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NOTES ON YOSHIDA’S COORDINATES ON HITCHIN’S

PRYM COVER

SØREN KOLD HANSEN AND DANIEL MOSKOVICH

Abstract. As the first stage of his proposed geometric quantization of the
SU(2) WZW model, T. Yoshida introduced coordinates on a Prym variety
which covers the moduli space of semi-stable rank 2 vector bundles with trivial
determinant over a Riemann surface [13]. We explain Yoshida’s coordinates,
and reprove their key properties using elementary combinatorial arguments.

1. Introduction

Let Mg be the moduli space of semi-stable rank 2 holomorphic vector bundles
with trivial determinant over a Riemann surface Σg of genus g ≥ 2. A rank 2 theta

function is a holomorphic section in H0(Mg,L
k) where L is the determinant

line bundle of Mg and k is a positive integer. Rank 2 theta functions are known
to correspond to conformal blocks of the SU(2) WZW model [4].

Hitchin constructed a morphism π from a Prym variety Prym(Σ̃g) to Mg [8].
It is a covering map of degree 23g−3, whose branching is generically simple [4, 11].

The Prym variety Prym(Σ̃g) is associated to a simple double branched cover Σ̃g

of Σg, which is in turn associated to the determinant of a generic Higgs field

detΦ ∈ H0(Σg,K
⊗2
Σ ) ' C3g−3 where KΣ is the canonical line bundle of Σg.

Atiyah [2] and Hitchin [8] posed the challenge to identify rank 2 theta functions

as covariant constant sections of Prym(Σ̃g) with respect to varying detΦ along
closed paths. Since a Prym variety is an abelian variety, this would identify rank
2 theta functions in terms of ‘standard’ abelian theta functions.

In a recent paper in Annals of Mathematics, Tomoyoshi Yoshida sets out to
realize the abelianization programme of Atiyah and Hitchin [13]. His strategy

is to first choose a mapping from Prym(Σ̃g) to an abelian variety Prym0(Σ̃g)

parameterizing degree 0 line bundles over Σ̃g which are anti-invariant with respect

to the action of the covering involution σ of Σ̃g. Such a choice corresponds to a

choice of one of 2g possible basepoints for Prym(Σ̃g). The variety Prym0(Σ̃g) can
explicitly be described as an abelian variety in terms of quotients of homology
groups, and may be given coordinates. However, Prym0(Σ̃g) is not principally

polarized, so Yoshida takes a 22g−3–fold covering space P (Σ̃g) of Prym0(Σ̃g) which
is principally polarized. The relationship between the spaces is given below:
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(1)

Prym(Σ̃g) −−−−→ Mg




y

P (Σ̃g) −−−−→ Prym0(Σ̃g)

The principally polarized abelian variety P (Σ̃g) has a natural choice of coor-
dinates, and a frame for its bundle of holomorphic sections is given by ‘standard’
Riemann theta functions with characteristics. Such sections descend to sections
over Prym0(Σ̃g) if they are invariant with respect to the covering transforma-

tions, and pull back from there to sections over Prym(Σ̃g) if they are invariant
with respect to change of basepoint from among the 2g possibilities. Yoshida
will then construct pullbacks of rank 2 theta functions by considering covariant
constant sections with respect to varying detΦ along closed paths.

Behaviour of the sections as we pull them back and push them forward through
Diagram 1 is determined by the behaviour of the coordinates. The combinatorial
heart of Yoshida’s approach is thus the pulled-back coordinates on Prym(Σ̃g) and
their behaviour as we vary det Φ along closed paths. These coordinates are of
independent interest also— see e.g. [6], where they are used to find representation
matrices for the action of a certain Heisenberg group on the space of conformal
blocks following [1, 5].

In this paper we explain Yoshida’s coordinates in an elementary combinatorial
way. No claim of originality is made, and everything in this paper (with the ex-
ception of Lemma 1) is contained in some form or another, implicitly or explicitly,
in [13], Sections 2, 3, and 4c.

The outline of the paper is as follows. In Section 2 we summarize the alge-
braic geometric background for Yoshida’s parametrization, following [3, 8, 9, 10].
The upshot of this section is that (when a generic Φ and a compatible pants

decomposition is fixed) we may identify Prym0(Σ̃g) as an abelian variety with

H0(ω−

Σg
)∗ /H1(Σg;Z)− (Equation 18). In Section 3, H1(Σg;Z)− is identified as

the sum of two lattices Λ and Λ∗
0. This identification depends on choices of ori-

entations for curves in the lattices. We prove that Λ is indeed a maximal lattice
(Corollary 3.1) (for Λ∗

0 the corresponding property is obvious) and calculate an
explicit basis for it (Lemma 1). This tells us (in principle at least) how one may

translate from an expression on P (Σ̃g) ' H0(ω−
Σg

)∗ /(Λ0 + Λ∗
0) to an expression

on Prym0(Σ̃g) ' H0(ω−

Σg
)∗ /(Λ + Λ∗

0) . Next, in Section 4 we show how change

of basepoint from amongst the 2g possibilities acts by translation on coordinates
by an element of 1

2Λ∗ /Λ∗
0 (Yoshida’s shift operator). This tells us how to trans-

late from an expression in coordinates over Prym0(Σ̃g) to an expression over

Prym(Σ̃g), and gives Yoshida’s coordinates for Prym(Σ̃g). Finally, in Section
5 we ‘activate’ Φ and find formulae for how motions of det Φ along closed paths
act on the coordinates of Prym(Σ̃g). A choice of an element of the fundamental
group of the space of simply branched double covers of Σg associated to Υ is
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called a marking. We find generators for markings in Lemma 2. The conclusion
of the paper is Proposition 5.1 which show how a marking induces Yoshida’s co-
ordinates on Prym(Σ̃g) (and therefore also a complex structure on it) by fixing
the arbitrary choices we made in its construction— choice of basepoint and choice
of orientations of curves in Λ and in Λ∗

0.

In future work we would like to use the combinatorial tools in this paper to
reproduce Yoshida’s results on expressing rank 2 theta functions in terms of
sections on Prym(Σ̃g). We would then like to consider manifolds with boundary,
when Φ is allowed to have simple poles. The author’s motivation is to investigate
the 3–manifold invariants (one for each quantum level) which Yoshida seems to
have constructed using his abelianization results, and to expand them to full
TQFTs and investigate their relationship with the SU(2) Reshetikhin–Turaev
invariants.

2. Background

The following section summarizes the context into which Yoshida’s coordinates
fit. The material it contains is standard, and is collected from [3, 8, 9, 10]. In
Section 2.1 we summarize Atiyah and Hitchin’s abelianization programme, which
Yoshida’s paper addresses, explaining how the Prym cover π : Prym(Σ̃g)→Mg

arises. Then in Section 2.2 we review the construction of the Prym variety, con-
cluding with it’s non-canonical identification as a quotient of homology groups in
Equation 18. This construction depends on fixing a choice of pants decomposi-
tion which is compatible in a suitable sense with Φ, which allows for the explicit
combinatorics of Yoshida’s approach.

2.1. Atiyah and Hitchin’s Abelianization Programme. In this section we
review the basic idea of Atiyah and Hitchin’s abelianization programme for SU(2)
(see [2, 8]). The purpose is to give context for Yoshida’s results and to fix notation.

Let Mg denote the moduli space of semi-stable rank 2 holomorphic vector
bundles with trivial determinant on Σg, a Riemann surface of genus g ≥ 2 with
a fixed complex structure, and let L denote the determinant line bundle over
Mg. A holomorphic section in H0(Mg,L

k) is called a rank 2 theta function (in
other places it has been called other names e.g. a generalized theta function).
Rank 2 theta functions have a number of alternative descriptions, most notably
as conformal blocks of the SU(2) WZW model [4].

