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QUANTUM INVARIANTS AND FREE Zp2–ACTIONS

ON 3–MANIFOLDS

PATRICK M. GILMER AND KHALED QAZAQZEH

Abstract. We give a congruence for the quantum invariant of a Zp–quotient
of a 3–manifold with a Zp2 action. We show the congruence does not hold for
quotients of 3–manifolds with a Z5 × Z5 action.

1. Introduction

Let p denote an odd prime. The most simple kind of finite cyclic covers are
those which are quotients of infinite cyclic covering spaces. We call such covers
simple cyclic covers. Such covers are formed by stacking slit copies of the base.
As TQFTs satisfy nice properties with respect to stacking, one can calculate
quantum invariants of finite simple cyclic covers nicely from data for the base
and the covering [5]. Moreover one obtains in this way congruences modulo p for
the quantum invariants of simple Zp–cyclic covers of closed oriented connected
3–manifolds [7, 6]:

Theorem 1. Suppose the infinite group Z acts freely and preserving the orienta-

tion on a connected oriented 3–manifold Ň with a compact quotient. Then there

exist m and n in Z with
〈

Ň/pZ
〉

p
≡ κmn (mod p Op).

Here Op denotes Z[A,κ] where A is a primitive 2p th root of unity and κ2 =

A−6−p(p+1)/2, and 〈 〉p ∈ Op[1/p] denotes the invariant [2] of closed oriented 3–

manifolds possessing an integral weight, as well a (possibly empty) p–admissibly
colored (with colors integers in range [0, p − 2]) fat graph. This invariant can be
computed using the TQFT (Zp, Vp) of [2]. We use a modified form of this TQFT
as in [7] where p1–structures are replaced by integral weights on 3–manifolds and
Lagrangian subspaces of the first homology of surfaces. When one raises this
weight, one multiplies the invariant of a closed 3–manifold by the phase factor κ.
One has that

〈

S1 × S2 with weight zero
〉

p
= 1, but

〈

S3 with weight zero
〉

p
/∈ Op.

Thus this is a different normalization for the invariant than used in [11].
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It is a natural to wonder whether Theorem 1 continues to hold for a more
general class of p–fold covers Ñ of a closed oriented 3–manifold N . However this
congruence would only be possible if the values of the quantum invariant of Ñ
lies at least in Op.

Proposition 2. Assume p 6= 3. Let Ñ be a p–fold cyclic cover of a closed oriented

3–manifold N with empty colored fat graph. The following are equivalent.

(1)
〈

Ñ
〉

p
∈ Op;

(2) H1(Ñ ,Zp) 6= 0;

(3) There is a p2–fold regular cover Ň of N with group of covering transfor-

mations G isomorphic to either Zp2 or Zp×Zp such that Ñ is the quotient

of Ň by a subgroup of G of order p.

Proof. According to [11],
〈

Ñ
〉

p
/∈ Op if M is a Zp–homology sphere. Thus (1)

implies (2). By [3, 8] (2) implies (1).
Clearly (3) implies (2). For the converse, let ψ be an eigenvector for the action

of a generator of the group of covering transformation Ñ → N on H1(Ñ ,Zp).

As the order of this generator is p, then any eigenvalue is a pth root of unity in
Zp. But the only element with order a divisor of p in Z∗

p is one. Therefore, one is
the only eigenvalue for this generator. Thus ψ is fixed by the group of covering
transformations. Let Ň be the Zp cover of Ñ which is classified by ψ. The cover

Ň → N is then regular with group of covering transformations a group of order
p2. As is well-known, a group of order p2 is either Zp2, or Zp × Zp. �

All the implications in the above proof hold also in the case N contains a
non-empty colored fat graph except perhaps (1) implies (2). Similarly in the case
p = 3, all these results hold except (1) implies (2). We remark that the results of
this paper which concern quantum invariants are uninteresting in the case p = 3,
as 〈N〉3 is always some power of κ. However some of the purely topological results
may be of interest in the case p = 3.

Thus we are lead to:

Question 3. Suppose G, a group of order p2, acts freely on a closed connected

oriented 3–manifold Ň . Let H ⊂ G denote a subgroup of order p. Must there

exist m and n in Z with

〈

Ň/H
〉

p
≡ κmn (mod p Op)?

