKηL
0(6.2)

V2 = −
∫

M
ΩIJKL(φ0)T

J
M
χI ηL

0 φ
M
⊥ ∗ dφK

⊥ .(6.3)
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There is a condition on the number of interactions that arise from the fact that
both vertices V1 and V2 are linear in ηI

0 , which we recall is constant on M . Since ηI
0

is constant on M , this means that the “path integral” over this “field” is actually
a 2n-fold product of Berezin integrals (the exact specification of the measure is
described in appendix B). Furthermore, from the rules that we describe for such
variables, we see that the integration will vanish identically unless the integrand
includes the product of all 2n components of ηI

0 (each occuring exactly once).
Consequently one has

p+ q = 2n.(6.4)

The rest of the proof depends on how many χI harmonic modes there are. The
importance of these modes lies in the fact that, like the ηI

0 , they will only appear
in the vertices.14 Hence, for the same reason as for the harmonic ηI , the path
integral will vanish identically unless the integrand includes the product of all the
harmonic components of χI . The number of harmonic modes of χI is 2nb1(M).
This means that there is another condition that must be satisfied to ensure that
the integral has a chance of not vanishing, which is

3p + q ≥ 2nb1(M).(6.5)

This inequality comes by noticing that if 3p + q < 2nb1(M) then certainly the
integrand will not have the required product of harmonic χI . As the constraint
(6.5) depends on b1(M), we go through the possible b1(M) values and along the
way we will strengthen it. Subtracting (6.4) from (6.5) gives the constraint

p ≥ n(b1(M) − 1).(6.6)

6.1. Manifolds with b1(M) ≥ 4. From (6.6) we see that if b1(M) ≥ 4, then
clearly p > 2n, but then (6.4) certainly cannot be satisfied. Consequently, we see
that it is in fact impossible to integrate up the harmonic modes of χI and hence
the Rozansky-Witten path integral vanishes.

7. Manifolds with b1(M) = 3

The inequality (6.6) says, for b1(M) = 3, that p ≥ 2n and this intersects with
(6.4) only if p = 2n and q = 0. This condition tells us that we are to ignore V2

completely, so that perturbatively one is interested in

V 2n
1 .(7.1)

However, we know more. Since there are 6n χI harmonic modes, all the χI

appearing in (7.1) must be harmonic. This means that vertex V1 effectively
reduces to

V1 =
1

6

∫

M
ΩIJKL(φ0)χ

I
0χ

J
0χ

K
0 η

L
0(7.2)

14The harmonic modes do not appear in the quadratic terms, for example
∫

M
εIJ (φ0)χ

I ∗

dηJ
⊥ =

∫

M
εIJ (φ0)χ

I
⊥ ∗ dηJ

⊥, by an integration by parts.
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and in turn that the Lagrangians (5.10, 5.11) reduces (with a slight rearrange-
ment) to

L⊥ =
1

2
gij(φ0)dφ

i
⊥ ∗ dφj

⊥ + εIJ(φ0)χ
I
⊥ ∗ dηJ

⊥ +
1

2
εIJ(φ0)χ

I
⊥dχ

J
⊥(7.3)

L0 =
1

6
ΩIJKL(φ0)χ

I
0χ

J
0χ

K
0 η

L
0(7.4)

where a zero subscript indicates the field is harmonic while the ⊥ subscript indi-
cates that the field is orthogonal to the harmonic modes on M . The path integral
to be performed is, symbolically,

∫

dΦ0 e−
∫

M L0

∫

DΦ⊥ e−
∫

M L⊥ ,(7.5)

where Φ denotes the set of fields. Rozansky and Witten [44] have shown that
∫

DΦ⊥ e−
∫

M L⊥ =
(

|H1(M,Z)|′
)n
,(7.6)

where |H1(M,Z)|′ is the order of Tor H1(M,Z). Consequently, the Rozansky-
Witten invariant in this case has the very succinct representation

ZRW
X [M ] =

(

|H1(M,Z)|′
)n
∫

dΦ0 e−
∫

M L0 .(7.7)

Let ωα, α = 1, 2, 3 be a basis of H1(M,Z). Since χI
0 is harmonic on M , we see

that it must have the expansion χI
0 = χI

αω
α, where the coefficients χI

α, for each

α = 1, 2, 3, are generators of ∧φ∗T (1,0)X. Substitution of this expansion in (7.2)
gives

V1 =
1

6
ΩIJKL(φ0)χ

I
αχ

J
βχ

K
γ η

L
0

∫

M
ωαωβωγ

=
1

6
ΩIJKL(φ0)χ

I
αχ

J
βχ

K
γ η

L
0 ε

αβγ I(M),(7.8)

where

I(M) =
1

6
εαβγ

∫

M
ωαωβωγ .(7.9)

By the arguments that we presented at the start of this section culminating in
(7.1) we immediately have that the Rozansky-Witten invariant is proportional to
I(M)2n.

To determine the coefficient, it suffices to compute the invariant for any 3-
manifold of rank 3 as it does not depend on M but only on X. In [50] (equation
(3.23)), the second author showed that the Rozansky-Witten invariant for the
3-torus, T 3, is equal to the Euler characteristic of X if it is compact. (More
generally, it is equal to the integral of the Euler form over X) Denote this (in
both cases) by e(X). We also have I(T 3)2 = 1 so that we find for manifolds M ,
with b1(M) = 3,

ZRW
X [M ] = e(X)

(

|H1(M,Z)|′I(M)2
)n
.(7.10)
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One may relate this back to the Lescop invariant λ(M), as

I(M)2 =
λ(M)

|H1(M,Z)|′(7.11)

so that

ZRW
X [M ] = cXλ(M)n,(7.12)

where

cX = e(X).(7.13)

One can also get this result by performing the finite dimensional integrals that
were left to be done in (7.7). Indeed these are computed directly from (B.34).

As already explained in section 5.4 there are compact and non-compact X
for which e(X) is non-vanishing for every n, so that (7.12) is not empty. For

example, for the S[n] series one has the generating function
∞
∑

n=0

e(S[n])tn =

∞
∏

k=1

1

(1 − tk)
24 ,(7.14)

while for the Kn series one has

e(Kn) = (n+ 1)3σ1(n+ 1),(7.15)

where σ1(n) is the sum of the divisors of n. It is amusing that, for S[n], if one
replaces the Casson invariant with the indeterminant t, then summing over n in
(7.12) reproduces the generating function for the Euler characteristics (7.14).

On the non-compact side (XAH)n will do, since e(Xn
AH) = e(XAH)n = 1.

7.1. The AS Relation. The vertex with the χ zero modes attached is

V1 =
1

6
ΩIJKL(φ0)χ

I
αχ

J
βχ

K
γ η

L
0

∫

M
ωαωβωγ .(7.16)

If one extracts the part that depends on X from the dependence on M we can
write the vertex as

V1 = Fαβγ(X)

∫

M
ωαωβωγ ,(7.17)

where Fαβγ(X) = 1
6ΩIJKL(φ0)χ

I
αχ

J
βχ

K
γ η

L
0 , is totally antisymmetric in its three

labels. Consequently, it is the vertex Fαβγ(X) that satisfies the AS relation. In
Chern-Simons theory a similar vertex arises when one replaces the gauge con-
nection with harmonic modes in the cubic term, that is, one sets Aa = Aa

αω
α.

The cubic term is now proportional to Kαβγ(G)
∫

M ωαωβωγ , where Kαβγ(G) =

fabcA
a
αA

b
βA

c
γ . Notice that Kαβγ(G) is also antisymmetric in its three labels. The

antisymmetry of Fαβγ(X) is a consequence of the symmetry of Ω and the an-

ticommuting properties of the Grassmann variables χI
α. The antisymmetry of

Kαβγ(G) rests on the antisymmetry of the structure constants of G, fabc and the
fact that the variables Aa

α commute with each other.
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8. Manifolds with b1(M) = 2

In this case from (6.6) we learn that p ≥ n. However, we can show that q = 0.
To see this, note that in the vertex V1 there can be at most two harmonic χI ,
since the wedge product of three would be zero (b1(M) = 2). This means that
we can refine (6.5) to obtain the inequality

2p + q ≥ 4n(8.1)

which together on subtracting (6.4) tells us that p ≥ 2n. Hence, once more we
find that p = 2n and q = 0. What this means for us is that we may ignore V2

and also in order to guarantee that the harmonic modes are accounted for, two
and only two of the χI appearing in V1 must be harmonic. One sets

V1 =
1

2

∫

M
ΩIJKL(φ0)χ

I
⊥χ

J
0χ

K
0 η

L
0 .(8.2)

Let ωα, α = 1, 2, be a basis of H1(M,Z). Since χI
0 is harmonic on M , we see

that it must have the expansion χI
0 = χI

αω
α, where the coefficients χI

α, for each

α = 1, 2, are generators of ∧φ∗T (1,0)X. Inserting this into (8.2), yields

V1 = −1

2
ΩIJKL(φ0)χ

J
αχ

K
β η

L
0

∫

M
χI
⊥ω

αωβ.(8.3)

While the wedge product ωα∧ωβ is exact it is not harmonic. Set ωα∧ωβ = εαβ dg,
where g is a one form on M . g is only defined up to exact pieces so to be definite
we demand that d ∗ g = 0.

The actions become,
∫

M
L1 =

∫

M

(

1

2
gij(φ0)dφ

i
⊥ ∗ dφj

⊥ + εIJ(φ0)χ
I
⊥ ∗ dηJ

⊥

)

(8.4)

∫

M
L2 =

1

2
εIJ(φ0)

∫

M
χI
⊥dχ

J
⊥ − ΛI

∫

M
dχI

⊥ g.(8.5)

where we have set ΛI = 1
2ΩIJKL(φ0)ε

αβχJ
αχ

K
β η

L
0 .

We now complete the square

(8.6)
∫

M
L2 =

1

2
εIJ(φ0)

∫

M

(

χI
⊥ + εIKΛKg

)

d
(

χJ
⊥ + εJLΛLg

)

+
1

2
ΛIε

IJΛJ

∫

M
gdg.

Notice also that the part of (8.4) that involves χI
⊥ is

∫

M
εIJ(φ0)χ

I
⊥ ∗ dηJ

⊥ =

∫

M
εIJ(φ0)

(

χI
⊥ + εIKΛKg

)

∗ dηJ
⊥,(8.7)

since we have chosen d ∗ g = 0. We now change variables in the path integral.
Since χI

⊥ only appears in the action in the combination χ̂I
⊥ = χI

⊥ + εIKΛK g, we

change variables to χ̂I
⊥. Does such a change of variables make sense? The answer

is yes. Firstly, since ΛI is Grassmann odd we are maintaining the grading of the
fields. Secondly, g lives in H1

⊥(M) so this character of the field is also preserved.