The cotangent space to Mg at a point E is given by

(2) T ∗
EMg = H0(End(E)⊗KΣ),

where KΣ denotes the canonical line bundle of Σg. Inspired by physics, Hitchin
[8] considered a slightly larger space consisting of Higgs bundles which are pairs
(E,Φ) where E is a rank 2 vector bundle with trivial determinant over Σg, and
Φ (the Higgs field) is a holomorphic section in H0(End(E) ⊗ KΣ). Stability of
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(E,Φ) is defined to mean that for every Φ–invariant rank 1 sub-bundle L of E

(3) deg L <
1

2
deg(∧2E).

For a stable E any pair (E,Φ) is stable, but the converse is not true. Neverthe-
less, the natural analytic structure on the cotangent space to the space of stable
bundles in Mg, denoted T ∗Mgs, induces an analytic structure on the space of
stable Higgs bundles and then on the space of Higgs bundles (E,Φ). Equipped
with this structure, the space of Higgs bundles is called the Hitchin moduli space,
and is denoted M.

The map

χ : M−→ H0(Σg,K
⊗2
Σ ),(4)

(E,Φ) 7→ detΦ

is called the Hitchin fibration, and has some nice properties:

(i) It is proper (the pre-image of each compact set is compact) and surjec-
tive.

(ii) The generic fibre is an abelian variety.
(iii) dimMg = dim H0(Σg,K

⊗2
Σ ) and H0(Σg,K

⊗2
Σ ) ' C3g−3.

(iv) Mg is an irreducible component of χ−1(0).

A point q ∈ H0(Σg,K
⊗2
Σ ) is a quadratic differential over Σg, and thus generi-

cally has 4g − 4 distinct zeros x1, . . . , x4g−4 on the Riemann surface. Fix Φ such
that detΦ = q. The space of solutions in T ∗Σg of

(5) λ2 = χ(Φ)

defines a double cover pr: Σ̃g → Σg simply branched over x1, . . . , x4g−4 whose
genus by the Riemann–Hurwitz formula is 4g−3. This is the most basic example
of a spectral cover.

The abelian variety which is the generic fibre of χ is the subvariety of the
Jacobian of Σ̃g consisting of degree 2g − 2 line bundles E on Σ̃g such that pr∗E
has trivial determinant. This subvariety is called the Prym variety and is denoted
Prym(Σ̃g).

The above discussion concerned generic Higgs fields Φ for which the zeros of
detΦ are distinct. At the opposite extreme, when Φ = 0, we recover Mg. Thus
Mg appears as the ‘maximal degeneration’ of a family of Prym varieties. There is
a natural line bundle L onM whose restriction to Mg gives L . Sections of L over

the fibres of χ define a vector bundle over the generic points of H0(Σg,K
⊗2
Σ )— the

points whose corresponding zeros over Σg are all distinct. Sections of L k can be
pulled back to T ∗Mg and then extended over all ofM, implying that rank 2 theta
functions can be expressed in terms of functions over Prym varieties (Riemann
theta functions). The vector bundle over H0(Σg,K

⊗2
Σ ) has a projectively flat

connection, so we can compare sections (at least projectively). With respect to

this connection, sections over the Prym variety Prym(Σ̃g) which are pullbacks
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of sections over Mg should be covariant constant— i.e. they should be (at least
projectively) constant as we vary detΦ along closed paths.

Thus, Atiyah and Hitchin’s abelianization programme for SU(2) is to ex-
press rank 2 theta functions explicitly in terms of covariant constant sections
on Prym(Σ̃g). It is that problem, to which Yoshida’s paper seeks to address.

2.2. The Prym variety.

2.2.1. Constructing the Prym variety. Because pr : Σ̃g → Σg is a double cover of

Σg, the field of rational functions on Σ̃g is a quadratic extension of that on Σg.
Thus Σg has an open covering by Ua:= Spec(Ra) such that pr−1(Ua) = Spec(Sa)
with Sa:=Rα[ta]

/

(t2α − βa) for some βa ∈ Ra.

In differential geometric terms, this means that there exists a line bundle d of
degree 2g − 2 over Σg such that

(6) pr∗OΣ̃g
= OΣg ⊕ d

−1.

The multiplication induced by the quadratic extension on fields of rational
functions is

(7) (p⊕ l)(q ⊕m) = (pq + φ(l ⊗m))⊕ (pm + ql),

where p, q are sections of OΣg (“constants”), and l,m are sections of d
−1 for some

(8) φ : d
−2 ∼
−→ OΣg−

∑4g−4

i=1
xi
⊂ OΣg .

Then the zeros of βa, or equivalently the points where φ(d−2) 6= OΣ, are the
branch points b = {x1, x2, . . . , x4g−4} of the projection map. Alternatively

(9) d
−2 =

4g−4
∑

i=1

[xi],

where here and in the future we freely confuse line bundles and the divisors to
which they correspond.

Now let JΣg and JΣ̃g denote the Jacobians of Σg and of Σ̃g correspondingly.

These parameterize line bundles of degree 0 on Σg and on Σ̃g correspondingly,
and may naturally be given the structure of abelian varieties (complex tori).
Topologically,

(10) JΣg = H0(ωΣg)
∗/H1(Σg;Z),

where H0(ωΣg)
∗:= Hom(H0(ωΣg),C) are dual holomorphic 1–forms over Σg. The

space H1(Σg;Z) can be identified with a lattice in H0(ωΣg)
∗ via the map:
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γ : H0(ωΣg ) −→ Σg, ω 7→

∫

γ

ω.(11)

The argument above can be repeated for JΣ̃g.

We also consider the variety J2g−2Σ̃g which parameterizes line bundles of de-

gree 2g− 2 on Σ̃g and which is (non-canonically) isomorphic to JΣ̃g via the map

M 7→M ⊗ L−1 where M ∈ J2g−2Σ̃ and L is any fixed degree 2g − 2 line bundle
over Σ̃g.

Any pointed space maps to its Jacobian via the Abel–Jacobi map which we
call µ:

(12) p 7→

{

η 7→

∫ p

x

η

}

modulo periods,

where x is the basepoint. This induces the norm map Nm such that

(13)

Σ̃g
µ

−−−−→ JΣ̃g




y

pr





y
Nm

Σg
µ

−−−−→ JΣg

commutes.
From the preceding discussion and Equation 6, the determinant of a line bundle

L ∈ J2g−2Σ̃g is Nm(L)⊗ d−1. Hence, for a semi-stable degree 2g − 2 line bundle

L over Σ̃g which satisfies Nm(L) = d we have pr∗L ∈Mg. This gives us a map

(14) π : Prymss(Σ̃g):=
{

L ∈ J2g−2(Σ̃g)
∣

∣

∣
Nm(L) = d

}

−→Mg.

With the structure of an abelian variety induced from the Jacobian, Prymss(Σ̃g)

(the moduli space of semi-stable degree 2g−2 line bundles over Σ̃g which satisfies
Nm(L) = d) is called the (semi-simple part of the) Prym variety of Σg associated

to Σ̃g.

2.2.2. Stability and semi-stability. Let us say a few words about stability and
semi-stability now so that we never need mention them again, after which we
shall drop the superscript from the notation Prymss(Σ̃g). To recall, a vector

bundle E is said to be stable (respectively, semi-stable) if its slope µ(E):= degE
rankE

is greater than (respectively greater or equal to) the slope of any proper sub-
bundle E′ of E. Conceptually, π should really be thought of as a map from
the whole moduli space of degree 2g − 2 line bundles over Σ̃g which satisfies
Nm(L) = d to Mg. The problem is that the latter space might not be a manifold.
One standard way to overcome this difficulty is to use stacks rather than varieties,
and the other way, which Yoshida uses, is to restrict to the subspace of Mg which
is a manifold— which means that we must restrict to the semi-stable part of the



YOSHIDA’S COORDINATES 297

Figure 1. Two pants decompositions of a Riemann surface of
type (3, 0) and their graphs.

source Prym(Σ̃g) as well. Hartog’s theorem allows us to extend holomorphic

sections over Prymss(Σ̃g) to holomorphic sections over Prym(Σ̃g), so for the
purposes of Yoshida’s paper we lose nothing be considering the semi-stable part
of the Prym variety.

