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CATEGORICAL CENTERS AND

RESHETIKHIN-TURAEV INVARIANTS

ALAIN BRUGUIÈRES AND ALEXIS VIRELIZIER

Abstract. A theorem of Müger asserts that the center Z(C) of a spherical
k-linear category C is a modular category if k is an algebraically closed field
and the dimension of C is invertible. We generalize this result to the case where
k is an arbitrary commutative ring, without restriction on the dimension of
the category. Moreover we construct the analogue of the Reshetikhin-Turaev
invariant associated to Z(C) and give an algorithm for computing this invariant
in terms of certain explicit morphisms in the category C. Our approach is
based on (a) Lyubashenko’s construction of the Reshetikhin-Turaev invariant
in terms of the coend of a ribbon category; (b) an explicit algorithm for
computing this invariant via Hopf diagrams; (c) an algebraic interpretation
of the center of C as the category of modules over a certain Hopf monad Z on
the category C; (d) a generalization of the classical notion of Drinfeld double
to Hopf monads, which, applied to the Hopf monad Z, provides an explicit
description of the coend of Z(C) in terms of the category C.

Introduction

In the early 90’s, two new ‘quantum’ invariants of 3-manifolds were introduced:
the Reshetikhin-Turaev invariant, and the Turaev-Viro invariant. The definition
of the Reshetikhin-Turaev invariant RTB [18, 20] involves a modular category B,
that is, a ribbon fusion category over a commutative ring k satisfying a non-
degeneracy condition (invertibility of the S-matrix). The algorithm for computing
its value on a 3-manifold consists in presenting the manifold by surgery along a
ribbon link and then taking a linear combination of colorings of this link by simple
objects of B.

Similarly, the definition of the Turaev-Viro invariant TVC [21], as revisited
by Barrett and Westbury [6], involves a spherical category, that is, a sovereign
fusion category over a commutative ring k such that left and right traces coincide.
The dimension dim C of C (which is the sum of squares of dimensions of simple
objects) is moreover assumed to be invertible in k. The algorithm for computing
TVC(M) consists in presenting the 3-manifold M by a triangulation, coloring
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the edges of the triangulation with simple objects of C, and then evaluating the
colored tetrahedra by means of the 6j-symbols of C.

If B is a modular category, then it is also a spherical category, and the Reshetikhin-
Turaev and Turaev-Viro invariants are related [20, 19] by:

TVB(M) = RTB(M)RTB(−M)

for any 3- manifold M , where −M is the 3-manifold M with opposite orientation.

But in general a spherical category need not to be braided and so cannot
be used as input to define the Reshetikhin-Turaev invariant. However, spher-
ical and modular categories are related by a theorem of Müger [17]: if C is
a spherical fusion category over an algebraically closed field k and has invert-
ible dimension, then its center Z(C) is a modular fusion category of dimension
dimZ(C) = (dim C)2. In this setting, Turaev conjectured that, for any 3-manifold
M ,

TVC(M) = RTZ(C)(M).

This conjecture was shown to be true for some spherical categories C arising from
subfactors, see [8]. The general case is still open.

In this context, a natural question is: how can we compute RTZ(C)(M)? Using
the algorithm given by Reshetikhin and Turaev is not a practicable approach
here, as that would require a description of the simple objects of Z(C) in terms
of those of C, and no such description is available in general. What we need
is a different algorithm for computing RTZ(C)(M), which one should be able to
perform inside C, without reference to the simple objects of Z(C). This is the
primary objective of this paper.

In order to fulfill this objective, it will be convenient to adopt an alterna-
tive approach for constructing RT-like quantum invariants of 3-manifolds, due
to Lyubashenko [13] and later developed in [10, 22], where the input data is a
(non-necessarily linear neither semisimple) ribbon category B which admits a co-

end C =
∫ X∈B ∨X ⊗ X. This coend C is naturally endowed with a very rich

algebraic structure. In particular, it is a Hopf algebra in the braided category B
and comes equipped with a Hopf pairing ω : C ⊗ C → 1. Such a category B is
modular if the pairing ω is non-degenerate (this is the natural way of formulating
the invertibility of the S-matrix in this setting).