UNIVERSAL PERTURBATIVE QUANTUM 3-MANIFOLD INVARIANT 387

Lastly, the Jacobian for such a change of variables is unity since the object by
which we are shifting χI

⊥ does not depend on χI
⊥.

Hence the actions (8.4) and (8.5) can be grouped as follows

S0 + S⊥ =

∫

M
(L1 + L2)(8.8)

where

S0 =
1

2
ΛIε

IJΛJ

∫

M
gdg,(8.9)

S⊥ =

∫

M

(

1

2
gij(φ0)dφ

i
⊥ ∗ dφj

⊥

+
1

2
εIJ(φ0)

∫

M
χ̂I
⊥dχ̂

J
⊥ + εIJ(φ0)χ̂

I
⊥ ∗ dηJ

⊥

)

.(8.10)

This shows us, once more, that the path integral over all the fields splits nicely
as,

∫

dΦ0 e−S0

∫

DΦ⊥ e−S⊥.(8.11)

The path integral,

Z⊥ =

∫

DΦ⊥ eS⊥ ,(8.12)

is essentially the same one that was discussed in the rank 3 case so it gives a
factor of

(

|H1(M,Z)|′
)n
.(8.13)

It is the first factor that is of interest,

Z0 =

∫

dΦ0 e−S0 .(8.14)

The integral µ(M) =
∫

M gdg, is a well-known invariant of the manifold M (see
[32] for the Poincaré dual linking number definition). The Casson invariant in
this case is −|H1(M,Z)|′ µ(M).

We have then that

ZRW
X [M ] = c′X (λM )n ,(8.15)

where,

c′X =

∫

dΦ0

(

ΛIε
IJΛJ

)n

2nn!
.(8.16)

Below, we will establish that c′X = cX .
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8.1. On the relationship with the results of Beliakova and Habegger.
In [7] the LMO invariant and the Lescop invariant for manifolds with b1(M) = 2
were related. These authors established that the coefficients of the powers of the
Lescop invariant are related to evaluations of certain diagrams that we can refer
to as H diagrams. One should, as we have previously seen, think of the vertices
in the Rozansky-Witten theory as if they are 3-point vertices, the ηI

0 leg being
thought of as the ‘coupling constant’ (i.e. one focuses on the order of the ηI

0 in
the expansion). This 3-point vertex,

V 3
IJK χI

1χ
J
2χ

K
3 =

1

6
ΩIJKL χ

I
αχ

J
βχ

K
γ ηL

0 ε
αβγ ,(8.17)

is what appears finally in (7.7) in the rank 3 case. Ignoring the ηI
0 , we see that

the vertex carries 3 legs which are attached to the three χI
α zero modes. Each of

the legs carries a different value of α = 1, 2, 3. In the current situation, however,
we find in the exponent not a 3-point vertex but rather a 4-point vertex (which
is quadratic in the coupling constant)

V 4
IJKL χ

I
1χ

J
2χ

K
1 χ

L
2 =

1

2
ΛI ε

IJΛJ .(8.18)

This vertex is the H diagram. The vertex is really a join of two 3-point vertices
along the leg marked 3. The external legs can only carry the labels 1, 2.

We note that there is another way of expressing the integrals that still need
to be performed and which exhibits very clearly that the 4-point vertex comes
from the join of 3-point vertices. Introduce another Grassmann odd variable ψI .
Then we have15

∫

dµ(ψ) e

(

−1
2ψ

IεIJψ
J + aΛIψ

I
)

= e

(

−1
2a

2ΛIε
IJΛJ

)

.(8.19)

In this way it is as if we have an extra χ harmonic mode, that is ψI plays the
role of χI

3. The 4-point vertex then is really understood as

V 4
IJKL χ

I
1χ

J
2χ

K
1 χ

L
2 =

1

2
V 3

I1J1K1
χJ1

1 χ
K1
2 〈ψI1ψI2〉V 3

I2J2K2
χJ2

1 χ
K2
2 ,(8.20)

meaning a contraction of two 3-point vertices along the legs marked with a 3.

So far we have shown how the H diagrams arise in the Rozansky-Witten the-
ory. Now we will see that this characterization of the H diagram automatically
establishes that the constants cX for rank 3 manifolds and c′X for rank 2 man-
ifolds are equal. The expressions (8.19) look like those obtained for the rank 3
case. In fact the resemblance becomes equality with the following observation:
To saturate the integral over ηI one must expand the exponential,

eaΛIψ
I
,(8.21)

15Setting a = 0 in (8.19) shows that the normalization is
∫

dµ(ψ) exp (−1/2ψIεIJψ
J) = 1,

while differentiating twice with respect to Λ and setting a = 1 and Λ = 0 shows that < ψIψJ >=
∫

dµ(ψ) exp (−1/2ψKεKLψ
L)ψIψJ = εIJ .
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out to the 2n’th term. However, in so doing we will also have 2n products of
ψI , which is exactly what is required to be able to perform the ψI integral.
Consequently, the only term of the expansion of the exponential of the quadratic
term, exp (−1/2ψI εIJψ

J), is the zeroth order piece, namely 1.
Consequently, we have that

∫

dΦ0 e−
1
2µ(M)ΛIε

IJΛJ =

∫

dΦ0 e−
√

µ(M)ΩIJKLψ
IχJ

1χ
K
2 η

L

= µ(M)n e(X),(8.22)

where the measure on the right hand side of the first equality includes that of
the ψI field. Now we are done since,

λ(M) = e(XAH)|H1(M,Z)|′ µ(M),(8.23)

we have shown that

ZRW
X [M ] = cXλ(M)n.(8.24)

9. Manifolds with b1(M) = 1

When b1(M) = 1, the vertex V1 can have at most one harmonic χI . Note that
in order to saturate the integral over the harmonic χI fields, there is a bound

p+ q ≥ 2n.(9.1)

This bound is already implied by (6.4) and so appears to convey no new informa-
tion. However, one should read it in a different way. It tells us that the equality
can be met only if one of the χI that appears in the V1 vertex and the one that
appears in the V2 vertex are harmonic. Let ω be a generator for H1(M,Z) so
that we may write χI

0 = cIω, where ω satisfies
∫

M ω ∗ ω = 1. As before, if a field
appears with a ⊥ subscript then it is orthogonal to the harmonic modes while, if
it has a zero subscript then it is understood to be harmonic. We may as well set

L1 =
1

2

(

gij dφ
i
⊥ ∗ dφj

⊥
− γAK

i γBL
j εABΩIJKLχ

I
0η

J
0 φ

i
⊥ ∗ dφj

⊥
+ 2εIJχ

I
⊥ ∗ dηJ

⊥

)

= gIJdAφ
I
⊥ ∗ dφJ

⊥ + εIJχ
I
⊥ ∗ dηJ

⊥(9.2)

L2 =
1

2

(

εIJ(φ0)χ
I
⊥dχ

J
⊥ + ΩIJKLχ

I
⊥χ

J
⊥χ

K
0 η

L
0

)

,

=
1

2
εIJ(φ0)χ

I
⊥dAχ

J
⊥.(9.3)

The covariant derivative in (9.3) is defined by

dAχ
J = dχJ +AJ

Kχ
K(9.4)

where the “connection” is

AI
J = −εIM(φ0)ΩMNJK(φ0)χ

N
0 η

K
0(9.5)

= aI
J ω,(9.6)

and

aI
J = −εIM(φ0)ΩMNJK(φ0)c

NηK
0 .(9.7)
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The connection is flat; since the tensors that appear in (9.6) depend only on
the constant maps, and the fields there are also harmonic, we are assured that
dAI

J = 0. Furthermore, as AI
J is proportional to ω, we know that AI

J ∧AJ
K = 0,

so finally

FA = 0.(9.8)

Notice that the connection (9.6) is symmetric when the labels are both down,
AIJ = εIKA

K
J = AJI , by virtue of the symmetry properties of ΩIJKL.

9.1. A Path Integral for Ray-Singer Torsion. We now remind the reader of
how one formulates the Ray-Singer Torsion in terms of path integrals. This is a
small variant on the formulation introduced by Schwarz [46]. Let V be a vector
bundle over M with a fixed flat connection A. One begins with an action

S0 =

∫

M

1

2
εIJχ

IdAχ
J(9.9)

which makes sense for any M with real dimension 4k+1 with the χI Grassmann
even 2k forms with values in V or with real dimension 4k − 1 and the χI are
Grassmann odd 2k − 1 forms with values in V . As it stands this system is not
well prescribed since

S0(χ
I + dAφ

I) = S0(χ
I),(9.10)

that is, the action enjoys a gauge symmetry. In general φI will be a form of one
degree less than that of χI . The symmetry requires that the connection be flat.
Hence on the space of χI , denoted by X , there is an action by the gauge group
G given by

φ
(

χI
)

= χI + dAφ
I , φ ∈ G.(9.11)

We do not wish to integrate over X but rather over X/G. Equivalently we chose
to integrate on a slice (section). In doing this one needs to compare Riemannian
volumes on the section and on the space X . This comparison shows that one must
multiply by a volume factor, namely the Fadeev-Popov determinant. Ultimately
one finds

∫

X/G
e−S0 =

∫

X

e−S0 δ (s) ∆FP ,(9.12)

where s denotes the section of choice.

Typically one takes the section to be

sI = dA ∗ χI ,(9.13)

since, with respect to the metric on M , it projects along the direction of gauge
transformations. The path integral with this choice of gauge is

∫

X/G
e−S0 =

∫

X

DηIDφIDφIe−Sa ,(9.14)
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where

Sa = S0 +

∫

M
εIJη

IdA ∗ χJ +

∫

M
φJdA ∗ dAφ

IgIJ .(9.15)

Notice that the path integral over ηI is there to give back the delta function
constraint onto the section (9.13) while the integral over φi reproduces the Fadeev-
Popov determinant.

