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SMOOTHING RESOLUTION FOR THE

ALEXANDER–CONWAY POLYNOMIAL

ATSUSHI ISHII∗

Abstract. We introduce a new kind of smoothing such that we obtain a
disjoint union of framed circles and a framed path after we smooth all cross-
ings of a (1, 1)-tangle diagram. By using such a smoothing, we reconstruct
the Alexander–Conway polynomial in a manner similar to the way the Jones
polynomial is constructed by using the Kauffman bracket polynomial.

1. Introduction

We focus on two well-known knot invariants: the Alexander–Conway polyno-
mial [1, 4], and the Jones polynomial [8].

The Alexander polynomial is defined through the infinite cyclic cover of a knot
complement. It was the only known knot polynomial until the Jones polynomial
was discovered. One obtains the normalized Alexander polynomial of an oriented
link by using the skein relation found by J. W. Alexander [1], and in normalized
form by J. H. Conway [4]. We call it the Alexander–Conway polynomial.

The Jones polynomial came out of investigations of operator algebras. It is
also determined by using a skein relation. The skein relations are often used to
give simple definitions of the Alexander–Conway and Jones polynomials. The
HOMFLYPT polynomial [6, 19] is a two-variable polynomial invariant motivated
by these skein relations.

Since the discovery of the Jones polynomial, many link invariants have been
defined, which include so-called quantum invariants. As quantum invariants,
the Alexander–Conway and Jones polynomials are derived from two dimensional
representations of the quantum (super)algebras Uq[gl(1|1)] and Uq[sl(2)], respec-
tively. And then, each invariant is defined by using a 4 × 4 R-matrix, which is a
solutions of the Yang–Baxter equation (see [5, 9, 12, 16, 20]).

The Jones polynomial also can be obtained via the Kauffman bracket poly-
nomial [10]. We smooth the crossings of a link diagram until we reduce it to a
disjoint union of circles:
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The Kauffman bracket polynomial is defined by using the weight of a crossing
and the number of circles, where the weight is a value determined by the choice
of smoothing. Then it is an invariant of regular isotopy. By utilizing the writhe
of the link diagram, we obtain an invariant of ambient isotopy, which is the Jones
polynomial.

Since smoothing is one of the simplest operations on a link diagram, the recon-
struction of the Jones polynomial via the Kauffman bracket polynomial is related
to important topics in knot theory: invariance of the number of crossings in a re-
duced alternating diagram of a knot, the Kauffman bracket skein module [17, 18],
the Khovanov homology [13, 2, 3], and so on.

On the other hand, a state model for the Alexander–Conway polynomial was
also given by L. H. Kauffman [11, p. 174]. A state in this state model is rep-
resented by a diagram which may have transversal intersections. In this paper,
we aim to reconstruct the Alexander–Conway polynomial through a smoothing
resolution formula, say, a state model in which a state is represented by a disjoint
union of circles (and a path). Such a construction is expected to be related to
important topics in knot theory as in the case of the Kauffman bracket polyno-
mial. This state model can also lead to new (Khovanov type) categorification of
the Alexander–Conway polynomial.

We introduce a new kind of smoothing such that we obtain a disjoint union of
framed circles and a framed path after we smooth all crossings of a (1, 1)-tangle
diagram:

−→
i

j

,

k

, . . .

Our bracket polynomial is defined by using the weight of a crossing and the
framings. Then it is an invariant of regular isotopy. By utilizing the Whitney
degree (rotation number) of the link diagram, we obtain an invariant of ambient
isotopy, which is the Alexander–Conway polynomial.

2. A magnetic link/tangle

We introduce a magnetic link/tangle diagram in which an “orientation” q is
given at a point called node. In our reconstruction for the Alexander–Conway
polynomial, we reduce a (1, 1)-tangle diagram into magnetic tangle diagrams
without a crossing, and the node orientation contributes to a framing the value
±1/2. A magnetic link/tangle without node orientation appears in constructions
of the oriented state model for the Jones polynomial [11, p. 74], Miyazawa’s
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polynomial for virtual links [14, 15], the virtual magnetic skein module [7], and
so on.