We will show that the answer is “yes” if G ≈ Zp2, and “no” if G ≈ Z5 × Z5.
The example that we give for Z5 ×Z5 when modified in the most natural way

will not show the answer is “no” for any Zp × Zp with p > 5.
The Appendix discusses a case which was omitted in the proof of a related

congruence in previous paper of the first author [6].
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2. Simple covers and weak type–p surgery

Before the proof of Theorem 10 in the next section, we must prepare some
tools. We let X denote the base of a Zk–cyclic cover, where k is a power of p.
Then we have χ ∈ H1(X,Zk) which classifies the cover together with a choice of
generating covering transformation. Consider the Bockstein homomorphism βk

associated to the short exact sequence of coefficients:

0 → Z → Z → Zk → 0.

It fits into a long exact sequence.

H1(X)
×k

−−−−→ H1(X) −−−−→ H1(X,Zk)
βk−−−−→ H2(X).

Clearly χ ∈ H1(X,Zk) classifies a simple cover if and only if βk(χ) = 0.
For the rest of this paper N will denote a closed oriented connected 3–manifold.

Recall that the Poincaré duality isomorphism from H2(N) to H1(N) is given by
capping with the fundamental class: ∩[N ]. Let ρ denote the inverse isomorphism
from H1(N) to H2(N).

Lemma 4. Suppose G = ∪n
i γi is a link. The cover given by χ restricted to the

complement of G is simple if and only if βk(χ) is in the span of {ρ([γi]}. The

cover restricted to γi is characterized by χ(γi) ∈ Zk.

Proof. Let ν(G) denote a closed tubular neighborhood of G. Let NG denote N
with the interior of ν(G) deleted. Consider the long exact sequence of the pair
(N,NG):

H2(N,NG)
j

−−−−→ H2(N) −−−−→ H2(NG)

excision isomorphism inverse

x





H2(ν(G), ∂ν(G)) ↗

Thom isomorphism

x





H0(G)

.

We have that H0(G) is free on the components. The diagonal map is defined
so that the diagram commutes. Using the dual chain complex construction of
the Poincaré duality isomorphism e.g. [10, Thm 65.1], we see that the image of
the generator of H0(γi) under the diagonal map is ρ[γi]. Thus the image of j
is spanned by the ρ[γi] in H2(N). As the horizontal sequence is exact, βk(χ)
restricted to H2(NG) is zero. The cover of the simple closed curve is classified by
the map from the infinite cyclic group H1(γ) to Zk, which maps the generator to
χ(γi). �

Example 5. A connected Zp–cover of the lens space L(p2, 1) is simple on the com-
plement of a simple closed curve representing p times a generator of H1(L(p2, 1)),
but the covering of the curve is trivial. If instead we consider a simple closed
curve representing a generator of H1(L(p2, 1)), this same covering is simple on
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the complement of the curve and non-trivial on the curve. However, if we con-
sider connected sum of p copies of L(p2, 1) and the cover given by a character χ
which sends the standard generator on each summand to 1 ∈ Zp, then there is
no simple closed curve which is covered non-trivially but whose complement is
covered simply.

We now wish to learn how to pick G = ∪n
i γi as above with control over χ(γi).

To understand the general case, we must discuss the relation between the Bock-
stein and the linking form. We must also relate our characters in H1(N,Zk) to
characters in H1(N,Q/Z). For this last issue, we have a commutative diagram of
coefficients with short exact rows.

0 −−−−→ Z
×k

−−−−→ Z −−−−→ Zk −−−−→ 0
∥

∥

∥

× 1

k





y





y

0 −−−−→ Z −−−−→ Q −−−−→ Q/Z −−−−→ 0

The residue class of one in Zk is sent to 1/k ∈ Q/Z. We let the Bockstein asso-
ciated to the lower sequence be denoted β. We obtain in this way a commutative
diagram with exact rows:

H1(N,Zk)
βk−−−−→ H2(N)

×k
−−−−→ H2(N)





y

∥

∥

∥





y

H1(N,Q/Z)
β

−−−−→ H2(N) −−−−→ H2(N,Q)

.