The construction of the Lyubashenko invariant consists in presenting the 3-man-
ifold by surgery along a ribbon link L, using the universal property of the coend C
to associate a form φL to the link, and then evaluating this form on an integral Λ
of the Hopf algebra C. Note that, more generally, one can evaluate the form φL

by a ‘Kirby element’ α of B to get other invariants τB(M ;α) of 3-manifold invari-
ants, see [22]. In particular, up to normalization, τB(M ; Λ) is the Lyubashenko
invariant and, in the special case where B is a modular fusion category, τB(M ; Λ)
is the Reshetikhin-Turaev invariant.
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In order to make this construction effective, we need an algorithm for comput-
ing the forms φL which are defined by universal property. Such an algorithm,
based on an encoding of certain tangles by means of Hopf diagrams, is given in
[2]. Thus the invariants τB(M ;α) can be expressed in terms of certain structural
morphisms of the coend C. Section 2 is devoted to these quantum invariants and
their computation.

Hence, when C is a spherical fusion category, we may compute τZ(C)(M ; Λ)
provided we can describe explicitly the structural morphisms of the coend of Z(C).
In other words, we need an algebraic interpretation of the center construction.
If C is braided and has a coend A (which is a Hopf algebra), then the category
Z(C) coincides with the category of (right) A-modules in C. However the difficulty
here is that we don’t want to assume C is braided. To bypass this difficulty, we
use the notion of Hopf monad introduced in [3].

Hopf monads generalize Hopf algebras in a non-braided setting. In particular,
finite-dimensional Hopf algebras and their different generalizations (Hopf algebras
in braided autonomous categories, quantum bialgebroids, etc...) provide examples
of Hopf monads. If fact, any monoidal adjunction between autonomous categories
gives rise to a Hopf monad. It turns out that much of the theory of finite-
dimensional Hopf algebras extends to Hopf monads, see [3]. In Section 3, we
recall a few results on Hopf monads.

The whole point of introducing Hopf monads here is that they provide an
algebraic interpretation of the center construction [4]. If C is a centralizable

autonomous category, meaning that the coend Z(X) =
∫ Y ∈C ∨Y ⊗X ⊗ Y exists

for any object X of C, then Z is a quasitriangular Hopf monad on C and the
center Z(C) coincides, as a braided category, with the category of Z-modules in
C. In addition, Drinfeld’s double construction extends naturally to Hopf monads.
This theory provides a description of the coend of Z(C). In Section 4, we recall
a few facts on the double of Hopf monads.

In Section 5, we apply the above results to spherical fusion categories. Firstly,
we obtain a generalization of Müger’s theorem on the modularity of the center of
a spherical fusion category C to the case where dimC is not necessarily invertible
and k is any commutative ring. Denoting by {Vi}i∈I a (finite) representative
family of scalar objects of C, we get:

Z(X) =
⊕

i∈I

∨V i ⊗X ⊗ Vi.

Moreover Z(C) is centralizable and dimZ(C) = (dim C)2. The underlying object
of the coend of Z(C) is:

C =
⊕

i,j∈I

∨V i ⊗
∨V j ⊗

∨∨V i ⊗ Vj ,

and all structural morphisms of C (including its integral Λ: 1 → C) can be
written down explicitly in C. Furthermore, Z(C) is always modular. When k is
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an algebraically closed field and dim C is invertible, then Z(C) is a fusion category
and so we recover Müger’s theorem. However, when dim C is not invertible,
Z(C) is a non-semisimple ribbon category. Nevertheless, in this case, the version
τZ(C)(M ; Λ) of the Lyubashenko invariant is still defined and computable in terms
of C.

1. Conventions and notations

1.1. Autonomous categories. Monoidal categories are assumed to be strict.
Recall that a duality in a monoidal category (C,⊗,1) is a quadruple (X,Y, e, d),

where X, Y are objects of C, e : X ⊗ Y → 1 (the evaluation) and c : 1 → Y ⊗X

(the coevaluation) are morphisms in C, such that:

(e⊗ idX)(idX ⊗ c) = idX and (idY ⊗ e)(c⊗ idY ) = idY .

Then (X, e, c) is a left dual of Y , and (Y, e, c) is a right dual of X.

A left autonomous category is a monoidal category for which every object X
admits a left dual (∨X, evX , coevX). Likewise, a right autonomous category is a
monoidal category for which every objectX admits a right dual (X∨, ẽvX , c̃oevX).

An autonomous category is a monoidal category which is left and right au-
tonomous. Note that in an autonomous category, there are canonical isomor-
phisms:

∨
(X∨) ∼= X, ∨(X ⊗ Y ) ∼= ∨Y ⊗ ∨X, ∨1 ∼= 1,

(∨X)
∨ ∼= X, (X ⊗ Y )∨ ∼= Y ∨ ⊗X∨, 1∨ ∼= 1.

Subsequently, in formulae, we will often abstain (by abuse) from writing down
these isomorphisms.