A magnetic link/tangle diagram is an oriented link/tangle diagram on R
2 which

may have oriented 2-valent vertices

q and q

which we call nodes. A magnetic link/tangle diagram may also have a 4-valent
vertex which is represented as a crossing in the diagram. Two diagrams are
called equivalent if one can be transformed into the other by a finite sequence of
Reidemeister moves and the canceling moves (Figure 1). We omit orientations of
strands in Figure 1. A magnetic link/tangle is an equivalence class of magnetic
link/tangle diagrams under the moves.

We denote the join of n nodes with the same orientation

p p p pq q q

n

by the triangle labeled n

q
n

.

For a positive integer n, a triangle labeled −n indicates one labeled n with the
reversed orientation. Then, by the canceling moves,

q q
n m

and q
n + m

are equivalent for any integers n and m, which implies that a circle/path is
parameterized by an integer.

3. Smoothing resolution formula

In this section, we introduce a bracket polynomial of a magnetic (1, 1)-tangle
diagram, which is a single-input, single-output magnetic tangle diagram as shown
in Figure 2. We show a relationship between the Alexander–Conway polynomial
and the bracket polynomial, and evaluate the bracket polynomial of the trefoil
knot as an example of this relationship.
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D

Figure 2

We define a bracket polynomial 〈D〉 of a magnetic (1,1)-tangle diagram D
as a state sum. A state σ of D is an assignment of an element in the set
{E00, E01, E10, E11, E∞} to each crossing:

,
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XXXXXXXXXz

q2 q
2

q q
2

2 q

q

E00 E01 E10 E11 E∞ .

We denote by Dσ the magnetic (1,1)-tangle diagram which is obtained by replac-
ing each crossing with

q q
2i

2j or
q

q

in accordance with a state σ. Let C(Dσ) be the set of connected components of
Dσ. It consists of some circles and a path. For a state σ, we denote the path by
pσ.

For any integer k, set

[k] :=
qk − q−k

q − q−1
,

and

d :=
√
−1(q − q−1).

For a state σ, we define the weight wt(v;σ) of a crossing v by

wt(v;σ) =






aij/d if v is a positive crossing to which Eij is assigned,

a′ij/d if v is a negative crossing to which Eij is assigned,

1 otherwise,

where
(a00, a01, a10, a11) = ( q−2,−q−1,−q, 1),
(a′00, a

′
01, a

′
10, a

′
11) = ( q2 ,−q−1,−q, 1).

We define the bracket polynomial 〈D〉 of a magnetic (1,1)-tangle diagram D
as the following state sum:

〈D〉 =
∑

σ: state

( ∏

v: crossing

wt(v;σ)
)(

[~pσ + 1]
∏

c∈C(Dσ)\{pσ}
[~c ]d

)
,
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Figure 3

where the integer ~x is defined as follows. We assign a sign +1 or −1 to each node
on a circle/path x:

q +1
�
�

�
�

q −1
�
�

�
�

where the dotted area indicates inside/left-hand side of the circle/path x. Sum
up signs of nodes on the circle/path x. Then the integer ~x is half of this sum
(see Figure 3).

By the definition of the bracket polynomial 〈D〉 of a magnetic (1,1)-tangle
diagram D, we have the following proposition.

Proposition 1. Let D be a magnetic (1, 1)-tangle diagram. The bracket polyno-
mial 〈D〉 is characterized by the following relations up to the canceling moves:

〈
q2i

〉
= [i + 1],(1)

〈
D q2i

〉
=

〈
D q2i

〉
= [i]d 〈D〉 ,(2)

〈 〉
=

〈
q
q

〉
+

∑

0≤i,j≤1

aij

d

〈
q q
2i

2j

〉
,(3)

〈 〉
=

〈
q
q

〉
+

∑

0≤i,j≤1

a′ij
d

〈
q q
2i

2j

〉
.(4)

The equalities (3) and (4) are relations among the bracket polynomials of
magnetic (1,1)-tangle diagrams which are identical except in the neighborhood
of a point where they are the magnetic tangle diagrams depicted in the brackets.

The Whitney degree rot(D) of an oriented link/tangle diagram D is the total
turn of the tangent vector to the curve as one traverses it in the given direction.
For example,

rot







 = 2.

For an oriented link L, the Alexander–Conway polynomial ∆L(t) is defined by
the following relations:

∆©(t) = 1,

∆ (t) − ∆ (t) = (t−1/2 − t1/2)∆ (t).