The map π is surjective in the sense which is required for our context. Namely,
restricting to stable bundles, the map π restricts to a map πs : Pryms(Σ̃g) −→
Mgs. This map is dominant (in other words, surjective on a Zariski open set) by
[3, Corollary 1.5]. Now the fact that Mgs is Zariski dense in Mg combined with

the result that Prym(Σ̃g)−Prymss(Σ̃g) (respectively Prym(Σ̃g)−Pryms(Σ̃g))

is a subvariety of Prym(Σ̃g) of codimension ≥ g + 1 (respectively ≥ g − 1) ([3,
Lemme 1.2]) tells us that π is dominant, because the degree of d is 2g − 2.

2.2.3. Pants decompositions compatible with Φ. Before we take the next step,
we define a pants decomposition of Σg and specify the necessary compatibility
condition with Φ. This constitutes the stage for Yoshida’s combinatorial approach
to be played out on.

A connected compact oriented surface is said to be of type (g, n) if it is of genus
g and has n boundary components. For Σg, a pants decomposition is a choice of
3g − 3 disjointly embedded circles in Σg which divide it up into surfaces of type
(0, 3) [7]. The closures of such surfaces are called pairs of pants. Let ΣΥ denote
the Riemann surface Σg equipped with the pants decomposition Υ:= {ej , Yi}
where Y1, . . . , Y2g−2 are embeddings of pairs of pants into Σg which intersect at
only at their boundary curves e1, . . . , e3g−3. The pairs of pants are of course
induced by the ej ’s, but it is more convenient to include them explicitly as part
of the data. For each pair of pants Yi, fix an ordering of its three boundary
curves, so we can write them as ei(1), ei(2) and ei(3) (so each boundary curve gets
labeled twice).

For Yoshida’s paper, ΣΥ is fixed.
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A pants decompositions of a surface of type (g, 0) defines a cubic (or trivalent)
graph with 2g − 2 vertices which represent pairs of pants and 3g − 3 arcs which
represent their boundary components. This dual graph to a pair of pants decom-
position Υ is denoted G(Υ), with the vertex corresponding to a pair of pants Yi

denoted vi and the arc corresponding to a circle ej also denoted ej where if we
are referring to a curve in the Riemann surface or to an arc in the graph should
be clear from context. The choice of orientation of the curves {ei} induces an
orientation on the edges of G(Υ), which we choose and fix such that each vertex
has either two edged going into it and one coming out of it, or the converse.

We next explain what it means for Υ to be compatible with Φ. Recall that
detΦ has 4g− 4 distinct zeros b:= {x1, . . . x4g−4}, which are the branch points of

Σ̃g a simply branched double cover of Σg. We require two things.

First, we require that there be a pair of points from b in each pair of pants.
Denote by xi

1 and xi
2 the pair of points in the pair of pants Yi for i = 1, . . . , 2g−2.

Secondly, to specify a double-cover of ΣΥ simply branched over b is equivalent
to specifying an element α ∈ H1(Σg − b;Z2) ' Hom(H1(Σg − b;Z2),S2) such
that the evaluation of cohomology classes on homology classes 〈α, cj〉 is 1 (the
non-unit of S2 ' Z2 the symmetric group on 2 elements) for all j, where cj

denotes the class in H1(Σg − b;Z2) represented by the boundary of a small disc
centred at xj . For Υ to be compatible with Φ, so that the double-cover can be
built up by sticking together double-covers of pairs of pants, in addition we also
require that the curves {ei} satisfy 〈α, [ej ]〉 = 0 (where [ej ] is the homology class
represented by ej). The cohomology class α is called a covering type of ΣΥ, and
is determined by det Φ.

2.2.4. Identification of Prym(Σ̃g) with σ–anti-invariant degree 0 line bundles

over Σ̃g. We would like to write Prym(Σ̃g) explicitly as an algebraic variety.
First, we transfer the problem to one concerning degree 0 line bundles. Given a
pants decomposition Υ of Σg which is compatible with Φ, choose

(15) L:=

2g−2
∑

i=1

[xi
1]

(one point from each pair of pants) and consider again the map J2g−2Σ̃g −→ JΣ̃g

given by M 7→M ⊗ L−1 where M ∈ J2g−2Σ̃g. Denote by Prym0(Σ̃g) the image
of the Prym variety under this map. The line bundle d−2, which corresponds to
∑4g−4

i=1 [xi], maps to the degree 0 line bundle corresponding to
∑2g−2

i=1

(

[xi
1]− [xi

2]
)

which has a square root which we fix and (after tensoring with L to make it a

point in Prym(Σ̃g)) fix to be d.

Now, resetting the letter L, let L be any point in Prym(Σ̃g). We have L =
d⊗ L0 for some degree 0 line bundle L0, so

(16) d = Nm(L) = Nm(d)⊗Nm(L0) = d⊗Nm(L0).
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Therefore Prym(Σ̃g) is (non-canonically) isomorphic to the connected com-

ponent of the identity in ker Nm. Because for any divisor on Σ̃g it holds that
pr−1(pr(L0)) = σL0 ⊗ L0, it follows that

(17) pr∗(Nm(L0)) = σL0 ⊗ L0.

Thus on the connected component of the identity on ker Nm, the covering invo-
lution σ acts by inversion. This allows us to (non-canonically) identify Prym(Σ̃g)

with the subvariety of JΣ̃g consisting of the σ–anti-invariant degree 0 line bundles

over Σ̃g. Thus we have the non-canonical isomorphism

(18) Prym(Σ̃g) ' H0(ω−
Σg

)∗/H1(Σg;Z)−,

where H0(ω−

Σg
) denotes the σ–anti-invariant part of H0(ωΣg) and H1(Σg;Z)−

denotes the σ–anti-invariant part of H1(Σg;Z).

3. Λ0 and Λ : lattices associated to cubic graphs

In Section 3.1 we identify H1(Σg;Z)− as the sum of two lattices Λ+Λ∗
0, where

Σg comes equipped with a pants decomposition which is compatible with Φ.
This depends on a choice of orientations for the curves which make up Λ and Λ∗

0,
which in this section we choose arbitrarily. The sum Λ + Λ∗

0 in no sense splits
into the sum of a lattice and its dual, so in Section 3.2 we are led to consider
P (Σ̃g):=H0(ω−

Σg
)∗ /(Λ0 + Λ∗

0) , the principally polarized abelian variety where the

explicit Riemann theta functions live. This turns out to be a 22g−3–fold cover
of Prym0(Σ̃g). The interplay between Λ and Λ0 is subtle and is combinatorially
the most difficult part of Yoshida’s paper.

As noticed by H. Fujita (see e.g. [6]), Λ and Λ0 are essentially combinatorial
objects related to cubic graphs (also known as trivalent graphs), and may be
defined and studied in this context. Thus in Section 3.3 we take a step back
from algebraic geometry and abelian varieties, and study Λ and Λ0 ‘abstractly’
as lattices associated to a cubic graph G. We prove that Λ is a maximal lattice
(Corollary 3.1) and show that an explicit basis for it corresponds to a perfect
matching for (bridgeless maximal subgraphs of) G (Lemma 1). During the proof
of Corollary 3.1 we also calculate that the quotient group Λ/Λ0 is isomorphic to

Z
2g−3
2 .

3.1. Identifying H1(Σg;Z)− as Λ + Λ∗
0. In this section we identify H1(Σg;Z)−

as a sum of two lattices Λ + Λ∗
0. Recall that the pants decomposition Υ of Σg is

compatible with Φ, so that any curve ei in Υ satisfies 〈α, [ej ]〉 = 0 with respect
to the covering type α. This implies that a pair of pants Yi lifts to a surface of
type (0, 6) in Σ̃g. A generating set for the σ–anti-invariant classes in H1(Σg;Z)
is represented by the curves in Figure 3 and in Figure 4. We fix an orientation
for these curves arbitrarily.

Now define:
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x1

x2

ẽ1

σẽ1

σẽ3 σẽ2

ẽ2
ẽ3

Figure 2. A curve
representing (ẽi − σẽi).

x1

x2

ẽ1

σẽ1

σẽ3 σẽ2

ẽ2
ẽ3

Figure 3. A curve
representing Ei.

x1

x2

ẽ1

σẽ1

σẽ3 σẽ2

ẽ2
ẽ3

σẽ
′
3

σẽ
′
2

ẽ
′
2

ẽ
′
3

x
′
1

x
′
2

Figure 4. A curve representing e∗i .