Thus given a character χ : H1(N) → Zk, if we compose with the standard
inclusion Zk to Q/Z and then apply β, we get βk(χ). Also β maps onto the
torsion subgroup of H2(N), denoted Tor(H2(N)). Note that β(χ) ∩ [N ] is the
Poincare dual of the Bockstein of χ. We are interested in the bilinear form:

b : H1(N,Q/Z) ×H1(N,Q/Z) → Q/Z

given by

b(χ1, χ2) = χ1(β(χ2) ∩ [N ]).

So using [12, p.254]

b(χ1, χ2) = χ1 ∩ (β(χ2) ∩ [N ]) = (χ1 ∪ β(χ2)) ∩ [N ].

Lemma 6. The form b is symmetric.

Proof.

0 = β(χ1 ∪ χ2) by exactness as H3(N,Z) → H3(N,Q) is one to one

= β(χ1) ∪ χ2 − χ1 ∪ β(χ2) as β is a derivation

= χ2 ∪ β(χ1) − χ1 ∪ β(χ2)

So b(χ2, χ1) − b(χ1, χ2) = (χ2 ∪ β(χ1)) ∩ [N ] − (χ1 ∪ β(χ2)) ∩ [N ] = 0. �
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As b vanishes on kernel(β) ×H1(N,Q/Z) and

H1(N,Q/Z)/ kernel(β) ≈ Tor(H2(N)),

there is an induced nonsingular symmetric form [4, p.75–76]

b : Tor(H2(N)) × Tor(H2(N)) → Q/Z

such that
b(χ1, χ2) = b(β(χ1), β(χ2)).

In fact, transferred to Tor(H1(N)) by the Poincare duality isomorphism, one can
check that b becomes the well known linking form on Tor(H1(N)).

Wall [13] has classified non-singular symmetric forms on finite abelian groups.
Such forms have an orthogonal decomposition into primary summands associated
to each prime. The p–primary summand is isomorphic to a direct sum of elemen-
tary forms of two types: Apt and Bpt . The underlying group of both is Zpt . The
form on Apt sends (x, y) to xy/pt. The form on Bpt sends (x, y) to ntxy/p

t, where
nt is a non-square unit in Zpt. It is pleasant that we do not have to deal with the
even prime, which is also studied by Wall but which is more complicated.

Lemma 7. If χ ∈ H1(N,Zp) is nonzero, then we can pick a link G = ∪n
i γi in

N , so that the cover given by χ restricted to the complement of G is simple and

χ on each γi is nonzero.

Proof. We reinterpret χ to lie in H1(N,Q/Z). We can view β(χ) as an element of
the p–primary subgroup of Tor(H2(N)) which we assume is already decomposed
and identified in the way described by Wall. Let n be the number of summands
where β(χ) projected into that summand is nonzero. The image of β(χ) under
each of these projections has order p. It is always possible to find an element xi

of this summand which pairs under the torsion form with the projection of β(χ)
to yield 1/p ∈ Q/Z. Let γi be Poincare dual to xi. Then β(χ) is in the span of
the Poincare duals of the {[γi]}. Moreover for each 1 6 i 6 n,

χ(γi) = b(χ, β−1(xi)) = b(β(χ), xi) = 1/p.

�

If γ is a simple closed curve in N , and Tγ is the boundary of a tubular neighbor-
hood νγ of Tγ , let µγ ⊂ T denote a meridian of γ. We may also pick a longitude
λγ . This is a curve on Tγ which is homologous to γ (with some orientation) in
νγ . For d an integer bigger than 1, by weak type–d surgery along γ in N [8], we
mean the process of removing νγ and regluing it so a curve on T homologous to
nµ+ dlλ for some integers n, and l bounds in the reglued solid tori. Suppose λ′

is another choice of longitude. Then λ′ = λ+xµ, so nµ+dlλ = (n−dlx)µ+dlλ′.
Thus the notion of weak type–d surgery does not depend on which longitude was
chosen. A weak type–d surgery can be undone with another. The equivalence
relation generated by weak type–d surgery is called weak d–congruence.

The following Proposition is a weakened form of [8, Prop 2.14]. We include
it here as the proof helps to prove Proposition 9 and to motivate the proof of
Lemma 12.
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Proposition 8. If H1(N,Zp) is non-zero, then N is weakly p–congruent to a

3–manifold M with H1(M) non-zero.