326 ATSUSHI ISHII

We obtain the Alexander–Conway polynomial from the bracket polynomial by
utilizing the Whitney degree.

Theorem 2. Let T be an oriented (1, 1)-tangle represented by a diagram D. We

denote by T̂ a link which is obtained by closing the (1, 1)-tangle T . Then

∆
T̂
(t) =

(
q−rot(D)〈D〉

)∣∣∣
q=

√
−1t1/2

.

We give a proof of Theorem 2 in Section 5. At the end of this section, we
evaluate the bracket polynomial of the trefoil knot as an example of Theorem 2:

〈 〉

=

〈
1

1

1

〉

+
∑

0≤i,j,k,l,m,n≤1

aijaklamn

d3

〈
−i − k − m

j + l + n〉

+
∑

0≤i,j,k,l≤1

aijakl

d2

〈 i + j + k + l + 1〉
+

∑

0≤i,j≤1

aij

d

〈 i + j + 1

1

〉

+
∑

0≤i,j,k,l≤1

aijakl

d2

〈 i + j + k + l + 1〉

+
∑

0≤i,j≤1

aij

d

〈
1

i + j + 1〉

+
∑

0≤i,j,k,l≤1

aijakl

d2

〈 i + j + k + l + 1〉
+

∑

0≤i,j≤1

aij

d

〈 1

i + j + 1

〉

=[2][1]d[1]d +
∑

0≤i,j,k,l,m,n≤1

aijaklamn

d3
[j + l + n + 1][−i − k − m]d

+ 3
∑

0≤i,j,k,l≤1

aijakl

d2
[i + j + k + l + 2]

+ 2
∑

0≤i,j≤1

aij

d
[i + j + 2][1]d +

∑

0≤i,j≤1

aij

d
[2][i + j + 1]d

= − q3 − q − q−1,

where we use the simplified notation, omitting triangles, as follows:

q2i −→ i , q2i −→ i .

And the Whitney degree of the (1, 1)-tangle diagram is equal to 1:

rot

( )
= 1.
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By Theorem 2, the Alexander–Conway polynomial of the trefoil knot is

t − 1 + t−1.

4. Some relations

Two relations, given in the following proposition, are used to show the invari-
ance of the bracket polynomial.

Proposition 3. We have the following equalities:
〈

q2i

〉
= [i]

〈
q2

〉
− [i − 1]

〈 〉
,(5)

〈
q

q

2

2

〉
−
〈 〉

=
∑

0≤i,j≤1

bij

d

〈
q q
2i

2j

〉
,(6)

where
(b00, b01, b10, b11) = (−[2], 2, 2,−[2]).

We remark that the equality
〈

q2i
〉

= [i]
〈

q2
〉
− [i − 1]

〈 〉

follows from the equality (5) immediately:
〈

q

q

q

2i

〉
= [i]

〈
q

q

q

2

〉
− [i − 1]

〈
q

q

〉
.

Proof. We show the equality (5). Let D(2j) (j ∈ Z) be magnetic (1,1)-tangle
diagrams which are identical except in the neighborhood of a point x where they
are

q2j (j ∈ Z).

Then we may describe the equality (5) as

〈D(2i)〉 = [i]〈D(2)〉 − [i − 1]〈D(0)〉.
By the equalities (1) and (2), we have

〈D(2j)〉 =
∑

σ: state

{ ∏

v: crossing

wt(v;σ)
}
〈D(2j)

σ 〉.

Hence it is sufficient to show the equality

(7) 〈D(2i)
σ 〉 = [i]〈D(2)

σ 〉 − [i − 1]〈D(0)
σ 〉

for each state σ, where we identify states of D(2i), D(2) and D(0) by the same
symbol σ.