Λ:= spanZ

{

Ej
i

}

, Λ∗
0:= spanZ

{

e∗i

}

.(19)

It is not immediately clear why either of these should be a lattice, but clearly
we have H1(Σg;Z)− ' Λ + Λ∗

0. To see that they are indeed lattices, and to treat
them combinatorially, we map them into R3g−3.

Let (ẽ1 − σẽ1), . . . , (ẽ3g−3 − σẽ3g−3) be the symplectic dual curves to the e∗i ’s

(the ẽi are in fact the lifts of the ei curves of the pants decomposition to Σ̃g).
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Representatives of these are pictured in Figure 2. Note that the (ẽi − σẽi)’s are
linearly independent (no sum of ei’s is zero in the homology of Σg − b).

Define

(20) Λ0:= spanZ

{

(ẽi − σẽi)
}

.

The lattice Z3g−3 ⊂ R3g−3 has a standard basis given by the vectors

(21) ~ei:= (0, . . . ,
i

1, . . . , 0).

Map ẽi−σẽi to ~ei for each i. This induces a bijection between Λ0 and spanZ

{

~ei

}

which we also call Λ0.

We construct another set of generators
{

~Ej
i

}

for Z3g−3 ⊂ R3g−3 by the fol-

lowing formulae:

~Ej
1:=

1

2

[

−~ej(1) + ~ej(2) + ~ej(3)

]

,

~Ej
2:=

1

2

[

~ej(1) − ~ej(2) + ~ej(3)

]

,(22)

~Ej
3:=

1

2

[

~ej(i) + ~ej(2) − ~ej(3)

]

.

This set of generators has cardinality 6g − 6. Now mapping Ej
i to ~Ej

i for each
1 ≤ i ≤ 2g − 2 and j = 1, 2, 3 is a bijection induced by the bijection above. Let

spanZ

{

~Ej
i

}

be called Λ as well.

The dual lattices of Λ0 and of Λ with respect to the standard inner product on
R3g−3 ⊕R3g−3 are denoted Λ∗

0 and Λ∗. The dual of ~ei we call ~e ∗
i (Yoshida calls

it f̃∗
k ) and the dual of ~Ei we call ~E∗

i . Note that we have:

(23) Λ∗ =

{

3g−3
∑

l=1

nl~e
∗
l

∣

∣

∣

∣

∣

ni(1) + ni(2) + ni(3) ∈ 2Z for all i

}

,

where the coefficients are integers. Again, the vector representations of the lat-
tices and the curve representations are isomorphic.

3.2. The Principally Polarized Abelian Variety P (Σ̃g). It is not even ob-
vious yet that Λ is a maximal lattice (this will be proven in Section 3.3), but it
is obvious that Λ and Λ∗

0 are not dual and that their sum doesn’t split into dual

lattices. This means that Prym0(Σ̃g) is not principally polarized, which is bad
news if one wants to write Riemann theta functions explicitly on it.

However, Λ0 ⊆ Λ because:
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(24)











~Ei
1 + ~Ei

2 = ~ei(3),
~Ei

2 + ~Ei
3 = ~ei(1),

~Ei
3 + ~Ei

1 = ~ei(2),

where i = 1, . . . , 2g − 2. We may thus define the quotient Λ /Λ0 which induces a
finite sheeted covering

(25) P (Σ̃g):= H0(ω−
Σg

)∗ /(Λ0 + Λ∗
0)

of Prym0(Σ̃g):= H0(ω−
Σg

)∗ /(Λ + Λ∗
0) (in the proof of Lemma 3.1 we will see that

this is in fact a 22g−3–fold covering).

3.3. A Basis for Λ. Clearly Λ0 is a maximal lattice in R3g−3. In this section
we prove that Λ is also a maximal lattice in R3g−3, in other words that Λ '

spanZ

{

~Di

}

where
{

~Di

}

is a subset of
{

~Ej
i

}

of cardinality 3g − 3. We prove

this twice, first in Lemma 1 where we construct the ~Di’s explicitly and show that

a choice of a basis
{

~Di

}

for Λ is equivalent to a choice of perfect matchings for

bridgeless components of the cubic graph G (a set of non-adjacent arcs incident
to every vertex). For planar graphs this corresponds to Yoshida’s concept of a
grouping. We then give a simpler and shorter proof (due to Fujita) that Λ is a

lattice in Corollary 3.1 in which we calculate the quotient Λ /Λ0 ' Z
2g−3
2 which

shows that P (Σ̃g) is a 22g−3–fold covering of Prym0(Σ̃g).

Lemma 1. A basis for Λ has 3g − 3 elements, and a choice of basis for Λ
corresponds to a perfect matching for G1, . . . , Gr, the bridgeless components of G
with separating arcs erased.

Proof. Assume first that G is bridgeless. Choose a perfect matching

R:= {r1, . . . , rg−1} ⊂ E.

Such a matching exists by Petersen’s Theorem [12, Theorem VII.29]. Hiding the
arcs in R leaves us with a set of cycles G − R := {C1, . . . , Ck}. Orient all arcs
on the cycles counter-clockwise, and fix a orientation of the arcs in R arbitrarily
(for the moment). Re-index the edges of G as follows:
where the thick (vertical) line represents an arc in R, with either orientation, and
ei(j) is shorthand for evi(j).

We consider a number of cases in ascending order of generality.

G is Hamiltonian. For pedagogical reasons we begin by considering the Hamil-
tonian case. Assume the vertices around the Hamiltonian cycle C are indexed
cyclically, so that traveling clockwise around the cycle we go from vertex v1 to
vertex v2 to vertex v3, etc. Assume also that r1 begins at vertex v1, and ends at
some vertex vm.
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We assemble a set of elements in Λ of cardinality 3g−3, and show that together

they generate Λ over Z. To simplify notation set ~Ej
i :=

~E
vj

i for all 1 ≤ i ≤ 2g − 2
and j = 1, 2, 3. Call r1 the special edge of G. We begin selecting elements for our

generating set. Choose ~Ei
2 and ~Ei

3 for each vi that is an outgoing vertex for one

of {r2, . . . , rg−1}, and choose ~E1
1 and ~E1

3 . Choose ~Ej
3 for all remaining vertices vj

of G. We have three generators corresponding to each element of R, thus our set
of generators has the correct cardinality 3g − 3.

If rl goes from vi to vj , we obtain the relation:

(26) ~Ei
2 + ~Ei

3 = ~ei(1) = ~ej(1) = ~Ei
2 + ~Ei

3.

Thus we can generate ~E2 and ~E3 for all endpoints of edges r2, . . . , rg−1, i.e.

for all vertices which are not endpoints of r1. For v1, draw ~E1
2 as follows:

v1−1
2

1
2

1
2

For all i = 1, 2, . . . , 2g − 2 have the following relations:

(i)

vi
1
2

+ ~Ei
2 =

vi

1
2

1
2

(ii)

vi
1
2

− ~Ei
3 =

vi
1
2

−1
2

Recall that ~E1
2 = 1

2(~e1(1) − ~e1(2) + ~e1(3)), and use the above relation for each

vertex vi in C, for i = 2, 3, . . . , 2g − 2, starting from 1
2~e1(3) = 1

2~e2(2). At the

last step, we obtain 1
2~e(2g−2)(3) = 1

2~e1(2) which cancels with −1
2~e1(2) which was a

summand in ~E1
2 , plus a sum of 1

2~ei(1) for each vertex vi from which a red edge is

outgoing and −1
2~ei(1) for each vertex vi from which a red edge is incoming. These

contributions cancel out since each red edge has both an outgoing vertex and an

incoming vertex, the final cancelation being with 1
2~e1(1) the final summand of ~E1

2 .
Define:
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V ′
1 :=

{

vi ∈ V
∣

∣ the red edge is outgoing from vi

}

,(27)

V ′
2 :=

{

vi ∈ V
∣

∣ the red edge is incoming to vi

}

.