1.2. Sovereign categories. A sovereign category is a left autonomous category
endowed with a strong monoidal natural transformation φX : X → ∨∨X. Such
a transformation is then an isomorphism. A sovereign category is actually au-
tonomous. Furthermore, in a sovereign category C, one can define the left and
right traces of an endomorphism f : X → X as:

trl(f) = evX(id∨X ⊗ fφ−1
X )coev∨X ∈ EndC(1),

trr(f) = ẽvX(fφX∨∨ ⊗ idX∨)c̃oevX∨ ∈ EndC(1),

and the left and right dimensions of an object X as diml(X) = trl(idX) and
dimr(X) = trr(idX). We have dimr(X) = diml(

∨X).

1.3. Braided categories. A braided category is a monoidal category endowed
with a braiding, that is, a natural isomorphism τX,Y : X⊗Y → Y ⊗X satisfying:
τX,Y ⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z).
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1.4. Ribbon categories. A twist on a braided category B is a natural isomor-
phism θX : X → X satisfying: θX⊗Y = (θX ⊗ θY )τY,XτX,Y . If B is braided

and autonomous, a twist θ on B is self-dual if ∨(θX) = θ∨X (or, equivalently,
(θX)∨ = θX∨).

A ribbon category is a braided autonomous category endowed with a self-dual
twist. A ribbon category is naturally equipped with a sovereign structure such
that the left and right traces coincide.

1.5. Coends. Let C, D be categories and F : Cop × C → D be a functor.
A dinatural transformation from the functor F to an object D of D is family

d = {dX : F (X,X) → D}X∈Ob(C) of morphisms in D satisfying the dinaturality
condition:

dXF (f, idX) = dY F (idY , f)

for every morphism f : X → Y in C.

A coend of F consists of an object C of D and a dinatural transformation i

from F to C which is universal, that is, for every dinatural transformation d

from F to an object D of D, there exists a unique morphism φ : C → D such
that dX = φ ◦ iX .

If F admits a coend (C, i), then it is unique (up to unique isomorphism) and

one denotes C =
∫ X∈C

F (X,X). See [14] for details.

1.6. Coends of autonomous categories. Let C be an autonomous category.

If it exists, the coend C =
∫ X∈C ∨X ⊗X of the functor F : Cop × C → C defined

by F (X,Y ) = ∨X ⊗ Y is called the coend of C. The object C is then a coalgebra
in C which coacts universally on the objects of C via the the (right) coaction:

δX = (idX ⊗ iX)(coevX ⊗ idX) : X → X ⊗ C,

where iY : ∨Y ⊗ Y → C is the universal dinatural transformation.

Furthermore, when C is braided, C is a Hopf algebra in C (see [15, 12]).

1.7. Dimension of sovereign categories. Let C be a sovereign category which
admits a coend. The left and right dimensions of C are defined respectively as the
left and right dimensions of its coend. These dimensions are actually independent
of the choice of sovereign structure on C. If they coincide (for instance when C is
a ribbon category or C is a fusion category), they are called the dimension of C
and denoted dimC.

1.8. Fusion categories. A fusion category over a commutative ring k is a k-lin-
ear autonomous category C endowed with a finite family {Vi}i∈I of objects of C
satisfying:

• HomC(Vi, Vj) = δi,j k for all i, j ∈ I;
• each object of C is a finite direct sum of objects of {Vi}i∈I ;
• 1 is isomorphic to some V0 with 0 ∈ I.
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An objectX of C is scalar if End(X) = k. The family {Vi}i∈I is a representative
family of scalar objects of C. Left and right dualities in C preserve scalar objects,
and so induce bijections i 7→ ∨i and i 7→ i∨ of I such that ∨(Vi) ∼= V∨i and
(Vi)

∨ ∼= Vi∨ . Note that ∨0 = 0 = 0∨.

Let C be a fusion category. The Hom spaces in C are free k-modules of finite
type. The multiplicity of i ∈ I in an objet X of C is defined as:

N i
X = rankk HomC(Vi,X) = rankk HomC(X,Vi).

Note there exist morphisms (pi,α
X : Y → Vi)16α6N i

X
and (qi,α

X : Vi → X)16α6N i
X

such that:

idX =
∑

i∈I
16α6N i

X

q
i,α
X p

i,α
X and p

i,α
X q

j,β
X = δi,jδα,β idVi

.

A fusion category C admits a coend C =
⊕

i∈I
∨Vi ⊗ Vi with universal dinatural

transformation given by:

iX =
∑

i∈I
16α6N i

X

∨q
i,α
X ⊗ p

i,α
X .

Since diml(C) = dimr(C), the dimension of a sovereign fusion category C is:

dim C =
∑

i∈I

diml(Vi) dimr(Vi) ∈ k.