We first suppose that the point x is on the path pσ. Then we have two cases
shown in Figure 4. In the case (i), the equality (7) follows from the equality (1)
and the following equality:

[k + i + 1] = [i][k + 1 + 1] − [i − 1][k + 1],
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Case (i)

q2k1

q2i

q2k2

D
(2i)
σ

q2k1

q2

q2k2

D
(2)
σ

q2k1

q2k2

D
(0)
σ

Case (ii)

q2k1+1

q
2i

q2k2−1

D
(2i)
σ

q2k1+1

q
2

q2k2−1

D
(2)
σ

q2k1+1

q2k2−1

D
(0)
σ

Figure 4

Case (i)

q2iq
2k

D
(2i)
σ

q2q
2k

D
(2)
σ

q
2k

D
(0)
σ

Case (ii)

q
2i

q
2k

D
(2i)
σ

q
2

q
2k

D
(2)
σ

q
2k

D
(0)
σ

Figure 5

where k = k1 + k2. In the case (ii), the equality (7) follows from the equality (1)
and the following equality:

[k − i + 1] = [i][k − 1 + 1] − [i − 1][k + 1],

where k = k1 + k2.
We next suppose that the point x is on a circle. Then we have two cases shown

in Figure 5. In the case (i), the equality (7) follows from the equality (2) and the
following equality:

[k + i]d = [i][k + 1]d − [i − 1][k]d.

In the case (ii), the equality (7) follows from the equality (2) and the following
equality:

[k − i]d = [i][k − 1]d − [i − 1][k]d.

We show the equality (6). As in the above case, it is sufficient to show the
equality (6) for each state. Then we show the following equalities:

〈 2k q

q
q

2

2

〉
−
〈 2k q

〉
=

∑

0≤i,j≤1

bij

d

〈 2k q

q q
2i

2j

〉
,(8)

〈
q
2k

q

q

2

2

〉
−
〈

q
2k

〉
=

∑

0≤i,j≤1

bij

d

〈
q
2k

q q
2i

2j

〉
.(9)
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We have the equality (8) as follows:
〈 2k q

q

q

2

2

〉

−
〈 2k q

〉

= [k + 1]d

〈

q
2

〉

− [k]d

〈 〉

=
∑

0≤i,j≤1

bij[i + j + k]

d

〈

q
2

〉

−
∑

0≤i,j≤1

bij [i + j + k − 1]

d

〈 〉

=
∑

0≤i,j≤1

bij

d

〈 2k q

q q
2i

2j

〉

,

where the first equality follows from the equality (2), and the last equality follows
from the equality (5). We have the equality (9) as follows:

〈
q
2k

q
q

2

2

〉
−
〈

q
2k

〉

= ([k + 2] − [k])

〈
q
2

〉
− ([k + 1] − [k − 1])

〈 〉

=
∑

0≤j≤1

b1j [−j − k]

〈
q
2

〉
+
∑

0≤j≤1

b0j [−j − k]

〈 〉

=
∑

0≤i,j≤1

bij

d

〈
q
2k

q q
2i

2j

〉
,

where the first equality follows from the equality (5) and the last equality follows
from the equality (2). �

5. Proof of Theorem 2

Lemma 4. We have the following equalities:
〈 〉

= q

〈 〉
=

〈 〉
,(10)

〈 〉
= q−1

〈 〉
=

〈 〉
,(11)

〈 〉

=

〈 〉

=

〈 〉

,

〈 〉

=

〈 〉

,(12)

〈 〉
=

〈 〉
.(13)
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Proof. We have the first equality of (10):
〈 〉

=

〈
q
q

〉

+
∑

0≤i,j≤1

aij

d

〈
q q
2i

2j

〉

= q

〈 〉

,

where the first equality follows from the equality (3), and the second equality
follows from the equality (2). The second equality of (10) and the equalities of
(11) are similarly obtained. We have the first equality of (12):

〈 〉
= d

〈
q

q

〉
+

∑

0≤i,j≤1

aij

d

〈
q

q
2i+2j+1

〉

+
∑

0≤i,j≤1

a′ij
d

〈
q
q 2i+2j+1

〉
+

∑

0≤i,j,k,l≤1

aija
′
kl

d2

〈
q q

2i+2k
2j+2l

〉

=
(
d +

∑

0≤i,j≤1

aij + a′ij
d

[i + j + 1]
)〈

q
q

〉

−
∑

0≤i,j≤1

aij

d
[i + j]

〈
q
q

〉
−

∑

0≤i,j≤1

a′ij
d

[i + j]

〈
q
q

〉

+
∑

0≤i,j,k,l,s,t≤1

(−1)s+t aija
′
kl

d2
[i + k + s − 1][j + l + t − 1]