Then we have obtained the following key archetypal relation between elements
of Λ:

(28)
∑

vi∈V ′

1

vj∈V ′

2

~Ei
2 −

~Ej
3 = 0.

All elements in the above equation are in our set of generators or have been

generated by them, save ~E1
2 . Thus we may generate ~E1

2 . Thus by Equation 26

we may in turn generate ~Em
2 for any m.

Thus we have generated ~E2 and ~E3 for all vertices. Finally, we have

(29) ~Ei
1 + ~Ei

2 = ~ei(3) = ~e(i+1)(2) = ~Ei+1
1 + ~Ei+1

3

which allows us to generate ~E1 for all vertices by taking ~E1
1 and using it to

generate ~E2
1 , then using that to generate ~E3

1 , etc. The generation of Λ for the
Hamiltonian bridgeless case is complete.

G is bridgeless. We drop the requirement that G be Hamiltonian. Choose a
set of edges D:= {d1, . . . , dk−1} ∈ R such that di goes from Ci to Ci+1 (assume
without the limitation of generality that such a choice exists, otherwise we re-
index the cycles). The red edge adjacent to v1 (assume without the limitation of
generality that it is outgoing from v1) is called the special edge and we denote it

r1 as before. Choose as generators ~Ei
2 and ~Ei

3 for all vi (i > 1) from which an arc

in R−D is outgoing, and choose ~Ei
1 and ~Ei

2 for all vi (i > 1) a starting point of

an arc in D. Choose ~E1
1 for v1 if r1 = d1, otherwise choose ~E1

3 for v1 and choose
~Ei

1 and ~Ei
2 for the starting point of d1. Choose ~Em

1 and ~Em
3 for the endpoint vm

of dk−1. Choose ~Ej
3 for all remaining vertices j of G. We have three generators

corresponding to each element of R, thus our set of generators has the correct
cardinality 3g − 3.

By Equation 28 (which is true for the same reason here as it was true in the

Hamiltonian case) we may generate ~E1
2 . By Equation 26 we may generate ~E2

and ~E3 for all endpoints of edges in R − D, i.e. for all vertices which are not
endpoints of d1, . . . dk−1.

Thus for k > 1 (otherwise we are back in the Hamiltonian case), we may

generate ~E2 and ~E3 for all vertices on C1 save one, vi the starting point of d1.

However ~Ei
1 is an element in our set of generators, hence by Equation 29 we may

generate ~E1 for all vertices by taking ~Ei
1 and using it to generate ~Ei+1

1 (numbering
the vertices counter-clockwise along C1 as in the Hamiltonian case), then using
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that to generate ~Ei+2
1 , etc. For n1 the number of vertices in C1, the final relation

is:

(30) ~En1

1 + ~En1

2 = ~en1(3) = ~ei(2) = ~Ei
1 + ~Ei

3,

allowing us to generate ~Ei
3. Thus we have generated all elements of Λ for all

vertices on C1. For vl the endpoint of d1, we have additionally

(31) ~Ei
2 + ~Ei

3 = ~ei(1) = ~el(1) = ~El
2 + ~El

3,

allowing us to generate ~El
3, and repeat everything for C2. Repeat for C3, C4,. . . until

Ck. Thus we have generated Λ for the bridgeless cubic graph case.

G has separating arcs. Finally, we consider the case where we have separating
arcs. Such a graph minus the separating arcs breaks apart into bridgeless cubic
graphs G1, . . . , Gl where by convention we define the closed loop with no vertices
as a trivial bridgeless cubic graph. Choose a perfect matching for each of these,
and again refer to arcs in these matchings as ‘red’.

The first stage is to re-index arcs of G. For the vertices in G1, . . . , Gl such an
indexing is induces by the indexing of each of these subgraphs as in the bridgeless
case. For a separating edge s connecting to an edge Gi at vertex vi:

viei(2) ei(3)

ei(1)

for both endpoints of s.

where the thick (vertical) line represents s. When three separating edges s1, s2,
and s3 connect at vertex vi, and s1 is incoming and s2 and s3 are outgoing from
vi:

ei(2)

ei(3)
ei(1)

where s1, s2 and s3 meet.

and when s1 and s2 are incoming and s3 is outgoing:

ei(3)

ei(2)
ei(1)

where s1, s2 and s3 meet.

To obtain the analogue of Equation 28 for the general case, define:
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V
′′

1 :=
{

vi ∈ V
∣

∣ vi is adjacent to exactly one separating edge, which is outgoing
}

(32)

V
′′

2 :=
{

vi ∈ V
∣

∣ vi is adjacent to exactly one separating edge, which is outgoing
}

and define:

V
′′′

1 :=
{

vi ∈ V
∣

∣ vi is adjacent to one incoming and two outgoing separating edges
}

(33)

V
′′′

2 :=
{

vi ∈ V
∣

∣ vi is adjacent to one outgoing and two incoming separating edges
}

Then define:

V1:= V ′
1 ∪ V

′′

1 ∪ V
′′′

1 ,(34)

V2:= V ′
2 ∪ V

′′

2 ∪ V
′′′

2 .

The analogue of Equation 28 in the general case is:

(35)
∑

vi∈V1

vj∈V2

~Ei
2 − ~Ej

3 = 0.

Now we choose generators for the general case. First, denote the genuses of
G1, . . . , Gl by g1, . . . , gl respectively, with the genus of a trivial bridgeless cubic
graph set to 1 by convention. If G1 is non-trivial, for vertices in G1, the generators
are those we would obtain by choosing generators of G1 as a stand-alone bridgeless
graph. If G1 is trivial, choose no generators for it. We obtain 3g1− 3 generators.
For vertices in G2, . . . , Gn, make the same choices we would have made for them
as ‘stand-alone’ bridgeless graphs, but with the special edge ‘forgotten’. In other

words, if Gr is Hamiltonian (r > 1), choose ~Ei
2 and ~Ei

3 for all vi that is an
outgoing vertex for one of {r1, . . . , rg−1} (note that this time we include r1), and

choose ~E1
1 and ~E1

2 . Choose ~Ej
3 for all remaining vertices j of G. If Gr is not

Hamiltonian, we choose generators for v1 as if it were any other starting point for
a red arc, in D or otherwise, and choose all other generators precisely as before.
Finally, if Gr is trivial, choose ~Ei

1 for the vertex v1 connecting it to a separating
arc. In all cases we obtain 3gr − 2 generators.

It remains to choose generators for vertices adjacent to separating arcs. For

vi ∈ V
′′

1 ∪ V
′′′

1 choose ~Ei
2 and for vi ∈ V

′′

∪ V
′′′

2 choose ~Ei
3.

Using Equation 35 we may obtain one additional generator for G1, putting it
on ‘equal footing’ with G2, . . . , Gr.

For Gr with r ≥ 1 with only a single separating arc adjacent to them, we can
generate all of Λ restricted to Gr by arguments very similar to the preceding
arguments, although the proof now breaks down into many cases:
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If Gr is Hamiltonian and s is adjacent to a red arc (an arc is red if it was in
the chosen perfect matching of Gr) and connects to the Gr at vertex vi, call this

red arc d, and for all red arcs except for d we may generate ~E2 and ~E3 for all

incoming and outgoing vertices by Equation 26. We may generate all ~E1’s by

Equation 29, a-priori for all vertices except v1 and vi. Now we know ~E1, ~E2, and
~E3 for two vertices adjacent to v1 so therefore by Equations 26 and 29 we may
deduce them for v1, and repeating the argument we may also deduce them for vi.

The second case is when Gr is Hamiltonian and s connects to an arc on C at
vertex vi, which we may assume to be the next vertex along C in a clockwise

direction from v1. Now we generate ~E2 and ~E3 for all vertices on Gr by Equation

26, and ~E1 for all vertices on C by Equation 29, where again we deduce ~E1, ~E2,

and ~E3 from having generated them on both vertices adjacent to vi.