The sum of the actions of (9.2) and (9.3),

Sb = S0 +

∫

M
εIJη

Id ∗ χJ +

∫

M
φJd ∗ dAφ

IgIJ .(9.16)

almost coincides with (9.15). A glance at (9.16) suggests we are quantizing the
same starting action (9.9), but with a different choice of section,

sI = d ∗ χI .(9.17)

We would expect that the path integral would not depend on which choice of
section we make use of. This is not quite true due to the presence of zero modes
of the fields. The path integral that we wish to perform, with action (9.16), has
the condition that we do not include an integration over the constant φi and ηI

modes, nor do we integrate over the harmonic part of χI . However, in evaluating
the path integral which gives us the Ray-Singer Torsion, no such restriction is
made, since one requires the cohomology of dA to be acyclic (if it is not acyclic
then one explicitly projects out the harmonic modes of the twisted Laplacian).
The path integral that we want is then not equal to the path integral for the Ray-
Singer Torsion, but rather is equal to the path integral for the Ray-Singer Torsion
divided by the integration over the harmonic modes (of the usual Laplacian).

The part of the path integral (9.14) over the harmonic modes is

∫

dφIdφJdηIdcI e
−
(

ηIεIJA
J
Kc

K − φJgJIA
I
KA

K
Lφ

L
)

=
det (aIJ)

det
(

aIKaK
J

) .(9.18)

We have found then, for manifolds with b1(M) = 1, that the path integral is16

ZRW
X [M ] =

1

(2π)2n

∫

X
det(a) (τRS(a))1/2(9.19)

where τRS(a) is the Ray-Singer Torsion for the connection A of a flat sp(n) bundle
over M (in the 2n-dimensional representation). Since in the integrand we must
pick a top form, one may move the 2π factors into a different position,

ZRW
X [M ] =

∫

X
det(a/2π) (τRS(a/2π))1/2 .(9.20)

16The prefactor of (1/2π)2n is part of the normalization of the path integral.
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9.2. A BRST argument. There is an equivalent way to express the fact that
the path integral that we are interested in yields (9.19). We start with a BRST
formulation of the model given by the action (9.9). The BRST symmetry in
question is

QχI = dAφ
I , QφI = 0, QφI = gIJεJIη

I , QηI = 0,(9.21)

and Q2 = 0. We may still decompose the fields as to whether or not they are
harmonic with respect to the usual de-Rham operator d so that (9.21) splits as

QχI
⊥ = dAφ

I
⊥ QχI

0 = AI
Jφ

J
0 , QφI

⊥ = gIJεJIη
I
⊥ QφI

0 = gIJεJIη
I
0 ,(9.22)

and

QφI
⊥ = 0 = QφI

0 QηI
⊥ = 0 = QηI

0 .(9.23)

Notice that the action (9.9) is in fact

S0 =

∫

M

1

2
εIJχ

I
⊥dAχ

J
⊥.(9.24)

We take the holonomy of X to be irreducible17, which means that AI
Kφ

K = 0

implies that φI = 0. This is not really a restriction since we will not be using any
special properties of the curvature 2-form in any case. So, put another way, we
are considering sp(n) matrices aI

J which are invertible. The fact that χI
0 = ωcI

makes no appearance in the action is due to the fact that it is pure gauge (that
is it can be gauge transformed to zero), since

ωcI = dA(a−1)IJc
J .(9.25)

We may gauge fix in two stages. Firstly we fix the ⊥ modes, and the gauge
fixing term is taken to be

{

Q,

∫

M
gIJχ

I
⊥ ∗ dφJ

⊥

}

=

∫

M

(

εIJχ
I
⊥ ∗ dηJ

⊥ + gIJdAφ
I
⊥ ∗ dφJ

⊥

)

.(9.26)

Up to this point we see that the path integral that we are interested in has as its
action (9.24) and (9.26). However, the path integral for the Ray-Singer torsion
requires that we also gauge fix the zero mode symmetry. In fact we should set cI

to zero since, by (9.25) it is pure gauge. In order to do this we add
{

Q,

∫

M
gIJχ

I
0 ∗ ωφJ

0

}

=
(

εIJc
IηJ

0 + gIJa
I
Kφ

K
0 φJ

0

)

.(9.27)

While this two step gauge fixing is not the usual covariant gauge fixing we know
that, nevertheless, it leads correctly to the Ray-Singer torsion, since it differs
from the covariant gauge fixing terms by a BRST exact term. Denote the path
integral for the Ray-Singer torsion by ZRS , the path integral that one gets simply

17This means that H0
A(M,V ) = 0. The Ray-Singer torsion (up to some power) is defined to

be the path integral over the fields in (9.21) with the proviso that they are orthogonal to the

harmonic modes of dA. As we have seen, this means that there are no restrictions on φI , φI or

ηI and the condition on χI
⊥ is the same for both this theory and the one of real interest given

in (9.2, 9.3).
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by integrating over the perpendicular modes, with action (9.24) and (9.26), by
Z⊥, and the zero mode partition function by Z0 that comes from (9.27). The
path integral now nicely factors as

ZRS = Z⊥ Z0,(9.28)

or put another way

Z⊥ = ZRS/Z0 = det(a) (τRS(a))1/2 .(9.29)

9.3. Explicit expression for the path integral. Since a takes its values in
the adjoint representation of sp(n), by a global gauge transformation we may
rotate it into the Cartan sub-algebra of sp(n). Denote the n eigenvalues of a/2π
by xi. Then a/2π is conjugate to diag (x1, x2, . . . , xn,−x1,−x2, . . . ,−xn).

Set ti = exi . Rewrite the integrand of (9.20) as

det(a/2π) (τRS(a/2π))1/2 =

n
∏

i=1

x2
i τRF (ti).(9.30)

In (9.30) τRF is the Reidemeister-Franz Torsion. The sp(1) Ray-Singer Torsion
for a connection

A =
a

2π

(

1 0
0 −1

)

ω(9.31)

is the square of the Reidemeister-Franz Torsion for a/2π.

9.4. Reidemeister-Franz Torsion and the Alexander Polynomial. The
relationship between the Reidemeister-Franz Torsion and the Alexander Polyno-
mial allows us to re-express the Rozansky-Witten invariant in a form that will
prove useful for comparison to known results about both the Lescop invariant and
the LMO invariants. It is known that the Reidemeister-Franz Torsion and the
Alexander Polynomial18 for a compact closed 3-manifold M , ∆M (t), are related
by [52]

τRF (M ; t) =
∆M (t)

(t1/2 − t−1/2)2
.(9.32)

On substituting t = ex, we see that this relationship may be rewritten as

x2 τRF (M ; ex) =

(

x/2

sinhx/2

)2

∆M (ex),(9.33)

so that
n
∏

i=1

x2
i τRF (M ; exi) = Â(X)

n
∏

i=1

∆M(exi).(9.34)

18∆M (t) is normalized so as to be symmetric in t and t−1 and so that ∆M (1) = 1.
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We have then19

ZRW
X [M ] = −

∫

X
Â(X)

n
∏

i=1

∆M(exi).(9.35)

Given any compact hyper-Kähler manifold X of dimension 4n the Todd genus
is n+ 1, so that ([44], [50])

ZRW
X [S2 × S1] = −(n+ 1),(9.36)

since ∆S2×S1(t) = 1. The S[n] series is then enough to guarantee that there is a
non-zero invariant in every dimension for S2 × S1.

Since the Chern characters of the tangent bundle of S[n] have been shown to
be non-zero up to n = 8, we know that all the invariants are realized up to this
degree for any 3-manifold M with b1(M) = 1.

9.5. On the Relationship with [GH]. In this section we assume some famil-
iarity with the notation used in [23]. According to [23] for rank 1 manifolds with
no torsion in H1(M,Z) (= Z), the LMO invariant may be written as

ZLMO(M) = 〈exp tα(M)〉.(9.37)

The notation is as follows; α(M) corresponds to a particular set of diagrams
(more on this below), the cup t means take the disjoint union of diagrams (the
exponential is to be understood in the same way) the brackets 〈 〉 mean contrac-
tion over all external legs in all possible ways.

We now need to explain what α(M) is. Let

−1

2
log
(

∆M (ex)
)

=

∞
∑

m=1

a′2m(M)x2m,(9.38)

and

− log

(

x/2

sinh (x/2)

)

=

∞
∑

m=1

2b2m x2m.(9.39)

The logarithm of our favourite product is then

−1

2
log

(

(

x/2

sinh (x/2)

)2

∆M (ex)

)

=

∞
∑

m=1

(

2b2m + a′2m(M)
)

x2m.(9.40)

By definition we have

α(M) =

∞
∑

m=1

(

2b2m + a′2m(M)
)

ω2m,(9.41)

where the powers of the indeterminant x have been replaced by the wheel dia-
grams ω2m.

19The sign has been fixed in [44] and [50].
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How does this data compare with what we have just learnt about the Rozansky-
Witten invariant? The integrand is expressible as

exp

(

−2

∞
∑

m=1

(

2b2m + a′2m(M)
)

.Tr

(

R

2π

)2m
)

(9.42)

The correspondence is thus quite clear. The diagrams ω2m are replaced by

−2Tr
(

R
2π

)2m
, the cup product should be read as the wedge product and con-

traction over all legs becomes integration over X. Under the conditions that
they consider, b1(M) = 1 and |H1(M,Z)|′ = 1 the LMO invariant is determined
by and indeed determines the Alexander Polynomial. The same is true for the
Rozansky-Witten invariants (we do not require that |H1(M,Z)|′ = 1). Clearly
the Alexander Polynomial determines ZRW

X [M ]. The converse is also true, since,
as one increases the dimension of X, higher and higher derivatives of the Alexan-

der Polynomial make an appearance. When, dimR X = 4n, one has ∆
(2n)
M (1) and

lower order derivatives appearing on the right hand side and so one may, induc-
tively, determine the Taylor series of the Alexander polynomial around t = 1.

10. The Hilbert space on S2

The techniques that we have been using thus far do not suffice to give closed
form expressions for the invariants when the rank is zero. We need to make use
of another point of view on the path integral.20

A path integral on a manifold with boundary prepares (meaning is) a vector in
a Hilbert space of states. More often than not the Hilbert space is really an infinite
dimensional Fock space. In some very special circumstances the ‘Hilbert’ space is
a finite dimensional vector space and has some properties that we would like it to
have, for example it comes equipped with a non-degenerate inner product. The
inner product may not be (and here is not) positive, but the vector space will
be called a Hilbert space of states. It was conjectured in [44] that providing one
chooses the hyper-Kähler manifold X to be compact, fortune smiles on us and
the Hilbert spaces of states for the Rozansky-Witten theory are related to certain
cohomology groups of X (so that, in particular, they are finite dimensional).
Supporting evidence for this was provided in [50] and we will use this fact below.