In a sovereign fusion category C, the dimensions diml(Vi) and dimr(Vi) of the
scalar objects are invertible. However dim C may be not invertible.

A fusion category C is spherical if it is sovereign and the left and right traces
of endomorphisms in C coincide. This last condition is equivalent to the equality
of left and right dimensions of the scalar objects Vi for i ∈ I. In a spherical
category, the left (and right) dimension of an object X is denoted dim(X).

2. Quantum invariants and Hopf diagrams

In this section, we review a general construction of quantum invariants (of
Reshetikhin-Turaev type) and a method for computing them via Hopf diagrams.

2.1. Constructing quantum invariants. Let B be a ribbon autonomous cat-
egory (B is not necessarily linear). Assume that B admits a coend:

C =

∫ Y ∈B
∨Y ⊗ Y,

with universal coaction δY : Y → Y ⊗C (see Section 1.6). In particular, using the
general theory of coends, we have the following universal property: for any natural
transformation ξ = {ξY1,...,Yn : Y1 ⊗ · · · ⊗ Yn → Y1 ⊗ · · · ⊗ Yn ⊗M}Y1,...,Yn∈Ob(B),
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where M is an object of B, there exists a unique morphism r : C⊗n → M such
that:

Y1

Y1

Yn

Yn M

ξY1,...,Yn
=

Y1

Y1

Yn

Yn M

δY1
δYn

C
C

r

for all objects Y1, . . . , Yn of B.

Now let T be a ribbon n-string link with n a non-negative integer. Recall
T is a ribbon (n, n)-tangle consisting of n arc components, without any closed
component, such that the kth arc (1 6 k 6 n) joins the kth bottom endpoint
to the kth top endpoint. We orient T from bottom to top. By virtue of the
universality of the category of colored ribbon tangles, coloring the n components
of T with objects Y1, . . . , Yn of B yields a morphism TY1,··· ,Yn : Y1 ⊗ · · · ⊗ Yn →
Y1 ⊗ · · · ⊗ Yn, that is,

TY1,··· ,Yn =

Y1

Y1

Yn

Yn

.

Moreover TY1,··· ,Yn is natural in each variable Yk and so, by universality of the
coaction of the coend C, there exists a unique morphism:

φT : C⊗n → 1
such that:

TY1,··· ,Yn =

Y1

Y1

Yn

Yn

δY1
δYn

C
C

φT

.

Two natural questions arise in this context:

• How to evaluate the forms φT to get invariants of framed links1 and,
further, of 3-manifolds?

• How to compute the forms φT which are defined by universal property?

We address the first question in Section 2.2 and the second one in Section 2.3.

2.2. Kirby elements and quantum invariants. As in the previous section,
let B be a ribbon autonomous category with a coend C. In this setting, k =
EndC(1) is a commutative monoid.

1A framed link with n components is always the closure of some ribbon n-string link.
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Let L be a framed link in S3 with n components. There always exists a (non-
unique) ribbon n-string link T such that L is isotopic to the closure of T . For
α ∈ HomC(1, C), set

τB(L;α) = φT ◦ α⊗n ∈ k,

where φT : C⊗n → 1 is defined as above.

Following [22], by a Kirby element of B, we mean a morphism α ∈ HomB(1, C)
such that, for any framed link L, τB(L;α) is well-defined and invariant under iso-
topies and 2-handle slides of L. A Kirby element α of B is said to be normalizable
if τB(©+1;α) and τB(©−1;α) are invertible in k, where ©±1 denotes the unknot
with framing ±1.

By universality of the coaction δ of C on objects of C, we see that the twist
θY : Y → Y of B and its inverse lead to morphisms θ±C : C → 1 such that:

θ±1
Y = (idY ⊗ θ±C )δY .

If α is a Kirby element of B, we have: τB(©±1;α) = θ±Cα, so that α is normalizable

if and only if θ±Cα are invertible in k.

Recall (see [11]) that every (closed, connected, oriented) 3-manifold can be
obtained from S3 by surgery along a framed link L ⊂ S3. For any framed link L
in S3, we will denote by ML the 3-manifold obtained from S3 by surgery along
L, by nL the number of components of L, and by b−(L) the number of negative
eigenvalues of the linking matrix of L.

An immediate consequence of the Kirby theorem [9] is that if α is a normaliz-
able Kirby element of B, then:

τB(ML;α) = (θ+
Cα)b−(L)−nL (θ−Cα)−b−(L) τB(L;α)

is an invariant of 3-manifolds. Furthermore these invariants are multiplicative
under the connected sum of 3- manifolds: τB(M#M ′;α) = τB(M ;α) τB(M ′;α).