Next, we have the non-Hamiltonian case, where s connects up to a red arc
between cycles (between a cycle and itself is completely analogous to the Hamil-
tonian situation), which we may assume to be dk−1. Generate elements of Λ on
the cycles as we did before, using Equation 31 to move between cycle Cj and
Cj+1 for j < k − 1. Here, because there is no special edge, we may generate all
of Λ restricted to the first cycle C1 just as we may generate it restricted to all
others. Again, we have generated ~E1, ~E2, and ~E3 for two vertices adjacent to vi

and thus we may generate them for vi.

If Gr is non-Hamiltonian and s connects to a cycle (assume Ck), the argument
is virtually identical to the Hamiltonian case and is omitted.

Consider a separating arc s which connects to Gr at vi, for whose vertex which

is not on Gr we know ~E1, ~E2, and ~E3. Then by the analogue of Equation 26 we

may generate ~Ei
2 and ~Ei

3. Thus if Gr connects via trees of separating edges to
Gj ’s which are adjacent to only a single separating edge each, we may generate
Λ restricted to Gr by the preceding arguments.

We generate all ~Ej ’s for vertices at which three separating edges meet by induc-

tively generating all ~Ej ’s for two adjacent vertices by considering the appropriate
cases of the ones listed above.

Having considered all cases, we have generated Λ for all cubic graphs using
a generating set with 3g − 3 elements, and shown that the generating set is
determined uniquely by the required perfect matchings. �

Because Λ generates R3g−3 over R, it follows from Lemma 1 that Λ is a maximal

lattice in R3g−3, in other words that Λ ' spanZ

{

~Di

}

where
{

~Di

}

is a subset of
{

~Ej
i

}

of cardinality 3g − 3. This claim however has a simpler proof as pointed

out by H. Fujita.

Corollary 3.1. Λ is a maximal lattice in R3g−3.
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Proof.

(i) Λ0 is a maximal lattice.
(ii) Λ0 ⊆ Λ.
(iii) The quotient Λ /Λ0 is finite. In this quotient we have the following

relations ~Ek
i + ~Ek

j = 0 for k = 1, 2, . . . , 2g − 2 and i, j = 1, 2, 3 (equal

or not). Thus for each vertex we have a single generator for Λ /Λ0 , and
twice that generator is zero. There are no other relations, since such
a relation would have to involve all pairs of pants, and would therefore
be equivalent modulo the above relations to Equation 35 which holds
already in Λ. Thus we have [Λ : Λ0] = 22g−3 and

Λ/Λ0 ' Z
2g−3
2 .

(iv) Λ generates R3g−3 over R.

�

4. Change of basepoints

In Section 3 we discussed pushing forward coordinates from P (Σ̃g) to Prym0(Σ̃g).

This section concerns the next step, pulling back coordinates from Prym0(Σ̃g)

to Prym(Σ̃g).

Recall that the non-canonical isomorphism from Prym(Σ̃g) to Prym0(Σ̃g) was

given by multiplying points of Prym(Σ̃g) by a fixed square root of the degree 0

line bundle
∑2g−2

i=1

(

[xi
1]− [xi

2]
)

. This square root d is determined by a divisor
∑2g−2

i=1 [pi] such that
∑2g−2

i=1

(

[xi
1]− [pi]

)

is equal to 1
2

∑2g−2
i=1

(

[xi
1]− [xi

2]
)

, which

are represented via the Abel–Jacobi map by the dual 1–forms
{

η 7→
∑2g−2

i=1

∫ pi

xi
1

η
}

and
{

η 7→ 1
2

∑2g−2
i=1

∫ xi
2

xi
1

η
}

correspondingly, modulo periods, where η is a σ–anti-

invariant holomorphic 1–form. Since this square root must live in Prym0(Σ̃g), it
is σ–anti-invariant, therefore modulo periods:

(36)

2g−2
∑

i=1

∫ pi

xi
1

η = −σ

2g−2
∑

i=1

∫ pi

xi
1

η =

2g−2
∑

i=1

∫ σpi

xi
1

η;

so

(37)

2g−2
∑

i=1

pi =

2g−2
∑

i=1

σpi.

Because H1(Σg;Z)− ' Λ + Λ∗
0 induces coordinates on Prym0(Σ̃g), we can

search for pi’s on Λ and on Λ∗
0. We prove by contradiction that they cannot be

on Λ. If a point pi were on Λ, it would be on a path in Yi from xi
1 to xi

2. Thus
each pi would be in a distinct pair of pants. Since there are no further branch
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points in Yi, the points pi and σpi would be distinct, which would contradict 37
because there are only 2g− 2 points pi which coincide with the 2g− 2 points σpi.

Thus the pi’s are on Λ∗
0. For closed paths γi = γ1

i +γ2
i representing elements of

Λ∗
0, where the γ1

i ’s go from xi
1 to pi and the γ2

i ’s go from pi to xi
1 correspondingly,

we have

(38)

2g−2
∑

i=1

(

∫ pi

xi
1

η +

∫ xi
1

pi

η

)

= 0,

along the γi’s. Combined with (36) this gives us that

(39)

2g−2
∑

i=1

(

∫ pi

xi
1

η +

∫ xi
1

σpi

η

)

= 0,

where the first integral is along γi and the second is along σγi. This allows us to
combine γi and σγi, which is the lift of a closed path on the base ΣΥ (and shows
that pi must be a branch point).

Loops on the base corresponding to elements of Λ∗
0 are cycles on G(Υ). It

remains only to notice that H1(G(Υ);Z2) '
1
2Λ∗ /Λ∗

0 [6, Proposition 3.5(i)].

Along each cycle there are two choices of pi. If pi is a branch point xj
1 along a

cycle, we may choose instead p′i to be xj
2. Notice that these choices are separated

by a translation by γ1
i + σγ2

i which represents and element of 1
2Λ∗ /Λ∗

0 . Com-

bined, we get an action of 1
2Λ∗ /Λ∗

0 on Prym0(Σ̃g) (or rather on H0(ω−
Σg

)∗) by

translation. The coordinates on Prym(Σ̃g) are the coordinates on Prym0(Σ̃g)

modulo this action, and thus we have induced coordinates on Prym(Σ̃g).

Because Λ0 is of dimension 3g − 3 (and so 1
2Λ0 /Λ0 ' Z

3g−3
2 ) and because

Λ /Λ0 ' Z
2g−3
2 , taking the dual gives 1

2Λ∗ /Λ∗
0 ' Z

g
2 so there are 2g choices of

basepoint for Prym0(Σ̃g).

5. Varying det Φ along a closed path

In the earlier sections we explained Yoshida’s coordinates for a fixed Φ and a
compatible pants decomposition Υ. In this section we ‘activate’ Φ by allowing
detΦ to move along closed paths. These closed paths are elements of WΥ the
fundamental group of the space of double covers associated to a pants decomposi-
tion BΥ. We find generators for WΥ in Lemma 2. Note that our set of generators
is smaller than Yoshida’s. These generators can be represented by an embedded
graph in ΣΥ which Yoshida calls a marking.

We explicitly calculate the actions of these generators on lifts of pairs of pants.
The conclusion in Section 5.3 is a collection of formulae for the action of WΥ

on Λ, on Λ0, and on the basepoint of Prym(Σ̃g). We conclude in Proposition

5.1 by showing how a marking induces Yoshida’s coordinates on Prym(Σ̃g) (and
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therefore also a complex structure on it) by fixing the arbitrary choices we made
in its construction— choice of basepoint and choices of orientations of curves in
Λ and in Λ∗

0.

5.1. BΥ : The Space of Double Coverings Associated to a Pants De-

composition Υ. Recall the definition of the pants decomposition Υ from Section
2.2.3. In that section Φ was fixed and Υ was required to be compatible with it.
Here Υ is fixed while Φ (or rather detΦ) is free to move along closed paths whose
points are all compatible with Υ.

By the discussion in Section 2.2.3, Φ gives us two pieces of information with
which we may construct Σ̃g:

(i) An element b:= {x1, . . . x4g−4} in the configuration space of 4g − 4 un-
ordered points on ΣΥ, such that there is a pair of points in each pair of
pants:

(40) B4g−4(Σg)Υ:=
{

(x1, · · · , x4g−4) ∈ Σg × · · · × Σg

∣

∣

∣

∣

{x2i−1, x2i} ∈
Yi ;
xi 6= xj if i 6= j.