10.1. The Hilbert space for (non) compact X. If a manifold X is non-
compact one has a choice of which cohomology one considers for the space. For
example when XSU (2) = XAH , by the work of Sen [47] on the duality conjecture

of N = 4 super Yang-Mills theory in four dimensions, it is known that in L2-
cohomology there is only one non-zero form, which must be a (1, 1) form. On
the other hand, when we come to consider the properties of the invariants under
connected sum we will see that the total number of states available depends on
the cohomology groups H(0,p), which we would say is empty for XAH if they are

20This may well be related to the fact that the invariants are truly effective only for b1(M) =
0.
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understood as H
(0,p)
L2 . This would have the nasty consequence that the Rozansky-

Witten invariant would vanish for S2 × S1.

Different choices of cohomology for non-compact X can, therefore, lead to
wildly different results. It is for this reason that we make use, in the following,
of compact hyper-Kähler manifolds. It was argued in [44] that there is no loss in
doing so since, in any case, the only dependence on X is through integrals like
(5.20). Thus if we take the manifolds to be compact, we can consider the usual
cohomology theory of these spaces. Once the dependence on X is worked out for
arbitrary compact X and written in terms of integrals of the form (5.20) then
this dependence will be correct also for XG.

However, in the case of non-compact manifolds one needs to make use of a
slightly different set of basic observables [44]. For example, they may be based
on powers of

O =
(

εJ1J2εK1K2εL1L2 ΩI1K1J1L1ΩI2K2J2L2

)

ηI1ηI2,(10.1)

suitably normalized, or on other combinations of the curvature and holomorphic
two form. There are a number of conditions that must be met by these operators.
Firstly, whatever these operators are, in the compact case they must be equivalent
(cohomologous) to the original observables O(k). Furthermore insertions of these
operators in the path integral ought to lead to integrable expressions (on X).
Finally, they should obey the condition (5.31).

10.2. Partition function in terms of the Hilbert space. The boundary in
the present setting is a Riemann surface Σ. Given such vectors in the Hilbert
space one can use the usual tenets of quantum field theory to reconstruct the
partition function ZRW

X [M ]. For example the path integral of the field theory
on the 3-ball B3 prepares a state on the boundary S2 (the Hilbert space will be
described shortly). We denote this state (vector) by

|ψ(0) >= |B3 > .(10.2)

Let B3 ⊂ M a 3-ball inside M . Then the path integral on M\B3 will give us
another vector in the Hilbert space which is denoted by

|M\B3 > .(10.3)

The path integral tells us that the partition function on M is given as the inner
product of the two vectors

ZRW
X [M ] =< B3 |M\B3 > .(10.4)

In this notation one has that if M is a connected sum M = M1#M2, where

∂M1 = S2 = ∂M2,(10.5)

then

ZRW
X [M ] =< M∗

2 |M1 >=< M∗
1 |M2 >,(10.6)

where a star superscript means take the opposite orientation. There is a more
general formula available, which is obtained by similar arguments. Let M have a
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Heegaard decomposition along a genus g Riemann surface Σg as M = M1#ΣgM2,
where

∂M1 = Σg = ∂M2,(10.7)

then

ZRW
X [M ] =< M∗

2 |M1 >=< M∗
1 |M2 > .(10.8)

We will make use of formulae of the above type to establish the properties of
the generalized Casson invariant under the operation of connected sum. Before
that we need a digression on the invariants of S3.

10.3. The path integral on S3. Rozansky and Witten have established that
their generalized invariant ZRW

X [M ] under change of orientation behaves as

ZRW
X [M∗] = (−1)n(1+b1(M))ZRW

X [M ].(10.9)

Insertion of the operator O(k) essentially lowers the effective dimension of X by
4k to 4(n− k), so that under orientation reversal

ZRW
X [M∗,O(k)] = (−1)(n−k)(1+b1(M))ZRW

X [M,O(k)].(10.10)

One may obtain (10.10) as follows. The orientation properties are determined by
counting the number of εµνρ tensors that appear in the perturbative diagrams.
There is one such tensor for each V1 vertex and one for each χ propagator, < χχ >,
so the behaviour under sign reversal is multiplication by

(−1)#V1+#<χχ>.(10.11)

For a diagram with p V1 vertices, q V2 vertices and an insertion of O(k) we have

p+ q + 2k = 2n(10.12)

by counting η harmonic modes. On the other hand, as discussed above, when
there are χ zero modes they must appear in the vertices, so the number of χ’s
which are not zero modes in V1 is 3− b1(M) and the number in V2 is 1− b1(M).
The number of χ propagators is simply one half of the total number of non-
harmonic χ legs in the diagram and since the legs can only come from vertices
we have

# < χχ >=
1

2
((3 − b1(M))p + (1 − b1(M))q) .(10.13)

The sign is then determined by

p+ # < χχ >=
1

2
(1 − b1(M))(p + q) = (1 − b1(M))(n − k).(10.14)

If there are orientation reversing diffeomorphisms available on M , then (10.10)
tells us that

ZRW
X [M,O(k)] = (−1)(n−k)(1+b1(M))ZRW

X [M,O(k)],(10.15)
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which provides a vanishing theorem for some of the invariants on M . For example
S3 admits an orientation reversing diffeomorphism, so that the Casson invariant
(corresponding here to n = 1, k = 0) enjoys

λ(S3) = −λ(S3) = 0.(10.16)

In fact from (10.10) we learn that for manifolds with b1(M) = 0 which admit ori-
entation reversing diffeomorphisms, the invariants ZRW

X [M,O(k)] will necessarily
vanish unless n− k = 2m for some m.

We would have liked the slightly stronger result that ZRW
X [S3,O(k)] will nec-

essarily vanish unless n − k = 0, this, however, does not seem to be available.
Potentially this is worrisome as one would expect that a generalized Casson invari-
ant for M such that π1(M) = 1 would vanish. (For example the SU(3) invariant
of Boden and Herald [14] is designed to vanish for M such that π1(M) = 1.) We
suggest, therefore, that the generalization of the Casson invariant for a rational
homology sphere that matches the gauge theoretic SU(3) one is not ZRW

XSU(3)
[M ],

but rather

λSU(3)(M) = λXSU(3)
(M) = ZRW

XSU(3)
[M ] − |H1(M,Z)|ZRW

XSU(3)
[S3],(10.17)

where XSU(3) is the reduced SU(2) 3 monopole moduli space. Not only does

this satisfy the requirement that λXSU(3)
(S3) = 0, but it also has good properties

under connected sum, as we will see. For ZHS’s our proposal amounts to

λSU(3)(M) = ZRW
X [M ] − ZRW

X [S3].(10.18)

10.4. The Hilbert space on S2 and the connected sum formula. The
Hilbert space of states on a Riemann surface was described in [44]. Here we will
look at the small Hilbert space of states, HΣ, those states which are Q invariant
(modulo exact terms). The Q operator is identified as the Dolbeault operator ∂
on X. The small Hilbert space will be related to ∂-cohomology of certain classes
of forms on X.

The Hilbert space of states on S2, HS2, for a compact hyper-Kähler manifold
X is

HS2 =

2n
⊕

k=0

H(0,k)(X).(10.19)

The following result, which follows from Berger’s classification theorem on the
holonomy of Riemannian manifolds, is useful (for this and some other useful
information on hyper-Kähler manifolds one may consult [6]). The holonomy
group of X is a subgroup of sp(n) and if X is irreducible, then it is sp(n). Let

h(p,q) = dim H(p,q), for irreducible X,

h(0,k)(X) = 0, ∀ k odd

h(0,k)(X) = 1, ∀ k even.(10.20)
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This means that the real dimension of HS2 is n+1. Furthermore, the elements in
H(0,2k)(X) are generated by the k-th exterior power of the holomorphic symplectic
2-form ε. Consequently any vector in HS2 can be expressed as

v = ⊕n
k=0vkε

k.(10.21)

Denote the path integral that includes insertion of the observable corresponding
to εk in the 3-ball by

|ψ(2k) >= |B3,O(k) > .(10.22)

Let the states

< ψ(2k)| =< (B3)∗,O(k)| ,(10.23)

be defined in such a way that,

ZRW
X [S3,O(p+ q)] =< (B3)∗,O(p)|B3,O(q) > .(10.24)

Let M be a rational homology sphere and B3 ⊂ M a 3-ball inside M . Since
HS2 is n + 1-dimensional, the path integral on M\B3 yields a state that can be
expanded in the basis generated by (10.22). This state is then

|M\B3 >=
n
∑

k=0

λk
X(M) |ψ(2k) >,(10.25)

for some coefficients λk
X(M).

To determine the coefficients in (10.25) we require some properties of the path
integral on S3. Before proceeding to the general case we review the way that
Rozansky and Witten derived the connected sum formula for the Casson invari-
ant, n = 1, and then derive the analogous expressions for n = 2.

10.4.1. dimRX = 4. When n = 1, the Hilbert space is 2-dimensional and (10.25)
is simply

|M\B3 >= λ0
X(M) |ψ(0) > +λ1

X(M) |ψ(2) > .(10.26)

In this case we have the inner products

ZRW
X [S3,O(k)] =

{

1 for k = 1
0 for k = 0

.(10.27)

We deduce that

ZRW
X [M,O(k)] = λ0

X(M) < ψ(2k)|ψ(0) > +λ1
X(M) < ψ(2k)|ψ(2) >

= λ0
X(M)ZRW

X [S3,O(k)] + λ1
X(M)ZRW

X [S3,O(k + 1)]

= λ0
X(M)δk,1 + λ1

X(M)δk,0,(10.28)

or put another way

λ0
X(M) = ZRW

X [M,O(1)] = |H1(M,Z)|,
λ1

X(M) = ZRW
X [M ],(10.29)
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and

|M\B3 >= ZRW
X [M ] |ψ(2) > +|H1(M,Z)| |ψ(0) > .(10.30)

One can likewise ascertain that

|M\B3,O(1) >= |H1(M,Z)| |ψ(2) > .(10.31)

The state < (M\B3)∗| designates the path integral on the manifold with bound-
ary S2 but with opposite orientation. One can expand this state also as

< (M\B3)∗| = ZRW
X [M ] < ψ(2)| + |H1(M,Z)| < ψ(0)|(10.32)

so that

ZRW
X [M1#M2] = |H1(M1,Z)|ZRW

X [M2] + |H1(M2,Z)|ZRW
X [M1](10.33)

ZRW
X [M1#M2,O(1)] = |H1(M1,Z)||H1(M2,Z)| = |H1(M1#M2,Z)|.(10.34)

These formulae tell us all we need to know about the connected sum properties
of the Casson invariant.