Note that if α is a normalizable Kirby element and k is an automorphism of 1,
then kα is also a normalizable Kirby element. The normalization of the invariant
τB(M ;α) has been chosen so that τB(M ; kα) = τB(M ;α).

The question is now: how to determine the (normalizable) Kirby element of
B? A partial answer was given in [22]. Denoting by mC , ∆C , and SC respectively
the product, coproduct, and antipode of the Hopf algebra C, we have:

Theorem 2.1 ([22, Theorem 2.5]). Any morphism α : 1→ C in B such that:

SCα = α and (mC ⊗ idC)(idC ⊗ ∆C)(α⊗ α) = α⊗ α

is a Kirby element of B.

For instance, the unit uC of C is a normalizable Kirby element (its associated
invariant is the trivial one).

A more interesting example of a a Kirby element is an S-invariant integral Λ
of C, that is, a morphism Λ: 1 → C such that SC(Λ) = Λ and mC(Λ ⊗ idC) =
Λ εC = mC(idC ⊗ Λ), where εC is the counit of C. For the existence of such



CATEGORICAL CENTERS AND RESHETIKHIN-TURAEV INVARIANTS 263

integrals, we refer to [1]. If Λ is normalizable, then the associated invariant is the
Lyubashenko’s one [13], up to a different normalization.

Note that other Kirby elements exist in general (see [22]).

Remark 2.2. Assume B is a modular category in the sense of [20], that is, a
ribbon fusion category with invertible S-matrix. Let {Vi}i∈I be a representative
family of simple objects of B. Then B admits a coend C =

⊕
i∈I

∨V i ⊗ Vi. Let
φX : X → ∨∨X be the sovereign structure of B and set:

Λ =
∑

i∈I

dim(Vi) (id∨V i
⊗ φ−1

i )coevVi
: 1 → C,

Then Λ is a SC-invariant integral of C. Furthermore it is normalizable and its
associated invariant is the Reshetikhin-Turaev one [20], up to a different normal-
ization. More precisely, assuming dimB =

∑
i∈I dim(Vi)

2 has a square root D in

k (which is then invertible in this context), setting ∆− = θ−CΛ, and denoting by
b1(M) the first Betti number of M , we have:

RTB(M) = D−1
( D

∆−

)b1(M)
τB(M ; Λ).

We will see in Section 5 that, unlike RTB(M), τB(M ; Λ) may be still defined for
ribbon categories B with dimB = 0.

2.3. Hopf diagrams. For a precise treatment of the theory of Hopf diagrams,
we refer to [2]. Note that Habiro, shortly after us, had similar results in [7].

Briefly speaking, a Hopf diagram is a planar diagram, with inputs but no
output, obtained by stacking the generators of Figure 1 (diagrams are read from
bottom to top). Examples of Hopf diagrams with 1 and 2 inputs are depicted in
Figure 2. Hopf diagrams are submitted to the relations of Figure 3 (plus relations
expressing that τ is an invertible QYBE solution which is natural with respect to
the other generators). In particular, the relations of Figure 3 say that ∆ behaves
as a coproduct with counit ε, S behaves as an antipode, ω± behaves as a Hopf
pairing, and θ± behaves as a twist form. The last two relations of Figure 3 are
nothing but the Markov relations for pure braids.

∆ = , ε = , ω+ = , ω− = ,

θ+ = , θ− = , S = , S−1 = ,

τ = , τ−1 = .

Figure 1. Generators of Hopf diagrams
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(a) A Hopf diagram with 1
input

(b) A Hopf diagram with 2
inputs

Figure 2. Examples of Hopf diagrams

denoted , ,

, , , ,

, ,

, ,,

, ,

,

.

Figure 3. Relations on Hopf diagrams

Hopf diagrams with the same number of inputs can be composed using the
convolution product ? defined in Figure 4. This leads to the category Diag of



CATEGORICAL CENTERS AND RESHETIKHIN-TURAEV INVARIANTS 265

Hopf diagrams. Objects of Diag are the non-negative integers. For two non-
negative integers m and n, the set HomDiag(m,n) of morphisms from m to n is
the empty set if m 6= n and is the set of Hopf diagrams with m inputs (up to
their relations) if m = n. The composition is the convolution product and the
identity of n is the Hopf diagram obtained by juxtaposing n copies of ε.

The category Diag is a monoidal category: m⊗n = m+n on objects and the
monoidal product D ⊗D′ of two Hopf diagrams D and D′ is the Hopf diagram
obtained by juxtaposing D on the left of D′.