Proof. We pick a nonzero χ ∈ H1(N,Zp) and apply Lemma 7. Let χ̂ ∈ H1(N \
G,Z) be a lift to Z of the restriction of χ to N \ G. Let Ti be the boundary of
a tubular neighborhood of Ui of γi equipped with a meridian µi, and a chosen
longitude λi ∈ H1(Ti). The character χ̂ induces a character χ̂i : H1(Ti) → Z.
Suppose the image of χ̂i is kiZ. Note that ki and pmust be relatively prime. Then
χ̂i([µi]) = psiki and χ̂i([λi]) = −niki for integers si, ki, ni with si, ni relatively
prime and with ni prime to p. Then χ̂i vanishes on the homology class of a curve
µ′i representing ni[µi]+psi[λi]. Thus χ̂ extends uniquely to M obtained by doing
a weak type–p surgery along each curve γi. As this extension will be nonzero,
H1(M,Z) is nonzero. By definition, M is weakly p–congruent to N . �

By a p–surface F , we mean [8] the result of attaching, by a map q, the whole

boundary of an oriented surface F̂ to a collection of circles {Si} by a map which
when restricted to the inverse image under q of each Si is a pti–fold ( possibly
disconnected) covering space of Si. If each component of each q−1Si is itself a
covering space of Si with degree divisible by p, we say F is a good p–surface.
The p–cut number of a 3–manifold N , denoted cp(N), is the maximum number
of disjoint piecewise linearly embedded good p–surfaces that we can place in N
with a connected complement. The following Proposition allows us to interpret
[8, Theorem 4.1] as a corollary of [8, Theorem 4.2].

Proposition 9. If H1(N,Zp) is non-zero, then cp(N) > 0.

Proof. Continuing with the proof of Proposition 8, let χ′ = (1/k)χ, U = ∪Ui

appearing in this proof. In N \ IntU , we can find a connected surface F with a
connected complement which is dual to χ′

|U and meets each Ti in µ′i. F maybe

completed to a good p–surface with a connected complement by adding the map-
ping cones of the projections from µ′i to γ �

3. G = Zp2

Theorem 10. Suppose Zp2 acts freely on closed oriented connected 3–manifold

Ň . If H is the subgroup of Zp2 of order p, then there exists m and n in Z with
〈

Ň/H
〉

p
≡ κmn (mod p Op).

Proof. In this situation, we say Ň/H is a somewhat simple Zp–cyclic cover of

Ň/Zp2, which we will denote by N . A basic example of somewhat simple Zp–
cyclic cover which is not a simple Zp–cyclic cover is the lens space L(p, q) which
is a somewhat simple Zp–cyclic cover of L(p2, q).

We need a version of Lemma 7 for characters in H1(N,Zp2).

Lemma 11. If χ : H1(N) → Zp2 is an epimorphism, then we can pick a link

G = ∪n
i γi in N , so that the cover given by χ restricted to the complement of G

is simple and for each i, χ(γi) is either one, or is p.
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Proof. Again we reinterpret χ to lie in H1(N,Q/Z), view β(χ) as an element of
the p–primary subgroup of Tor(H2(N)) which we assume is already decomposed
and identified in the way described by Wall.

Let 0 6 i 6 n index the summands where β(χ) projected into that summand
is nonzero. Let βi the projection of β(χ) in the ith summand. If βi has order p2,
it is possible to find a element xi of this summand which pairs under the torsion
form with βi to yield 1/p2 ∈ Q/Z. If βi has order p, we can find a element xi of
this summand which pairs under the torsion form with βi to yield 1/p ∈ Q/Z.
Let γi be Poincare dual to xi. Then β(χ) is in the span of {ρ[γi]}. Moreover for
each 1 6 i 6 n, χ(γi) is either 1/p2 or 1/p. Now reinterpret χ to take values in
Zp2. �

Lemma 12. Suppose χ : H1(N) → Zp2 is an epimorphism. Let Ñ denote the

associated p–fold cover classified by πp ◦ χ, where πp : Zp2 → Zp is reduction

modulo p. Then N is weakly p–congruent to a manifold M with a simple Zp

covering M̃ . M̃ may be obtained by weak type–p surgery on a link in Ñ .