10.4.2. dimRX = 8. In this section we will repeat the calculation of the be-
haviour of the path integral under connected sum for n = 2. This time the
Hilbert space is 3-dimensional, so for (10.25) we have

|M\B3 >= λ0
X(M) |ψ(0) > +λ1

X(M) |ψ(2) > +λ2
X(M)|ψ(4) > .(10.35)

The problem that we face has to do with the inner product. This time we only
know that

ZRW
X [S3,O(k)] =







1 for k = 2
0 for k = 1
a for k = 0

.(10.36)

We have not determined the constant a = ZRW
X [S3] and see no obvious way of

specifying it,21 without, that is, resorting to a direct calculation or by appealing
to Chern-Simons theory. However, let us see how far we can go without knowing
a.

We have

ZRW
X [M,O(k)]

= λ0
X(M) < ψ(2k)|ψ(0) > +λ1

X(M) < ψ(2k)|ψ(2) > +

+λ2
X(M) < ψ(2k)|ψ(4) >

= λ0
X(M)ZRW

X [S3,O(k)] + λ1
X(M)ZRW

X [S3,O(k + 1)]

+λ2
X(M)ZRW

X [S3,O(k + 2)]

= λ0
X(M)(aδk,0 + δk,2) + λ1

X(M)δk,1 + λ2
X(M)δk,0.(10.37)

21In this case one cannot appeal to orientation reversal to rule it out.
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We deduce therefore that

λ0
X(M) = ZRW

X [M,O(2)] = |H1(M,Z)|2

λ1
X(M) = ZRW

X [M,O(1)]

λ2
X(M) = ZRW

X [M ] − a|H1(M,Z)|2.(10.38)

As previously explained, the insertion of the operator O(1) reduces the effective
dimension of the hyper-Kähler manifold X by 4, so that ZRW

X [M,O(1)] is pro-

portional to the path integral ZRW
K3 [M ]. This means that λ1

X(M) is proportional
to the SU(2) Casson invariant. We would like to call λ2

X(M) the degree 2 Casson
invariant.

How do these behave under connected sum? First we note that

< (M\B3)∗| = λ0
X(M) < ψ(0)| + λ1

X(M) < ψ(2)| + λ2
X(M) < ψ(4)|,(10.39)

so that

ZRW
X [M1#M2] =< (M1\B3)∗|M2\B3 > .(10.40)

We find that

ZRW
X [M1#M2] = λ0

X(M1)λ
2
X(M2) + λ0

X(M2)λ
2
X(M1)

+λ1
X(M1)λ

1
X(M2) + aλ0

X(M1)λ
0
X(M2),(10.41)

which can be put in the nicer form

λ2
X(M1#M2)(10.42)

= λ0
X(M1)λ

2
X(M2) + λ1

X(M1)λ
1
X(M2) + λ2

X(M1)λ
0
X(M2).

10.4.3. dimRX = 4n. In this section we will provide a proof that the invariants
λp

X(M) satisfy a pleasing property under connected sum, namely (10.50) below.
In order to do so we will make use of a property of the inner product in the basis
(10.22). Let,

< ψ(2k)|ψ(2l) >= Gk,l.(10.43)

From the definitions we have that G is a (n + 1) × (n + 1) symmetric matrix
where k, l = 0, 1, . . . , n. G has all unit entries on the anti diagonal, that is
Gk,l = 1 if k + l = n, and only zero entries below the anti diagonal, Gk,l = 0 if
k + l > n. Consequently detG = ±1, so that in particular G is invertible. All of
these properties follow from the fact that

Gk,l =< ψ(2k)|ψ(2l) >=< B3,O(k)|B3,O(l) >= ZRW
X [S3,O(k + l)].(10.44)

With this inner product in place we now claim that

|M\B3,O(p) >=

n−p
∑

k=0

λk
X(M)|ψ(2k+2p) > .(10.45)
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The advantage of having such a formula is that it involves a smaller number of
vectors on the right hand side and so effectively decreases the size of the Hilbert
space that we have to work with. To establish (10.45) we note that quite generally,

|M\B3,O(p) >=

n−p
∑

k=0

γk
X(M)|ψ(2k+2p) >,(10.46)

for some, to be determined, coefficients γk
X(M). By construction

< (B3)∗,O(q)|M\B3,O(p) >=< (B3)∗,O(p + q)|M\B3 >,(10.47)

which means that
n
∑

k=0

γk
X(M)Gq,k+p =

n
∑

k=0

λk
X(M)Gp+q,k.(10.48)

Taken together with the fact that Gq,k+p = Gp+q,k and that G is invertible one

has γk
X(M) = λk

X(M) as claimed. Thus we have that,

λn−p
X (M) = ZRW

X [M,O(p)] −
n−p−1
∑

k=0

λk
X(M)G0,k+p.(10.49)

This equation is recursive, meaning that the right hand side only involves λk
X(M)’s

for k’s of lower order.
The connected sum formula that we wish to prove is

λp
X(M1#M2) =

∑

k+l=p

λk
X(M1)λ

l
X(M2).(10.50)

We will establish (10.50) by induction on p. Since λ0
X(M) = |H1(M,Z)| (10.50)

holds for p = 0.
The connected sum, property is

ZRW
X [M1#M2,O(n− p− 1)]

=< (M1\B3)∗|M2\B3,O(n− p− 1) >

=

n
∑

k,l=0

λk
X(M1)λ

l
X(M2)Gk,l+n−p−1

=
∑

k+l=p+1

λk
X(M1)λ

l
X(M2) +

∑

0≤k+l≤p

λk
X(M1)λ

l
X(M2)Gk,l+n−p−1.(10.51)

If we can show that

λp+1
X (M1#M2) = ZRW

X [M1#M2,O(n− p− 1)]

−
∑

0≤k+l≤p

λk
X(M1)λ

l
X(M2)Gk,l+n−p−1(10.52)

then we will have established (10.50). By (10.49)

λp+1
X (M) = ZRW

X [M,O(n − p− 1)] −
p
∑

m=0

λm
X(M)G0,m+n−p−1.(10.53)
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By the inductive hypothesis, λm
X(M) satisfies (10.50) for all k ≤ p, hence

p
∑

m=0

λm
X(M1#M2)G0,m+n−p−1

=

p
∑

m=0

∑

k+l=m

λk
X(M1)λ

l
X(M2)G0,m+n−p−1

=

p
∑

m=0

∑

k+l=m

λk
X(M1)λ

l
X(M2)G0,k+l+n−p−1.(10.54)

As the summand in the last line does not depend on m, we have 0 ≤ k + l ≤ p,
whence

p
∑

m=0

λm
X(M1#M2)G0,m+n−p−1 =

∑

k+l≤p

λk
X(M1)λ

l
X(M2)G0,k+l+n−p−1.(10.55)

We are done, since for M = M1#M2 (10.55) and (10.53) imply (10.52).

Let us state the result of this section again

λp
X(M1#M2) =

∑

k+l=p

λk
X(M1)λ

l
X(M2).(10.56)

Of course if one would prefer the connected sum formulae for ZRW
X [M,O(p)] then

it is a simple matter to pass to those given the ones for the λp
X(M).

11. The RW and LMO invariants

In order to make contact with the LMO and generalized Casson invariants we
will find that we need to use normalized Rozansky-Witten invariants. In both
cases, as we will see, the required normalization is such that the invariant vanishes
on S3. The reason this is needed to make contact with [36] is basically a question
of normalization of the LMO invariant and so appears here as a direct question
of normalization. On the other hand for the Casson invariant there is a subtlety
which arises in the gauge theoretic setting that requires us to normalize the
invariants in precisely the same way as for the LMO invariants. The arguments we
present for the exact form of the normalization in the Casson case are suggestive
but not complete even at the physical level of rigour.

11.1. Weights in the RW theory. To simplify notation, we will write Xn for
an arbitrary hyper-Kähler 4n dimensional manifold.

The Rozansky-Witten partition function can be seen to be given by (c.f. [44]
(3.41)- (3.43))

ZRW
Xn

[M ] =
(

|H1(M,Z|′
)n
∑

Γn

bΓn(Xn)IΓn(M),(11.1)
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where Γn are Feynman graphs associated with the fact that the manifold X has
dimension 4n and the weights

bΓn(Xn) =
1

(2π)n

∫

X
WΓ(X,φ0)

√
gdnφ0.(11.2)

WΓ is a product of the tensors Ω with their indices contracted by the tensor εIJ

contained in the χI propagator and by εI1,...,I2n contained in the ηI zero-mode
expectation value.

Rozansky and Witten have established that the weights satisfy the IHX rela-
tions. More generally we will show in this section that

ZRW
Xn

[M,O(n − k)] =
(

|H1(M,Z|′
)k
∑

Γk

bΓk
(Xn)IΓk

(M),(11.3)

where bΓk
(Xn) is determined below. This shows that the insertion of the operators

O(n − k) effectively lowers the dimension of X. The proof of IHX for bΓn(Xn),
which is essentially a consequence of the Bianchi identity for ΩIJKL, extends to
bΓk

(Xn).

Introduce,

ZRW
n [M ] =

(

|H1(M,Z|′
)n
∑

Γn

bΓnIΓn(M)(11.4)

which, given a hyper-Kähler manifold X, is a map from diagrams to numbers
such that when X is 4n dimensional we have

ZRW
X [M ] = ZRW

n [M ](X).(11.5)

We need to be more precise. So far we have defined the weights bΓn as they act
on manifolds X of dimension 4n, we will need to give a more general definition
for their action on hyper-Kähler manifolds of arbitrary dimension.

We will now show that insertions of the operators O(k) (where M is a QHS
since otherwise the path integral vanishes), have the effect of lowering the effective
dimension of X. This means that the weights associated with ZRW

Xn
[M,O(k)] are

bΓ(n−k)
. It is easiest to start with a generating function for the insertion of the

operators,

ZRW
Xn

[M,α] =

∫

DΦ e iS0 e i
∫

M ΣIη
I
0 − αd(n)

2 ηI
0εIJη

J
0 ,(11.6)

where d(n) = (dn)1/n and

ΣI =
1

6
ΩIJKL χ

JχKχL − 1

2
γAK

i γBL
j εABΩIJKLχ

Jφj ∗ dφi.(11.7)

Thus,

ZRW
Xn

[M,O(k)] =
∂k

∂αk
ZRW

Xn
[M,α]

∣

∣

∣

∣

α=0

.(11.8)
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One first performs the integration over the modes ηI
0 in (11.6) to obtain

ZRW
Xn

[M,α] = (αd(n))n
∫

DΦ e iS0 e
1

2d(n)α

∫

M ΣI ε
IJ
∫

M ΣJ(11.9)

Consequently,

ZRW
Xn

[M,O(k)] = (|H1(M,Z|)n k!