D ?D′ DD D′D′

◦

Figure 4. Composition of Hopf diagrams

Let us denote by RSL the category of ribbon string links. The objects of RSL
are the non-negative integers. For two non-negative integers m and n, the set of
morphisms from m to n is

HomRSL(m,n) =

{
∅ if m 6= n,

RSLn if m = n,

where RSLn denotes the set of (isotopy classes) of ribbon n-string links. The
composition T ′ ◦ T of two ribbon n-string links is given by stacking T ′ on top of
T (i.e., with ascending convention). Identities are the trivial string links. Note
that the category RSL is a monoidal category: m ⊗ n = m + n on objects and
the monoidal product T ⊗ T ′ of two ribbon string links T and T ′ is the ribbon
string link obtained by juxtaposing T on the left of T ′.

Hopf diagrams give a ‘Hopf algebraic’ description of ribbon string links. Indeed,
any Hopf diagram D with n inputs gives rise to a ribbon n-string link Φ(D) in
the following way: using the rules of Figure 5, we obtain a ribbon n-handle2

hD, that is, a ribbon (2n, 0)-tangle consisting of n arc components, without any
closed component, such that the k-th arc joins the (2k − 1)-to the 2k-th bottom
endpoints. Then, by rotating hD, we get a ribbon n-string link Φ(D):

D Hopf diagram  
hD  Φ(D) =

hD

.

An example of this procedure is depicted in Figure 6.

This leads to a functor Φ: Diag → RSL defined on objects by n 7→ Φ(n) = n

and on morphisms by D 7→ Φ(D).

2Ribbon handles are called bottom tangles in [7].
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,,,

,,

,,,,

.

Figure 5. Rules for transforming Hopf diagrams into tangles

D =  hD =  Φ(D) = ∼

Figure 6. From Hopf diagrams to ribbon string links

Theorem 2.3 ([2, Theorem 4.5]). Φ: Diag → RSL is a well-defined monoidal
functor and there exists (constructive proof) a monoidal functor Ψ: RSL → Diag
which satisfies Φ ◦ Ψ = 1RSL.

Note that by ‘constructive proof’ we mean there is an explicit algorithm that
associates to a ribbon string T a Hopf diagram Ψ(T ) such that Φ

(
Ψ(T )

)
= T

(see [2]). The key point is that such a functor Ψ exists thanks to the relations
we put on Hopf diagrams.

Let now B be a ribbon autonomous category which admits a coend C. Let us
answer the second question of Section 2.1: given a ribbon n-string link T , how
to compute the morphism φT : C⊗n → 1 which is defined by universal property?
Recall C is a Hopf algebra in B and denote its coproduct, counit, and antipode
by ∆C , εC , and SC respectively. The twist (and its inverse) of B is encoded by
morphisms θ±C → C → 1 (see Section 2.2). Furthermore, we can define a Hopf
pairing ωC : C ⊗ C → 1 via:

ωC(iX ⊗ iY ) = (evX ⊗ evY )(id∨X ⊗ τ∨Y,XτX,∨Y ⊗ id∨Y ),

where τ is the braiding of B and iY : ∨Y ⊗ Y → C is the universal dinatural
transformation of the coend C. Finally, we set ω+

C = ωC(S−1
C ⊗idC) and ω−

C = ωC .

Theorem 2.4 ([2, Theorem 5.1]). Let T be ribbon n-string link. Let D be any
Hopf diagram (with n entries) which encodes T , that is, such that Φ(D) = T

(recall there is an algorithm producing such a Hopf diagram). Then the morphism
φT : C⊗n → 1 defined by T is given by replacing in D the generators ∆, ε, ω±,
θ±, S±1, and τ±1 (see Figure 1) by the morphisms ∆C , εC , ω±

C , θ±C , S±1
C , and

τ±1
C,C respectively.
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Remark that the product and unit of the coend C are not needed to represent
Hopf diagrams.

Let us summarize the above universal construction of quantum invariants,
starting from a ribbon category B which admits a coend C. Pick a normalizable
Kirby element α of B (for example as in Theorem 2.1). Recall it gives rise to
the invariant τB(M,α) of 3- manifolds. Let M be a 3- manifold. Present M by
surgery along a framed link L, which can be viewed as the closure of a ribbon
n-string link T where n is the number of components of L. Encode the string
link T by a Hopf diagram D:

M ' S3
L, L ∼ T with T = 7→D =

The morphism φT : C⊗n → 1 associated to T can be computed by replacing
the generators of D by the corresponding structural morphisms of the coend C.
Then evaluate φT with the Kirby element α and normalize to get the invariant:

τB(M ;α) =
α

θ+
C

b−(L) − n

α

θ−C
−b−(L)

ω−
C ω+

C

SC τC,C

∆C∆C

αα

In particular, to compute such quantum invariants defined from the center
Z(C) of a autonomous category C, one needs to give an explicit description of the
structural morphism of the coend of Z(C) in terms of the category C. In the next
section, we give such a description by using Hopf monads (this was our original
motivation for introducing Hopf monads).