/

S2 × · · · ×S2

}

,

where S2 denotes the symmetric group on 2 letters.
(ii) A covering type α of ΣΥ which is an element of

(41) H̆1(Σg − b;Z2):=
{

β ∈ H1(Σg − b;Z2)

∣

∣

∣

∣

〈β, cj〉 = 1 ;
〈β, [el]〉 = 0.

for all
1 ≤ j ≤ 4g − 4 ;
1 ≤ l ≤ 3g − 3.

}

.

Thus the set of all double–covers of ΣΥ (as a complex manifold) is parameter-
ized by

(42) BΥ:=
{

b̃:=(b, α) ∈ B4g−4(Σg)Υ × H̆1(Σg − b;Z2)
}

5.2. WΥ : The Fundamental Group of BΥ. Fix a base-point (b0, α0) ∈ BΥ.
We vary b0 in Σg along an element of H1(Σg;Z) represented by a parameterized
loop `(t):= {x1(t), . . . , x4g−4(t)} with t ∈ [0, 1] and `(0) = `(1) = b0. A loop
in BΥ is a pair (`(t), α(t)) where ` is a loop in B4g−4(Σg)Υ based at b0 and

α(t) ∈ H̆1(Σg − `(t);Z2) with t ∈ [0, 1] and α(0) = α(1) = α0. Thus we obtain
the map:

(43) ev : π1(B4g−4(Σg)Υ,b0) −→ H̆1(Σg − b0;Z2),

which sends the homotopy class represented by the curve ` to αi − α0. The
fundamental group WΥ:=π1(BΥ) is isomorphic to ker(ev).

Let Y be a pair of pants in Σg with boundary components e1, e2, and e3, on
which we fix some orientation. Since we are working in B4g−4(Σg)Υ, we have that
b ∩ Y is a two point set, whose elements we denote {x1, x2}. Define the path
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x1

x2

e1

Figure 5. The path pe1
.

x1 x1

x2 x2

e1 e1

e2 e2
e3 e3

Figure 6. The loops te1
and ke1

. The path followed by x1 is indi-
cated by the dark arrow while the path followed by x2 is indicated
by the white arrow.

pei
= pei

(s) with s ∈ [0, 1] to be an embedded arc in the interior of Y which we
denote int(Y ) such that pei

(0) = x1 and pei
(1) = x2 which is “antipodal to ei”—

see Figure 5.

For a pair of pants Y , define the following closed paths in B2(Y ) (restrictions
to B2(Y ) of closed loops in B4g−4(Σg)Υ). Subscripts are to be understood modulo
3 (counter-clockwise in Figure 6):

(i) tel
:=
{

pel+1
(s), pel−1

(1− s)
}

s∈[0,1]
,

(ii) kel
:= tel−1

tel
tel+1

.

A superscript in the notation for the above paths indicates which pair of pants
the path is in. The main statement about WΥ is [13, Lemma 2.3] (note that we
use fewer generator than he does):

Lemma 2. WΥ is generated by
{{

tYi
el

t
Yj
el

}

∪
{

(tYi
el

)±2
}

∪
{

kYi
el

}

}

.

To prove this statement we need a preliminary lemma (essentially [13, Lemma
2.2]).
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Lemma 3. The homology classes {[ei]} ⊆ H1(Σ;Z2) are generated by a La-
grangian family of curves isomorphic to Z

g
2 (g curves with orientations).

Proof. If first we assume G(Υ) to be bridgeless (2–connected) then by Petersen’s
Theorem [12, Theorem VII.29] it has a perfect matching (a choice of g−1 pairwise
disjoint edges m1, . . . ,mg−1). Hiding these edges leaves us with a collection of
cycles C1, . . . , Ck (if k = 1 then G(Υ) is Hamiltonian). We arrange for there
to be two outgoing and one incoming edge, or two incoming and one outgoing
edge for each vertex. Choose a direction (clockwise or counterclockwise) for each
cycle and for each of the edges in the matching, such that mi is oriented from
Cj to Ck for j < k, and connect together preserving orientations. If there are
separating edges, add them in now with any orientation, and we still have the
desired property.

The relations between elements in {[ei]} are as follows:

a + b

ba

a + b

ba

because
{

[ei]
∣

∣ 1 ≤ i ≤ 3g − 3;−[ej(1)] + [ej(2)] + [ej(3)] = 0 for all 1 ≤ j ≤ 2g − 2
}

,

where we take j(1) to be the one ingoing (outgoing) edge.

To obtain a basis for the curves in the pants decomposition, since separat-
ing arcs are homologically trivial, we may assume that G(Υ) is bridgeless (2–
connected). We choose edges d̄1, . . . , d̄k−1 (and an ordering of the cycles) such
that d̄i connects Ci and Ci+1. Assume for simplicity that d̄i = mg−i. Now choose
a basis d1, . . . , dg for {[ei]} such that if k > 1 then di = mi for 1 ≤ i ≤ g − k,
and otherwise di is an edge in Ci−g+k adjacent to d̄i−g+k for i < g and an edge
on Ck adjacent to d̄k−1 for i = g. If k = 1 the rule is simpler— take di = mi for
all 1 ≤ i ≤ g − 1 and dg to be an arc in C1.

The family of curves {di} which is isomorphic to Z
g
2 clearly generates {[ei]},

and is minimal because no member of the set is generated by all of the others. �

Proof of Lemma 2. We first note that the listed elements are in fact in WΥ =

ker(ev). The elements
{

tYi
el

t
Yj
el

}

and
{

(tYi
el

)±2
}

are in ker(ev) because two times

any element in H1(Σg − b0;Z2) is trivial. The elements
{

kYi
el

}

are in the kernel

of the evaluation map because a covering type in H̆1(Σg − b0;Z2) is determined
by its image on the dual Lagrangian {d∗i }, and we can choose a representative of
a curve in the dual Lagrangian to be disjoint from the paths defining the kei

’s.

We now prove that the families of elements listed in the lemma generate
ker(ev). First note that since a covering type in H̆1(Σ−b0;Z2) is determined by
its image on the dual Lagrangian {d∗i }, and because for any covering type α we
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know that 〈α, cj〉 = 1 for all j, adding an element cj to a d∗i (which is the action
of tei

since it changes the cyclic order of (xi
1, d

∗
i , x

i
2)) will reverse its image in Z2

under α.

We prove that

(44) A:= ker(ev)
/{{

tYi
el

t
Yj
el

}

∪
{

(tYi
el

)±2
}

∪
{

kYi
el

}

}

is trivial. First note that any element s ∈ A is generated by the tei
’s, because it

is isomorphic to a subgroup of π1(B4g−4(Σg)Υ,b0) which is generated by the ei’s
(there is a correspondence between paths in the configuration space and the curves
on Σ along which the points vary). In addition, A is commutative— moves which
take place within different pairs of pants clearly commute, and inside a single
pair of pants, tei

tej
= t−1

ek
in the quotient group for all i 6= j (because we are

taking the modulo by all kel
).