(n− k)!

d(n)k

(2π)n

∫

Xn

√
gd4nφ0

.

〈

(

1

2

∫

M
ΣI ε

IJ

∫

M
ΣJ

)n−k
〉

(11.10)

The integration over the χI and φi fields generates all the graphs with the ap-
propriate weights. We write,

〈

(

1

2

∫

M
ΣI ε

IJ

∫

M
ΣJ

)k
〉

(Xn) =
∑

Γk

WΓk
(Xn, φ0) IΓk

(M),(11.11)

and clearly

bΓn(Xn) =
1

(2π)2n

∫

X

√
gd4nφ0WΓn(Xn, φ0) ,(11.12)

as it should. Substituting these expressions back into (11.10) one gets

ZRW
X [M,O(k)] = (|H1(M,Z|)n k!

(n− k)!

d(n)k

(2π)n

∫

Xn

√
gd4nφ0

.
∑

Γ(n−k)

WΓ(n−k)
(Xn, φ0) IΓ(n−k)

(M).(11.13)

Now compare this with the partition function for a hyper-Kähler manifoldX ′
(n−k),

ZRW
X′

(n−k)
[M ]

=
(|H1(M,Z|)(n−k)

(2π)2(n−k)

∫

X′
(n−k)

√

g′d4(n−k)φ0

〈

(

1

2

∫

M
ΣI ε

IJ

∫

M
ΣJ

)n−k
〉

=
(|H1(M,Z|)(n−k)

(2π)2(n−k)

∫

X′
(n−k)

√

g′d4(n−k)φ0

.
∑

Γ(n−k)

WΓ(n−k)
(X ′

(n−k), φ0) IΓ(n−k)
(M).

(11.14)

We see, therefore, that the same graphs will appear in (11.13) as in (11.14). The
weights are the same if we define them by

bΓk
(Xn) =

k!

(n− k)!

d(n)k

(2π)n

∫

X

√
gd4nφ0WΓk

(Xn, φ0) .(11.15)
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With these observations in hand we have

ZRW
n [M,O(n − k)] = (|H1(M,Z)|)n−k ZRW

k [M ].(11.16)

11.2. Equivalence of the RW and LMO Invariants. One may consider the
lambda invariants in the same way as one does the ZRW

X [M,O(k)], that is one

introduces a λk
n(M) which acts on X’s. Their definition may be read off (10.49),

λk
n(M) = ZRW

n [M,O(n − k)] −
k−1
∑

m=0

λm
n (M)ZRW

n [S3,O(n +m− k)].(11.17)

The aim of this section is to convince the reader that the LMO invariants
Ωn (M)(k) (3.1) and the lambda invariants, λk

n(M), are equal

Ωn (M)(k) = λk
n(M).(11.18)

For b1(M) ≥ 1 we have already seen that the identification is correct. For
b1(M) = 0, we cannot, at present, completely prove the equivalence, even at
the physical level of rigour. In order to do that we would have to exhibit surgery
formulae for both the Rozansky-Witten and LMO invariants, formulae which,
unfortunately, we do not know. Instead we offer four good reasons for believing
(11.18):

• Normalization The LMO invariant is designed to be unity for the 3-sphere.
This also motivates the identification of λk

n(M) with Ωn(M)(k) since, by (10.56),

λk
n(S3) = 0.(11.19)

That it is λk
X that has this property rather than ZRW

X can be seen in pertur-
bation theory. Since in perturbative expansions there is a close correspondence
between the Rozansky-Witten invariant and the Chern-Simons invariants there
is no reason why the Rozansky-Witten invariants should vanish for the 3-sphere
(see below for more consequences of this).

• Orientation The Ωn(M)(k) satisfy22 [36]

Ωn(∗M)(k) = (−1)k(b1(M)+1) Ωn(M)(k).(11.20)

One can show, inductively, that the λk
X(M) behave under orientation reversal in

the same way as ZRW
X [M,O(n− k)], that is

λk
n(M∗) = (−1)k(b1(M)+1) λk

n(M).(11.21)

• Weight Systems By Lemma (4.6) of [36] one has

Ωn (M)(k) = m(n−k) Ωk (M)(k) ,(11.22)

where,

m = Ω1 (M)(0) = |H1(M,Z)|.(11.23)

For (11.18) to hold one then requires a similar relationship amongst the λk
n(M).

For M of rank one or greater (11.22) implies that Ωn (M)(k) = 0 for k 6= n. A

22Beware this is stated incorrectly in the eprint archive version of Proposition 5.2 in [36].



UNIVERSAL PERTURBATIVE QUANTUM 3-MANIFOLD INVARIANT 407

similar story holds for λk
n(M), namely if M has rank greater than 0, then for

k 6= n, λk
n(M) = 0. We now need to address the rank 0 case.

Let M be a QHS. Suppose that for all j ≤ n and for all i up to some fixed
value k (less than j) that

λj (M)(i) = m(j−i) λi (M)(i) .(11.24)

We show that this implies that (11.24) holds for i = k + 1,

λj (M)(k+1) = ZRW
j [M,O(j − k − 1)] −

k
∑

i=0

λi
j(M)ZRW

j [S3,O(j + i− k − 1)]

= mj−k−1

(

ZRW
k+1 [M ] −

k
∑

i=0

mk+1−iλi
i(M)ZRW

k+1−i[S
3]

)

= mj−k−1

(

ZRW
k+1 [M ] −

k
∑

i=0

λk+1
i (M)ZRW

k+1−i[S
3]

)

= mj−k−1λk+1
k+1.(11.25)

To complete the induction we need only notice that λ0
l (M) = ZRW

l [M,O(l)] =

ml = mlλ0
0(M) for all l. Consequently, starting with i = 0, j = 1 we can prove

inductively that (11.24) holds for all i and for all j.

• Connected sum properties
The LMO invariant [36] Ω(M) satisfies the following connected sum formula

Ωn (M1#M2)
(n) =

∞
∑

d1+d2=n

Ωn (M1)
(d1) Ωn (M2)

(d2)(11.26)

A glance at (10.56) shows us that the λn
n(M) satisfy the same rule under connected

sum as the Ωn (M)(n).

Conjecture. The conjectured relationship between the Rozansky-Witten invari-
ants and LMO can now be stated as

|H1(M,Z)|n−k WRW
X

(

ZLMO
k (M)

)

= λk
X(M)(11.27)

For n = k = 1, the left hand side has been shown in [36] to be proportional to the
Casson-Lescop-Walker invariant, while [44] established that the right hand side is
proportional to the same invariant. The proportionality constants are fixed by the
weights and so the conjectured equality (11.27) has been established in this case.

Remark 1. The analogy with Chern-Simons theory helps to understand the
connected sum formula and the normalization, since there we know that [56]

ZCS(M1#M2)

ZCS(S3)
=
ZCS(M1)

ZCS(S3)
.
ZCS(M2)

ZCS(S3)
.(11.28)
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With this behaviour we see that the correct “normalized” invariants are Ẑ(M) =

ZCS(M)/ZCS(S3) in Chern-Simons theory, whence Ẑ(S3) = 1. Recall that the

ZRW [M ] involve diagrams that arise in Chern-Simons theory, however the Ẑ(M)
invariants, which satisfy (11.28) involve differences of diagrams for the given
manifold with diagrams for S3. This is the nature of the λk

n(M) invariants.

Denoting the terms proportional to 1/κn in Ẑ by Ẑn and in ZCS by ZCS, n we

have an expansion Ẑn(M) = ZCS, n(M) − ZCS, n−1(M)ZCS, 1(S
3) + . . . , which is

the analogue of (10.49).

Remark 2. It is quite impressive that, by this identification, the precursors of
the LMO invariant, the λk

X , are coefficients of a vector, in a particular basis, in
the Hilbert space on S2.

12. The RW and generalized casson invariants

Our suggestion for the correct generalization of the SU(2) Casson invariant,
λM , to gauge groups G of rank n is

λG(M) = λn
XG

(M).(12.1)

Part of the motivation for this is of course the relationship between the λk
X and

the LMO invariants. Perhaps more importantly this definition goes some way
towards making contact with the work in [14] where an SU(3) Casson invariant is
defined rigorously. There the invariant vanishes for S3, whereas ZRW

XSU(3)
[S3] 6= 0.

The analogy with Chern-Simons theory allows us to show that ZRW
XSU(3)

[S3] does

not vanish. Recall that the partition function, ZCS
SU(2)[S

3, κ], of SU(2) Chern-

Simons theory for S3 is known in closed form23,

ZCS
SU(2)[S

3, κ] =

√

2

κ
sin
(π

κ

)

.(12.2)

Since the only flat connection on S3 is the trivial connection, the perturbative
expansion in 1/

√
κ about it should agree with the large κ expansion of (12.2).

The one-loop, or Ray-Singer Torsion contribution goes like κ−3/2, so that the
loop expansion is

ZCS
SU(2)[S

3, κ] =

√
2π

κ3/2

(

1 +

∞
∑

n=1

an

κn

)

(12.3)

and a comparison with (12.2) shows that a1 = 0 while a2 6= 0. The vanishing of a1

tells us that there is no contribution from the Θ diagram, while the non-vanishing
of a2 tells us that the sum of the double theta plus the Mercedes Benz diagram
does not vanish. We know then that the IΓ associated with these diagrams do
not vanish. As far as the group theory factor of these diagrams is concerned, it is
proportional to the square of the quadratic casimir of the group, which also does

23The variable κ = k + 2 where k is the level.
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not vanish for SU(n). Consequently, these diagrams will contribute in the case
of SU(3).

Why does the path integral that is ‘designed’ to yield the generalized Casson
invariant not do so? The Casson invariant, from the gauge theory point of view
of [49] or [14], is such that the trivial connection is always ‘excised’ when it
comes to performing a count of (perturbed) flat connections on ZHS’s. This is
the reason that the Casson invariant and its generalization vanish for S3. There
is, however, no such directive in the path integral for the supersymmetric gauge
theory that was analyzed in [48] and consequently, no such directive in the path
integral formulation of [44]. It is clear, then, that it is necessary to subtract
off the contribution, if any, of the trivial connection in order to arrive at the
generalized Casson invariant.