3. Hopf monads

In this section, we review some facts on Hopf monads [3].

3.1. Monads. Let C be a category. Recall that the category End(C) of endofunc-
tors of C is strict monoidal with composition for monoidal product and identity
functor 1C for unit object.

A monad on C (also called a triple) is an algebra in End(C), that is, a triple
(T, µ, η), where T : C → C is a functor, µ : T 2 → T and η : 1C → T are natural
transformations, such that:

µXT (µX) = µXµT (X) and µXηT (X) = idT (X) = µXT (ηX)

for any object X of C.
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3.2. Modules over a monad. Let T be a monad on a category C. An action
of T on an object M of C is a morphism r : T (M) →M in C such that:

rT (r) = rµM and rηM = idM .

The pair (M, r) is then called a T -module in C, or just a T -module3.

Given two T -modules (M, r) and (N, s) in C, a morphism f ∈ HomC(M,N)
is said to be T -linear if fr = sT (f). This gives rise to the category T - C of
T -modules, with composition inherited from C.

We will denote UT : T - C → C the forgetful functor of T defined by UT (M, r) =
M for any T -module (M, r) and UT (f) = f for any T -linear morphism f .

3.3. The philosophy. Roughly speaking, a monad T on a monoidal category C
is a bimonad, a Hopf monad, a quasitriangular Hopf monad, or a ribbon Hopf
monad if the category T - C of T -modules is respectively monoidal, autonomous,
braided, or ribbon, in such a way that the forgetful functor UT : T - C → C is strict
monoidal.

The key point is that these categorical properties of T - C can be encoded by
structural morphisms of T . In the next sections, we briefly give the definitions of
these structural morphisms. Their relations with the category T - C is summarized
in Theorem 3.1. For a complete treatment, we refer to [3].

3.4. Bimonads. A bimonad4 on a monoidal category C is a monad (T, µ, η) on C
endowed with a natural transformation T2(X,Y ) : T (X ⊗ Y ) → T (X) ⊗ T (Y )
and a morphism T0 : T (1) → 1 satisfying:

(idT (X) ⊗ T2(Y,Z))T2(X,Y ⊗ Z) = (T2(X,Y ) ⊗ idT (Z))T2(X ⊗ Y,Z);

(idT (X) ⊗ T0)T2(X,1) = idT (X) = (T0 ⊗ idT (X))T2(1,X);

T2(X,Y )µX⊗Y = (µX ⊗ µY )T2(T (X), T (Y ))T (T2(X,Y ));

T0µ1 = T0T (T0); T2(X,Y )ηX⊗Y = (ηX ⊗ ηY ); T0η1 = id1;
for all objects X,Y,Z of C.

3.5. Antipodes. Let (T, µ, η) be a bimonad on a monoidal category C.

If C is left autonomous, then a left antipode for T is a natural transformation
sl = {sl

X : T (∨T (X)) → ∨X}X∈Ob(C) satisfying:

T0T (evX)T (∨ηX ⊗ idX) = evT (X)(s
l
T (X)T (∨µX) ⊗ idT (X))T2(

∨T (X),X);

(ηX ⊗ id∨X)coevXT0 = (µX ⊗ sl
X)T2(T (X), ∨T (X))T (coevT (X)).

3This is not standard terminology: pairs (M, r) are usually called T -algebras in the literature.
However pairs (M, r) are considered here as the analogues of modules over an algebra, and so
the term ‘algebra’ would be awkward in this context.

4This notion of bimonad coincides exactly with the notion of ‘Hopf monad’ introduced in
[16]. However, by analogy with the notions of bialgebra and Hopf algebra, we prefer to reserve
the term ‘Hopf monad’ for bimonads with antipodes (see Section 3.6)
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Likewise, if C is right autonomous, then a right antipode for T is a natural
transformation sr = {sr

X : T (T (X)∨) → X∨}X∈Ob(C) satisfying:

T0T (ẽvX)T (idX ⊗ η∨X) = ẽvT (X)(idT (X) ⊗ sr
T (X)T (µ∨X))T2(X,T (X)∨);

(idX∨ ⊗ ηX)c̃oevXT0 = (sr
X ⊗ µX)T2(T (X)∨, T (X))T (c̃oevT (X)).