Proof. Apply Lemma 11. Let εi ∈ Z be 1 if χ(γi) = 1 and εi be p ∈ Z if
χ(γi) = p. Let χ̂ ∈ H1(N \ G,Z) be a lift of χ to Z. Then χ̂i([µi]) = p2siki

and χ̂i([λi]) = −εiniki for integers si, ki, ni with si, ni relatively prime and with
both ni and ki prime to p. Then χ̂ vanishes on the homology class of a curve µ′i
representing ni[µi] + p2

εi
si[λi].

Thus we can do weak p2

εi
–type surgery to N along each γi to obtain a weakly

p–congruent manifold M such that χ̂ extends to χ̂′ : H1(M) → Z. This induces a

simple Zp–cover M̃ of M. We have that M̃ is obtained from Ñ by a sequence of

surgeries along the curves in Ñ which lie over the γi. If εi = 1 then γi is covered
by a single curve in Ñ and we perform weak type–p surgery along this curve. If
εi = p then γi is covered by p disjoint curves in Ñ and we perform weak type–p2

surgeries ( which are also weak type–p surgeries ) along each of these curves. �

By [8, Theorem 3.8],
〈

Ñ
〉

p
is, up to phase,

〈

M̃ with some Zp–equivariant integrally colored framed link
〉

p
.

Since M̃ is a simple Zp–cover, by [7, 11.1], this last expression must satisfy the
stated congruence. �

4. G = Zp × Zp

Let Lp be the two component link obtained by replacing one component of
a Hopf link with a (p, 1) cable with framing p on the cabled component and
framing zero on the uncabled component. Let Mp be obtained by performing

framed surgery on Lp. The linking matrix of the framed link is

[

0 p
p p

]

. Thus

H1(Mp) = Z5 ⊕ Z5. Let M̌p denote the maximal abelian cover of M , i.e. the
covering space whose fundamental group is the commutator subgroup. It is a
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regular Zp ⊕ Zp cover of M . Let L′
p be a (p, p)–torus link with an unknot going

around it (a satellite of the Hopf link with the (5, 5) torus link the companion of
one component of the Hopf link.). We give L′ the framing +1 on each component

of the cabled part and the zero framing on the uncabled component. Let M̃p be
the 3–manifold obtained from S3 by doing surgery along L′

p with weight zero.

M̃p is a Zp–cyclic cover of M , and thus a quotient of M̌ by an order p cyclic
subgroup of Zp ⊕ Zp.

Below will use the zi basis [1] for the Kauffman skein of a genus one handlebody.
Let Hn denote the Kauffman bracket of an n component positive Hopf link

where every component has framing one. By [9, Prop 11 (ii)], we have for n > 1,

Hn = (A2 −A−2)−1
n−1
∑

r=0

(

n− 1

r

)

A(n−2r+1)2−1(A2(n−2r+1) −A−2(n−2r+1))

Note H0 = 1, so this is not valid for n = 0.

Theorem 13. Z5 ×Z5 acts freely on M̌5. There is an order 5 cyclic subgroup H
of Z5 × Z5 such that there are no m and n in Z with

〈

M̌5/H
〉

5
≡ κmn (mod 5 O5)

Proof. We let O5 = Z[ζ20] with A = ζ2
20 and κ = ζ−1

20 . Then by formula for η near
the beginning of [2, §2], η = 1

5(2ζ20 + ζ3
20 + ζ5

20 − 3ζ7
20).

One has Ω5 = 1 + δz, where δ = −A−2 − A2. Replacing a component with
framing one with t−1Ω5 = 1 − A−3δz, has the same effect as first changing the
framing to zero and then replacing with Ω5. Here t denotes the twist map on
the Kauffman skein of of the solid torus [1]. We let 〈L′(Ω5)〉 be the Kauffman
bracket evaluation of the linear combination over O5 that we obtain if we replace

each component of L′ by Ω5. One has that
〈

M̃5

〉

5
= η7

5 〈L
′(Ω5)〉.

To compute 〈L′(Ω5)〉, we compute a linear combination of 26 brackets of Hopf
links with zero to six components and varying framings. If we expand out the
zero framed component first, we obtain:

〈

L′
5(Ω5)

〉

=

5
∑

k=0

(

5

k

)

δkH(k) −A−3δ

5
∑

k=0

(

5

k

)

δkH(k + 1).