We begin by assuming that G(Υ) is bridgeless (2–connected). On G(Υ) we
may label each arc ei by the number of tei

’s (with sign determined by the power

of the tei
’s) parallel to ei (since we are taking the modulo by

{

tYi
el

t
Yj
el

}

these labels

may be placed on arcs and not on half-arcs). We know that all labels may be
taken to be 1 or 0 (because

{

(tYi
el

)±2
}

are elements we are taking the modulo by),
and that the sum of all labels around any cycle in G(Υ) (such cycles represent
words in the d∗i ’s) must be even (note that if we were to have separating arcs
there are no such cycles passing through them and thus no restriction on the
label). Taking the modulo by

{

kYi
el

}

gives us the following explosion relation in
A (note that it is independent of the auxiliary numbering of the arcs):

a

bc
←→

1− a

1− b1− c

The beautiful conclusion of this proof is due to Carsten Thomassen. We first
reduce the number of 1’s as far as possible by explosions on vertices. Now,
because s ∈ ker(ev) there exists no cycle in the graph such that the sum of labels
along that cycle is odd. Thus, connected subgraphs whose arcs are all labeled
0 form induced subgraphs (subgraphs G′ such that any arc in G(Υ) connecting
two vertices in G′ is also in G′). Such subgraphs are connected by arcs labeled
1. Now choose one such induced subgraph G′, and set off explosions on all its
vertices. All its arcs have their labels reversed twice (so not at all), while all arcs
connecting G′ to another such induced subgraph have their labels reversed from
1 to 0. This process may be repeated until all 1’s are canceled, and thus s must
be trivial.
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e1

e2

e3

∂

∂

a

a

x1 x2

Figure 7. Cutting a disc out of a pair of pants.

In the remaining case, if G(Υ) has a separating arc a, performing an explosion
on each vertex of a connected component of G(Υ) − a reverses the label on a,
and thus the label of a also vanishes and here also s is trivial. �

In the above proof, we saw that an element of the abelianization of WΥ is
represented by an integer labeling of the arcs of G(Υ). An element of WΥ itself
can be represented by an embedding of G(Υ) into ΣΥ constructed as follows:

First, for each pair of pairs of pants Yi an Yj, whose common boundary we

denote ek, we have a unique geodesic from xi
1 and xj

1 which we call e∗k (this is
slightly misleading because it is not the symplectic dual to ek, but it does serve
the same purpose). The collection of all such arcs, which comprises an embedding
of GΥ into ΣΥ, we call the base marking and denote m0.

Second, any element m ∈ WΥ corresponds to a product of a collection of ho-
mology classes C1, . . . , C2g−2 which represent curves in pair of pants Y1, . . . , Y2g−2

via a homomorphism given by composing the evaluation map on WΥ with the
restriction to H̆1(Σg − b0;Z2) of the Poincaré duality isomorphism:

D : H1(Σg − b0;Z2) −→ H1(Σg − b0;Z2)(45)

tei
7→ ei.(46)

Define now:

(47) fk:= e∗k · C1 · C2,

for e∗k in Y1 ∪ Y2. This is well defined as an element of H1(Σg − b0;Z2) and
can be represented as a simple curve in Yi whose endpoints coincide with those
of e∗k. Repeating for all k, we obtain a new embedding of G(Υ) into ΣΥ. We
can recover the product of C1, . . . , C2g−2 and therefore any element of WΥ from
such an embedding, and hence such an embedding provides a compact way of
writing an element of WΥ. This embedding, and also the element of WΥ which
it represents, are both denoted m and are called a marking.

Since a marking represents an element of WΥ, the set of triples
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(48) B̃Υ:=
{

b̃:=(b, α,m) ∈ B4g−4(Σg)Υ × H̆1(Σg − b;Z2)×WΥ

}

is a universal cover of BΥ the set of all double–covers of ΣΥ simply branched over
4g − 4 points.

The generators of WΥ given above are closed paths in BΥ. We next measure
the holonomy diffeomorphisms on a point in BΥ (a double cover) we obtain by
moving along each of these paths. By construction, it is enough to understand
such a diffeomorphism on a single pair of pants.

Let Y be a pair of pants with notation as before, and let Ỹ be a 2–fold covering
of Y branched over x1 ∪ x2. The lifts of ei to Ỹ are denoted {ẽi, σẽi} with

i ∈ {1, 2, 3}. For each ei ∈ Υ, the path kei
induces a diffeomorphism κei

on Ỹ as
follows:

For kei
we cut a disc out of Y , and examine what happens to paths in the

disc when we act by kei
. Let ∂ be the boundary of the disc, let a be a fixed cut

between x1 ad x2, as in Figure 7. Let c be a small loop around x1 with base-point
on ∂, and let E be a small loop around a. We write the base space on the left,
and the double-cover on the right(where we take only one of the pre-images of
a). These are transformed by the action of kei

(which rotates a counterclockwise
by π) as follows:

• We look at only one preimage of c

∂

a

c

2 : 1

∂̃

σ∂̃

ã

c̃

transforms to
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∂

a′

c′

2 : 1

∂̃

σ∂̃

ã′
c̃′

• We look at both preimages of E

∂

a

E

2 : 1

∂̃

σ∂̃

ã

Ẽ

σẼ

transforms to

e

∂

a′ 2 : 1

∂̃

σ∂̃

ã′

Ẽ

σẼ
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For tei
(which rotates a counterclockwise by π) the analogous moves (where ∂2

can be taken to be ei) are as follows:

• We look at only one preimage of c

∂1

∂2

a

c

2 : 1

∂̃1

σ∂̃1

∂̃2
σ∂̃2

ã

c̃

transforms to

∂1

∂2

a′ c′
2 : 1

∂̃1

σ∂̃1

∂̃2
σ∂̃2

ã′

c̃′

• We look at both preimages of E

E

∂1

∂2

a′ 2 : 1

∂̃1

σ∂̃1

∂̃2
σ∂̃2

ã

Ẽ

σẼ

transforms to
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E′

∂1

∂2

a′
2 : 1

∂̃1

σ∂̃1

∂̃2
σ∂̃2

ã′

Ẽ

σẼ

The actions of tei
and of kei

may be extended to all of Σg. Yoshida calls these
extensions τ and κ, but we stick with t and k to simplify notation.

5.3. Actions on Coordinates of Prym(Σ̃g). Using the pictures in the previous
section, we can read-off the action of te1

on Λ0 (defined on a pair of pants and
extended to the whole double cover). For the generators of WΥ we obtain the
map:

(49)

tY1

e1
tY2

e1
: (~e1(1), ~e1(2), ~e1(3), ~e2(1), ~e2(2), ~e2(3)) 7→ (−~e1(1), ~e1(2), ~e1(3),−~e2(1), ~e2(2), ~e2(3)).

Since ~e1(1) = ~e2(1), the element tY1
e1

tY2
e1

acts on Λ0 by multiplying a single element

by −1. The generators (te1
)±2 and ke1

act trivially on Λ0. All tY1
e1

tY2
e1

actions

combine to form a Z
3g−3
2 –action on Λ0, and this is the statement of [13, Lemma

2.4].

Similarly we can read-off the actions of each of the generators of WΥ on Λ:

(50)

tY1
e1

tY2
e1

:

(te1
)±2 :

ke1
:

(

~E1
1 , ~E1

2 , ~E1
3 , ~E2

1 , ~E2
2 , ~E2

3

)

(

~E1, ~E2, ~E3

)

(

~E1, ~E2, ~E3

)

7→

7→

7→

(

~E1
1 ,− ~E1

3 ,− ~E1
2 , ~E2

1 ,− ~E2
3 ,− ~E2

2

)

(

~E1, ~E2, ~E3

)

(

− ~E1,− ~E2,− ~E3

)

The ~E1 classes are unchanged under the tY1
e1

tY2
e1

action because ~E1
2 + ~E1

3 =
~E2

2 + ~E2
3 .

What about the basepoint? If pi is a branch point xj
1 half way between xi

1 and

xi
2 along a path representing an element in 1

2Λ∗ /Λ∗
0 , then kej

changes pi to xj
2,

and vice versa. None of the other actions change the basepoint.

Proposition 5.1. A marking m uniquely induces coordinates for Prym(Σ̃g).
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Proof. We just need to show that we can make a canonical choice of orientations
of curves in Λ and a canonical choice of basepoint of Prym(Σ̃g) for the base
marking m0. Then Equations 49, 50, and the discussion of actions on basepoints
will tell us how any marking uniquely induces coordinates for Prym(Σ̃g).

The curves {e∗k} which make up m0 lift to closed curves in Σ̃g. The orientations
of these curves induce orientations on the (ẽi−σẽi)’s by the right hand rule, which
in turn induce orientations on the elements of Λ.

For the basepoint, choose each pi to be half way from xi
1 to xi

2 along a curve
representing an element in Λ∗ in the direction of the orientation of that curve. �
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