How are we to perform the excision? The perturbations, both in [49] and [14]
for ZHS’s, are designed so that the product connection is isolated from the other
(perturbed) flat connections that contribute to the invariant. This is also the case
for the trivial representation in Walker’s definition [54] of the Casson invariant
for QHS’s. Since the trivial connection contribution in these cases can be isolated
its contribution can be subtracted if it is known. Unfortunately, the problem is
that we do not know it. If the formula,

λn
X(M) = ZRW

X [M ] −
n−1
∑

k=0

λk
X(M)ZRW

X [S3,O(k)](12.4)

is the correct definition for the Casson invariant, this suggests that the contri-
bution of the trivial connection is ‘universal’ in that, regardless of M one is
subtracting out the contribution of the trivial connection in S3 (up to factors
that depend on the cohomology of the QHS).

If M is not a QHS then the product connection is not isolated from the rest
of the moduli space of flat connections and one cannot “cleanly” subtract off its
contribution to the invariant. However, for such an M , we have

λn
X(M) = ZRW

X [M ],(12.5)

since ZRW
X [M,O(n − k)] = 0, ∀k 6= n (since for b1(M) > 0 the insertion of these

observables gives zero).

It is difficult to completely fix the relationship between the invariant of [14]
and the one that we are proposing for the SU(3) Casson invariant. However, we
suspect they are closely related to each other. The reason we believe this is that
both are generalizations of the same object in the SU(2) case. [14] generalize
the gauge theoretic construction of Taubes [49]. However, Taubes’s approach is
equivalent to the physics approach in the SU(2) case as presented in [55] and
[10]. Here one can clearly excise the trivial connection and give a treatment more
in line with the mathematical one. On the other hand, Rozansky and Witten are
generalizing an alternative physics approach to the SU(2) invariant. With the
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small caveat made above, they are evaluating an equivalent path integral to the
one proposed in [10].

As a small check we note that both of the invariants vanish on S3 and they
are both insensitive to the orientation of M .

Note Added (August): Boden and Herald have shown that their invariant,
which we denote by λBH , satisfies24, [15],

λBH(M1#M2) = λBH(M1) + λBH(M2) + 4λSU(2)(M1)λSU(2)(M2),(12.6)

where λSU(2) is normalized as in [54]. While this is consistent with the invariants
λXSU(3)

and λBH being proportional

λXSU(3)
(M) = αλBH(M),(12.7)

and

λ1
XSU(3)

(M) = 2
√
α λSU(2)(M),(12.8)

for some α, we do not believe that they can be related in such a simple way.
Recently, it has been shown that the Boden-Herald invariant is not of finite type
of degree ≤ 6, [16] (their theorem 6.16) and so if (12.7) were true then our
conjecture would be false.
Note Added (August): By making use of supersymmetry and other physics
inspired arguments Paban, Sethi and Stern [41] have determined the integral of
the Euler density over the SU(2) n-monopole moduli space and have found that
it is equal to n. However, integrals of other densities are still not known.

13. The Appendices

Appendix A. Some Properties of Hyper-Kähler Manifolds

Generically the holonomy group of a real m dimensional Riemannian manifold
is SO(m). If the manifold is complex of complex dimension p and the metric
is hermitian then the holonomy lies in U(p) ⊂ SO(2p). If in addition X is a
hyper-Kähler manifold (dimRX = 4n) then there is a hermitian metric such that
the Levi-Civita connection lies in the Sp(n) subgroup of U(2n) ⊂ SO(4n). The
complexified tangent bundle decomposes as

TXC = TX ⊗R C = V ⊗C S,(A.1)

where V is a rank 2n complex vector bundle with structure group Sp(n) and S
is a trivial rank 2 complex vector bundle with structure group Sp(1). The Levi-
Civita connection is a connection on V and is the trivial connection on S. Sp(1)
labels are A, B, . . . , = 1, 2, and there is an invariant antisymmetric tensor εAB

with inverse εAB,

εACεCB = δA
B .(A.2)

24We would like to thank Chris Herald for informing us of this prior to publication.
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Sp(n) labels are I, J, . . . = 1, . . . , 2n, and there is also an invariant antisymmetric
tensor εIJ with inverse εIJ ,

εIKεKJ = δI
J .(A.3)

Local coordinates on X will be denoted φi and the Riemannian metric is gij .
The fact that the tangent bundle decomposes as in (A.1) means that there exist
covariantly constant tensors γAI

i and γi
AI that describe the maps from V ⊗ S to

TXC and vice versa,

γAI
i : V ⊗ S → TXC

γi
AI : TXC → V ⊗ S.(A.4)

These maps are inverses in the sense that

γAI
i γi

BJ = δA
Bδ

I
J .(A.5)

Using these tensors one may express the Riemann curvature tensor as

Rijkl = −γAI
i γBJ

j γCK
k γDL

l εABεCDΩIJKL,(A.6)

where ΩIJKL is completely symmetric in the indices. A useful relationship is

gijγ
j
AI = εABεIJγ

BJ
i .(A.7)

Fix on a complex structure so that φI are holomorphic coordinates on X with
respect to this complex structure. Then we may take

γI
AJ = δA1δ

I
J , γI

AI = δA2g
IJεJI .(A.8)

In such a preferred complex structure, the tensor

T J
J = gJKεKJ(A.9)

maps T (1,0)X to T (0,1)X while

T J
J

= εJKgKJ ,(A.10)

maps T (0,1)X to T (1,0)X. Since the T tensors are inverses of each other,

T J
J T

J
K

= δJ
K
, and, T J

J
T J

K = δJ
K ,(A.11)

they provide an isomorphism between T (1,0)X and T (0,1)X.
The holomorphic symplectic two form ε is covariantly constant with respect to

the Levi-Civita connection on V ,

∂KεIJ − ΓL
KIεLJ − ΓL

KJεIL = 0.(A.12)

In the preferred complex structure one finds that

ΩIJKL = −RIJKL T
J
J T

L
L .(A.13)

At this point it is not completely transparent that ΩIJKL is totally symmetric
in the labels, however, it is indeed so. We pause to prove this. Since εIJ is
holomorphic we have

∂K∂KεIJ = ∂K∂KεIJ = 0.(A.14)
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From (A.12), this means that

∂KΓL
KIεLJ = ∂KΓL

KJεLI ,(A.15)

however for a Kähler manifold one has

RI
JKL

= ∂LΓI
JK ,(A.16)

so that we have shown

εILR
L
JKL

= εKLR
L
JIL

.(A.17)

Hence εILR
L
JKL

is symmetric in I, J and K. On the other hand, from (A.6) and

(A.13), we have

ΩIJKL = εNJR
N
IKL

TL
L ,(A.18)

which shows that ΩIJKL is totally symmetric.

Appendix B. Berezian integration

Let V be a vector space. By a polynomial (bosonic) function on V , we mean
an element of S(V ∗), the symmetric tensor algebra of V ∗, the dual of V . By a
Grassmann (fermionic) function on V , we mean an element of Λ(V ∗), the exterior
algebra.

The Berezian integral of an element of Λ(V ∗), is its projection to the top
dimensional piece (provided V is finite dimensional). It is a number, provided we
have a metric and orientation of V (which yields a metric and orientation, and
hence a trivialization, of the top exterior power).

The rules for Berezin integration mean that the non-zero linear map T : ΛV ∗ →
R is indeed an ‘integral’ and will be denoted as

∫

dmθ. Here, the θµ form a basis
of Λ1(V ∗). We normalize this integral in the following way, we let

∫

dmθ θµ1 . . . θµm = εµ1...µm(B.1)

where

ε =







1 even permutation
−1 odd permutation
0 otherwise

(B.2)

Given A ∈ Λ2V , A = −1/2Aije
i ∧ ej , the Pfaffian of A is defined to be the

number,

Pfaff(A) =
(−1)m

2mm!
εi1...imAi1i2 . . . Ai2m−1i2m .(B.3)

By making use of the Berezin integral, one may also write this as,

Pfaff(A) = T
(

eA
)

=

∫

dmθ e−
1
2θ

iAijθ
j
.(B.4)
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The exterior algebra satisfies, for the top wedge product,

dxµ1 ∧ · · · ∧ dxµm = εµ1...µmdx1 ∧ · · · ∧ dxm,

=

∫

dmθ θµ1 . . . θµm dmx(B.5)

the second equality follows from (B.1) and we have chosen the orientation

dmx = dx1 . . . dxm.(B.6)

Consequently, for any top form

f = fµ1...µm dx
µ1 . . . dxµm ,(B.7)

we have

f =

(
∫

dmθ fµ1...µm θ
µ1 . . . θµm

)

dmx.(B.8)

So far we have not included the notion of a metric. As it stands in Riemannian
geometry ε is a density and not a tensor. Fix on a metric gµν . Now one sees
that ε/

√
g, where g = det gµν , is a tensor. We introduce a new measure for the

Berezin integration

f =

∫

dµg(θ) fµ1...µm θ
µ1 . . . θµm

√
g dmx,(B.9)

so that dµg(θ) = dmθ/
√
g, or put another way

∫

dµg(θ) θ
µ1 . . . θµm =

εµ1...µm

√
g

.(B.10)

The more structures that are introduced on the manifold the more variations
that are available on this theme. The first refinement is to consider manifolds of
dimension 2m that come equipped with a complex structure. In such a situation
we can refine the formula (B.8) for forms of degree (m,k)

g = gI1...Im J̄1...J̄k
dzI1 . . . dzIm dz̄J̄1 . . . dz̄J̄k ,(B.11)

to

g =

(
∫

dmθ gI1...Im J̄1...J̄k
θI1 . . . θIm

)

dmz dz̄J̄1 . . . dz̄J̄k .(B.12)

Our interest is in hyper-Kähler manifolds of real dimension 4n, where we are
assured of the existence of a holomorphic symplectic 2-form ε

ε = −1

2
εIJdz

IdzJ(B.13)

which is non-degenerate, εn 6= 0. The inverse matrix εIJ is defined by εIKεKJ =
δI
J . The analogue of (B.5) is

dzI1 . . . dzI2n = εI1...I2n dz1 . . . dz2n

=

(
∫

d2nη ηI1 . . . ηI2n

)

d2nz.(B.14)
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Furthermore we have the definition

εI1...I2n = εI1...I2n
Pfaff(ε)

det (ε)
(B.15)

so that

dzI1 . . . dzI2n = εI1...I2n Pfaff(ε) dz1 . . . dz2n

= εI1...I2n εn.(B.16)