We obtain
〈

M̃5

〉

5
= −2ζ20 + 4ζ3

20 − ζ5
20 − 2ζ7

20

Comparing this with the finite list of elements of O5/5O5 which are images of

numbers of the form nκm for any n,m ∈ Z, we conclude that
〈

M̃
〉

5
does not

have this form. �

Now we consider p = 7. We let O7 = Z[ζ14] with A = ζ14 and κ = A4. Then
η = 1

7(−2ζ14 − ζ2
14 − 2ζ3

14 + 2ζ4
14 + ζ5

14). We have Ω7 = (2− δ2) + δz + (δ2 − 1)z2,

and t−1Ω7 = (1 + A6 − A6δ2) − A11δz + A6(δ2 − 1)z2. We have that
〈

M̃7

〉

7
=

η9 〈L′
7(Ω7)〉. Using multinomial coefficients, we have
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〈

L′
7(Ω7)

〉

=(1 +A6 −A6δ2)
∑

i+j+k=7

(

7

i, j, k

)

(2 − δ2)iδj(δ2 − 1)kH(j + 2k)

−A11δ
∑

i+j+k=7

(

7

i, j, k

)

(2 − δ2)iδj(δ2 − 1)kH(j + 2k + 1)

+A6(δ2 − 1)
∑

i+j+k=7

(

7

i, j, k

)

(2 − δ2)iδj(δ2 − 1)kH(j + 2k + 2).

It follows that:
〈

M̃7

〉

7
= 7(176993 + 397520A − 318640A2 − 220548A3 − 98084A4 + 495621A5).

Thus
〈

M̃7

〉

7
∈ 7O7. Notice that H1(M̃p) = Zp−1. By [3, 4.3]

〈

M̃p

〉

p
∈ (1 − ζp)

d(p−1)(p−3)/6−(p−3)/2eO = (1 − ζp)
d(p2−7p+12)/6eO.

As d(p2 − 7p + 12)/6e > p − 1 for p > 11, we have
〈

M̃p

〉

p
∈ pOp, for p > 11.

Thus these examples for p > 7 are consistent with a “Yes” answer to Question
3. To find examples allowing one to say “No”, one should begin by looking for
3–manifolds with first homology Zp ×Zp with a p–fold cover with the dimension

of first homology with Zp–coeffients less than 6p−1
p−3 + 3. Of course M̃7 did satisfy

this equation but did not provide a “No” answer.
We used Mathematica [14] for many of the computations in this section.

Appendix. Covers of degree prime to the order of the phase

factor by Patrick M. Gilmer

In the proof of [6, Theorem 1′], on page 171 Proposition 2 only applies when
the cover restricted to γ is non-trivial. The case where the cover restricted to γ
is trivial was not addressed. In view of Example 5, this case may arise.

Theorem 1′ concerns the quantum invariants 〈N〉2r where r is prime to p. We
continue to assume p is an odd prime. The congruence given is not modulo phase
but exact. As the extra structures used to resolve the “framing anomaly ” in
[6] are the p1–structures of [2] rather than integral weights and Lagrangians, 3–
manifolds, in this appendix, will be equipped with p1–structures. We note that
p1–structures are more natural in this context, as covering spaces are equipped
with p1–structures induced from the base. Also 3–manifolds are allowed to have
possibly empty admissibly colored fat graphs. The quantum invariant 〈 〉2r takes

values in Z[ 1
2r , ξ] where ξ is a primitive 4rth root of unity if r is even and a

primitive 8rth root of unity if r is odd. The colors of this theory are from the
set C of the integers from zero to r − 2. The following result addresses the
missing case in the proof of [6, Theorem 1′]. In fact [6, Theorem 1′] has the
same conclusion as Theorem 14 under the weaker hypothesis: Np is a connected
Zp–covering of N .
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Theorem 14. Let Np be a connected non-simple Zp–covering of N given by

χ ∈ H1(N,Zp). Suppose γ is a simple closed curve in N such that χ[γ] = 0, and

the cover restricted to N \ γ is simple, then

〈Np〉2r ≡ 〈N〉p2r (mod p Z[
1

2r
, ξ]).