〈
q q
2s

2t

〉

=

〈 〉
,

where the first equality follows from the equalities (2)–(4), and the second equality
follows from the equality (5). The second equality of (12) is similarly obtained.
We have the third equality of (12):

〈 〉
=

〈
q q2

2

〉
+

∑

0≤i,j≤1

aij

d

〈
q
q

2j+2
2i

〉

+
∑

0≤i,j≤1

a′ij
d

〈
q

q
2i
2j+2

〉
+

∑

0≤i,j,k,l≤1

aija
′
kl

d
[j + l]

〈
q

q
2k
2i

〉

=

〈
q q2

2

〉
−

∑

0≤i,j≤1

bij

d

〈
q
q

2j
2i

〉

=

〈 〉

,

where the first equality follows from the equalities (2)–(4), and the second equality
follows from the equality (5), and the last equality follows from the equality (6).
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Before we verify the equality (13), we introduce a notation qein the bracket for
simplicity in calculation:

〈
qe

〉

:=
1

q−1 − q

〈
q2

〉

− q

q−1 − q

〈 〉

.

Set p := q/
√
−1. The benefit from this notation is that we may reduce the

number of terms in the smoothing resolution formula:

〈 〉
=

〈
q

q

〉
+ p−1

〈 〉
+ d

〈
qe qe

〉
,

〈 〉
=

〈
q
q

〉
+ p

〈 〉
+ d

〈
qe qe

〉
.

The following equalities are also used to verify the equality (13):

〈
qe

qe

〉
=

〈
qe

〉
,

〈
q

〉
=

〈
q

qe

〉
+

〈
qe

q

〉
,

〈
q

〉
=

〈
q

qe

〉
+

〈
qe

q

〉
.

By using these equalities, we have

〈
qe

q
qe

〉
= 0,

〈
qe

q
qe

〉
= 0.

Furthermore the equality (6) implies

〈
qe

q
q

〉
−
〈

q

q
qe

〉
=

〈
q

q
qe

〉
−
〈

qe
q
q

〉

= p

〈
qe

〉
− p−1

〈
qe

〉
+ (p−1 − p)

〈
qe qe

〉
.(14)

Now, we show the equality (13). By the equality (14), we have the following
equalities

〈
qd qd

〉
−
〈

qd qd

〉
= p

〈
qd

qdq
q

qd

〉
− p−1

〈
qd

qd q
q

qd

〉
,

〈 q
q

q
q

qd qd

〉

+

〈
q
q

q
q

qd qd〉

−
〈

q
q

q
q

qd qd 〉

−
〈 q

q

q
q

qd qd

〉

= p

〈

qd

qd q
q

〉
+ p

〈
qd

qd q
q

〉
− p−1

〈
qdq

q

qd
〉
− p−1

〈
qdq

q
qd

〉
,

〈
qd

qdq
q

qd

〉
= p2

〈
qd

qd q
q

qd

〉
.
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Then we have

〈 〉

−
〈 〉

= d

〈
qd qd

〉
− d

〈
qd qd

〉
− d2

〈
qd

qd
q
q

qd

〉

+ pd

〈
qd

q
q

〉
+ d2

〈
qd

qd
q
q

qd

〉
− p−1d

〈
qd

q
q

〉

− d

〈 q
q

q
q

qd qd

〉
− d

〈
q
q

q
q

qd qd〉
+ d

〈
q
q

q
q

qd qd 〉
+ d

〈 q
q

q
q

qd qd

〉

= p−1d

〈
qd

qdq
q

qd

〉
− pd

〈
qd

qd q
q

qd

〉

= 0.

�

Proof of Theorem 2. Our bracket polynomial is a regular isotopy invariant of an
oriented (1, 1)-tangle since the equalities (10)–(13) imply the invariance of the
bracket polynomial under the Reidemeister moves with the other orientations.
Then, by the equalities (10) and (11), q−rot(D)〈D〉 is an isotopy invariant of T .
Since the equalities (3) and (4) imply

〈 〉
−
〈 〉

=

(√
−1

q
− q√

−1

)〈 〉
,

the isotopy invariant q−rot(D)〈D〉 satisfies the defining relation of the Alexander–
Conway polynomial. Hence we have

(
q−rot(D)〈D〉

)∣∣∣
q=

√
−1t1/2

= ∆T̂ (t)
〈 〉

= ∆T̂ (t).

�
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