Thus the analogue of (B.12) for (2n, 0) forms is

f =

(
∫

d2nη fI1...I2n η
I1 . . . ηI2n

)

d2nz,(B.17)

but, since we have the holomorphic symplectic 2-form at our disposal, we have
the analogue of the metric dependent measure (B.9)

f =

(
∫

dµ(η) fI1...I2n η
I1 . . . ηI2n

)

εn.(B.18)

The new measure (we do not exhibit the ε dependence in the measure dµ which
therefore should be, more correctly, denoted by dµε) is

dµ(η) = d2nη
Pfaff(ε)

det (ε)
.(B.19)

The isomorphism between TX(1,0) and TX(0,1) means that we also have the
following, anti-holomorphic, 2-form

ε̄ = −1

2
ε̄ĪJ̄ dz̄

Ī dz̄J̄ = −1

2
εIJ T

I
Ī T

J
J̄ dz̄

Ī dz̄J̄ .(B.20)

Hence,

dz̄Ī1 . . . dz̄Ī2n = ε̄Ī1...Ī2n Pfaff(ε̄) dz̄1 . . . dz̄2n = ε̄Ī1...Ī2n ε̄n.(B.21)

B.1. Normalization of zero modes. The normalization of the path integral
measure for zero modes that we adopt is best stated in the following manner. For
each Grassmann valued section of φ∗0V , denoted by ηI we demand that

∫

dµ(η) e−
1
2η

IεIJη
J

= 1.(B.22)

This is in contrast to the more standard measure, that is used above, for which
the integral over the zero modes is normalized as

∫

d2nη e−
1
2η

IεIJη
J

= Pfaff(ε),(B.23)

and the relationship between the two is clearly

d2nη = Pfaff(ε)dµ(η).(B.24)

One important property that we will make use of is a change of variables formula
∫

dµ(η) f(εIJη
J) = Pfaff(ε)

∫

d2nη f(ηI).(B.25)
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B.2. The Euler class and Grassmann integration. Here we briefly review
the construction for expressing the Euler characteristic of a compact closed man-
ifold in a form which involves Grassmann variables and Grassmann integration
and which is suitable to our needs. We recall that the Euler class e(E) of a real
vector bundle E → X of rank 2m, with a given connection A whose curvature is
FA = dA+A2, is defined to be the cohomology class

e(E) =
1

(2π)n
Pfaff(FA).(B.26)

The Euler characteristic, χ(E), of E is

χ(E) =

∫

X
e(E).(B.27)

When E is the (real) tangent bundle, TX, of X, we will write Euler class as
e(TX) and the Euler characteristic as e(X) =

∫

X e(TX). Using the rules of
Grassmann integration we see that the Euler class may be represented as

e(E) =
1

(2π)m

∫

d2mη e−
1
2ηaF

abηb .(B.28)

Claim: The Euler Class for a compact closed Riemannian manifold X of dimen-
sion 2m is

e(TX) =
1√
g

(
∫

d2mχd2mψ e
1
4Rµνκλχ

µχνψκψλ
)

d2mx.(B.29)

Proof. The curvature two-form for the tangent bundle is

F ab = Rab =
1

2
Rab

µνdx
µdxν =

1

2
eaσebρRσρµνdx

µdxν ,

where ea = eaµdx
µ is a section of the orthonormal frame bundle. By (B.8) we

have that top form part of the exponential satisfies

e
1
2ηaR

abηb =

∫

d2mψ e
1
4R

ab
µνηaηbψ

µψν
d2mx.(B.30)

Thus,

e(TX) =
1

(2π)m

(
∫

d2mη d2mψ e
1
4R

ab
µνηaηbψ

µψν
)

d2mx

=
1

(2π)m

(
∫

d2mη d2mψ e
1
4Rσρµνe

aσηae
bρηbψ

µψν
)

d2mx.(B.31)

Let

ηa = eaµχ
µ,(B.32)

and the Jacobian for such a change of variables is

d2mη = det (eaµ)−1 d2mχ =
1√
g
d2mχ.(B.33)

Making the change of variables (B.32) in (B.31) and keeping in mind the Jacobian
(B.33) proves the claim. �
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Claim: The Euler Class of a compact closed hyper-Kähler manifold X of real
dimension 4n is

e(TX) =
√
g

(
∫

dµ(χα) e
1
24ΩIJKLχ

I
α χ

J
β χ

K
γ χL

δ ε
αβγδ

)

d4nx.(B.34)

Proof. The manifold in question carries a hyper-Kähler structure and so there
is a refinement for the Riemann curvature tensor that was explained previously.
Fix on a prefered complex structure for X. Let xµ be local coordinates and in

the prefered complex structure let xI be the holomorphic and xI be the anti-
holomorphic coordinates. The Riemann curvature tensor, Rµνρσ , vanishes unless

the pairs of indices (µ, ν) and (ρ, σ) are of (I, J) or (I, J) type. Consequently,

1

4
Rµνκλ χ

µχνψκψλ = RIJKL χ
IχJψKψL.(B.35)

Hence, the Euler class may now be expressed as

e(TX) =
1√
g

(
∫

d4nχd4nψ exp
(

RIJKLχ
IχJψKψL

)

)

d4nx.(B.36)

Since T J
I provides an isomorphism between T (0,1)X and T (1,0)X we may change

variables and let

χJ = T J
J χ

J
2

ψL = TL
L χ

L
4 .(B.37)

The measures go to

d2nχJ = det
(

T J
J

)−1
d2nχJ

2

d2nψL = det
(

TL
L

)−1
d2nχL

4 .(B.38)

However,

det
(

T J
J

)−2
= det (gµν) Pfaff(εIJ)4,(B.39)

so that the measure in (B.36) becomes

1√
g
d4nχd4nψ =

√
g

4
∏

α=1

dµ(χα),(B.40)

where we have relabeled the fields as χI = χI
1 and ψI = χI

3. The exponent in
(B.36) is

RIJKL χ
I
1 T

J
J χ

J
2 χ

K
3 TL

L χ
L
4 .(B.41)

But,

ΩIJKL = RIJKL T
J
J T

L
L,(B.42)

so we are done. �
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Note that to prove (B.34) we do not need to pick a prefered complex structure.
It was expedient to do so here as this is the way the objects arise in the text.

Acknowledgement

This paper was begun at the Mittag-Leffler Institute, where the authors were
participants in the special year on topology and physics. We thank the institute
for its support, and its staff, for their friendly and efficient professional assis-
tance. Thanks are also due to the ICTP for support. We also extend thanks to
J. Andersen, M. Blau, H. Murakami, D. Pickrell, and S. Rajeev, for the stimulat-
ing conversations we had with them during the elaboration of this paper. This
work was supported in part by the EC under the TMR contract ERBF MRX-CT
96-0090.

References

[1] D. Altschuler and A. Cattaneo, Work in progress.
[2] D. Altschuler and L. Friedel, Vassiliev Knot Invariants and Chern-Simons Perturbation

Theory to all Orders, Commun. Math. Phys. 187 (1997), 261-287.
[3] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423-472.
[4] D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. Thurston, The Aarhus integral of

rational homology 3-spheres I: A highly non trivial flat connection on S3, Sel. Math., New
series 8 (2002), 315-339.

[5] C. Beasely and E. Witten, Non-Abelian Localization For Chern-Simons Theory, J. Diff.
Geom. 70 (2005), 183-323.

[6] A. Beauville, Riemannian Holonomy and Algebraic Geometry, Enseign. Math. 53 (2)
(2007), 97-126 and AG/9902110.

[7] A. Beliakova and N. Habegger, The Casson-Walker-Lescop Invariant as a Quantum 3-
Manifold Invariant, J. Knot Theory Rams 9 (2000), 459-470.

[8] D. Birmingham, M. Rakowski and G. Thompson, Renormalization of Topological Field
Theory Nucl. Phys. B329 (1990), 83-97.

[9] D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological Field Theory,
Phys. Rep. 209 (1991), 129-340.

[10] M. Blau and G. Thompson N = 2 and Casson Topological Gauge Theory, the Euler
Characteristic of Moduli Spaces and the Casson Invariant, Commun. Math. Phys. 152

(1993), 41-72.
[11] M. Blau and G. Thompson, Derivation of the Verlinde Formula from Chern-Simons Theory

and the G/G Model, Nucl. Phys. B408 (1993), 345-390 and hep-th/9305010.
[12] M. Blau and G. Thompson, On the Relationship between the Rozansky-Witten and the

3-Dimensional Seiberg-Witten Invariants, Adv. Theor. Math. Phys. 5 (2001), 483-498.
[13] M. Blau and G. Thompson, Chern-Simons Theory on S1-Bundles: Abelianisation and

q-deformed Yang-Mills Theory, J. High Energy Phys. 5 (2006) 003.
[14] H. Boden and C. Herald, The SU(3) Casson Invariant for Integral Homology Spheres, J.

Diff. Geom. 50 (1998), 147-206.
[15] H. Boden and C. Herald, The SU(3) Casson Invariant Split Along a 2-Sphere or a 2-Torus,

Topology Appl. 124 (2002) 187-204.
[16] H. Boden, C. Herald, P. Kirk and E. Klassen, Gauge Theoretic Invariants of Dehn Surgeries

on Knots, Geom. Topolo. 5 (2001), 143-226.
[17] R. Bott and A. Cattaneo, Integral Invariants of 3-Manifolds, J. Diff. Geom. 48 (1998),

91-133.
[18] R. Bott and C. Taubes, On Self Linking of Knots, J. Math. Phys. 35 (1994), 5247-5287.
[19] E. Calabi, Metriques Kähleriennes et Fibre Holomorphes, Ann. Sc. de l’E.N.S. 12 (1979),

269-294.



418 NATHAN HABEGGER AND GEORGE THOMPSON

[20] S. Cappell, R. Lee and E. Miller, A Symplectic Geometry Approach to Generalized Cas-
son’s Invariant, Bull. AMS. New Series 22 (1990), 269-275.

[21] S. Cappel, R. Lee and E. Miller, A Perturbative SU(3) Casson Invariant, Comment. Math.
Helv. 77 (2002), 491-523.

[22] R. Delbourgo and P. Jarvis, Extended BRS Invariance and OSP(4/2) Supersymmetry, J.
Phys. A15 (1982), 611-625.

[23] S. Garoufalidis and N. Habegger, The Alexander Polynomial and Finite Type 3-Manifold
Invariants, Math. Ann. 316 (2000), 485-497.
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