Proof. Let ν denote a closed tubular neighborhood of γ, T = ∂ν, E = −N\Int(ν).
Let Ep be the given cover restricted to E. This cover restricted to T is a disjoint
union of p tori Tp =

∐p
i=1 Ti. Similarly this cover restricted to ν is a disjoint

union of p solid tori νp =
∐p

i=1 νi with ∂νi = Ti. We index these so the covering
transformation specified by χ, sends νi to νi+1 for all i.

Let χ̂ : H1(E) → Z be a surjective lift of χ. Let µ′ be a simple closed curve in
T which generates the kernel of χ̂ composed with the map induced by inclusion
H1(T ) → H1(E). Let H be a handlebody with boundary T such that µ′ bounds
a disk in H. We let N ′ = E ∪T H. The cover on E extends to a simple cover
N ′

p of N ′. Let H(j) denote H with the core colored j, N ′(j) = E ∪T H(j), and

N ′(j)p denote N ′
p with the p circles covering the core all colored j. We let Hi

denote the component of the cover of H with ∂Hi = Ti, and let H(j)i denote Hi

with the core colored j. We will use {[H(j)]|0 6 j 6 r− 1} as a basis for Vp(T ).
It is orthogonal with respect to the Hermitian form 〈 , 〉T on Vp(T ).

Let S denote the set of sequences of colors of length p. We denote the ith term
of the sequence σ by σi. Let τ : S → S be the cyclical shift map with τ(σ)i =
σi−1 (mod p). The orbits of S under powers of the shift map are of two types.
There are singletons given by constant sequences, and orbits with cardinality p
made up of non-constant sequences. We index the constant sequences by the set
of colors C. We denote the sequence which is constantly j by j̃.

If σ ∈ S, let H(σ) denote

H(σ1)1 ⊗H(σ2)2 ⊗ · · ·H(σp)p ∈ Vp(

p
∐

i=1

Ti) = Vp(Tp).

Using orthonormality,

(1) [ν] =
∑

j∈C

〈[ν], [H(j)]〉T [H(j)] ∈ Vp(T )

and thus:

(2) [νp] = [ν] ⊗ [ν] ⊗ · · · ⊗ [ν] =
∑

σ∈S

(

p
∏

i=1

〈[ν], [H(σi)]〉T )[H(σ)] ∈ Vp(Tp).

Again by orthonormality, we have:

(3) [E] =
∑

j∈C

〈[E], [H(j)]〉 [H(j)] =
∑

j∈C

〈

N ′(j)
〉

p
[H(j)] ∈ Vp(T ),

(4) [Ep] =
∑

σ∈S

〈[E], [H(σ)]〉 [H(σ)] =
∑

σ∈S

〈

N ′
p(σ)

〉

p
[H(σ)] ∈ Vp(Tp),
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where N ′
p(σ) is N ′

p with the ith lift of the core colored σi for all i. Thus by 1 and
3

(5) 〈N〉p = 〈[ν], E〉T =
∑

j∈C

〈[ν], [H(j)]〉T
〈

N ′(j)
〉

p
,

and by 2 and 4

(6) 〈Np〉p = 〈[νp], Ep〉Tp
=

∑

σ∈S

(

p
∏

i=1

〈[ν], [H(σi)]〉T )
〈

N ′
p(σ)

〉

p
.

Note that N ′
p(σ) is diffeomorphic to N ′

p(τ(σ)), and thus
〈

N ′
p(σ)

〉

p
is constant

on orbits of τ . Also
∏p

i=1 〈[ν], [H(σi)]〉T is constant on orbits of τ . Since the
non-constant orbits of τ have order p, we have:

〈Np〉p ≡
∑

j∈C

(

p
∏

i=1

〈[ν], [H(j)]〉T )
〈

N ′
p(j̃)

〉

p
(7)

≡
∑

j∈C

(〈

[ν], [H(j̃)]
〉

T

)p 〈

N ′
p(j)

〉

p
(mod p Z[

1

2r
, ξ]).

As [6, Theorem 1′] is already proved for simple covers and N ′
p(j) is a simple

cover of N ′(j), we have that:

(8)
〈

N ′
p(j)

〉

p
≡ (

〈

N ′(j)
〉

p
)p (mod p Z[

1

2r
, ξ]).

Substituting this in 7 and comparing with 5, the result follows �
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