As in the classical case, left and right antipodes are ‘anti-(co)multiplicative’,
see [3, Theorem 3.7].

Note that if a left (resp. right) antipode exists, then it is unique. Furthermore,
when they exist, the left antipode sl and the right antipode sr are ‘inverse’ to

each other in the sense that idT (X) = sr
∨T (X)

T ((sl
X)

∨
) = sl

T (X)∨
T (∨(sr

X)) for any

object X of C.

3.6. Hopf monads. A Hopf monad is a bimonad on an autonomous category
which has a left antipode and a right antipode.

Hopf monads generalize Hopf algebras to a non-braided (and non-linear) set-
ting. Furthermore they are much more general: for example, if C,D are two
autonomous categories and U : D → C is a strong monoidal functor which ad-
mits a left adjoint F : C → D, then T = UF is a Hopf monad on C (see [3,
corollary 3.15]).

Note that many fundamental results of the theory of Hopf algebras (such as the
decomposition of Hopf modules, the existence of integrals, Maschke’s criterium
of semisimplicity, etc...) can be generalized to Hopf monads (see [3]).

3.7. Quasitriangular Hopf monads. Let T be a Hopf monad on an autonomous
category C. An R-matrix for T is a natural transformation RX , Y : X ⊗ Y →
T (Y ) ⊗ T (X) satisfying:

(µY ⊗ µX)RT (X),T (Y )T2(X,Y ) = (µY ⊗ µX)T2(T (Y ), T (X))T (RX,Y );

(idT (Z) ⊗ T2(X,Y ))RX⊗Y,Z

= (µZ ⊗ idT (X)⊗T (Y ))(RX,T (Z) ⊗ idT (Y ))(idX ⊗RY,Z);

(T2(Y,Z) ⊗ idT (X))RX,Y ⊗Z

= (idT (Y )⊗T (Z) ⊗ µX)(idT (Y ) ⊗RT (X),Z)(RX,Y ⊗ idZ).

Note that an R-matrix satisfies some QYB equation and is ∗-invertible (where
∗ is some convolution product), see [3, corollary 8.7].

A quasitriangular Hopf monad is a Hopf monad equipped with an R-matrix.

3.8. Ribbon Hopf monads. Let T be a quasitriangular Hopf monad T on
an autonomous category C. A twist for T is a central and ∗-invertible natural
transformation θX : X → T (X) satisfying:

T2(X,Y )θX⊗Y = (µXθT (X)µX ⊗ µY θT (Y )µY )RT (Y ),T (X)RX,Y .
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Here central and ∗-invertible means central and invertible in the monoid Hom(1C , T )
of natural transformations from 1C to T . This monoid is endowed with the convo-
lution product, defined by: (φ ∗ ψ)X = µXφT (X)ψX = µXT (ψX)φX : X → T (X),
and with the unit η.

A twist of a quasitriangular Hopf monad on an autonomous category is said
to be self-dual if it satisfies:

∨θX = sl
Xθ∨T (X) (or, equivalently, θ∨X = sr

XθT (X)∨).

A ribbon Hopf monad is a quasitriangular Hopf monad on an autonomous
category endowed with a self-dual twist.

3.9. Relations with modules. The notions of bimonads, Hopf monads, qua-
sitriangular Hopf monads, or ribbon Hopf monads have a natural interpretation
in terms of the category of modules over the underlying monad. We summarize
these properties in the following theorem:

Theorem 3.1 ([3]). (a) Let T be a monad on a monoidal category C. If T
is a bimonad, then the category T - C of T -modules is monoidal by setting:

(M, r) ⊗T - C (N, s) = (M ⊗N, (r ⊗ s)T2(M,N)) and 1T - C = (1, T0).

Moreover this gives a bijective correspondence between bimonad structures
for the monad T and monoidal structures of T - C such that the forgetful
functor UT : T - C → C is strict monoidal.

(b) Let T be a bimonad on a left autonomous C. Then T has a left antipode
sl if and only if the category T - C of T -modules is left autonomous. In
terms of a left antipode sl, left duals in T - C are given by:

∨(M, r) = (∨M,sl
MT (∨r)), ev(M,r) = evM , coev(M,r) = coevM .

(c) Let T be a bimonad on a right autonomous C. Then T has a right antipode
sl if and only if the category T - C of T -modules is right autonomous. In
terms of a right antipode sr, right duals in T - C are given by:

(M, r)∨ = (M∨, sr
MT (r∨)), ẽv(M,r) = ẽvM , c̃oev(M,r) = c̃oevM .

(d) Let T be a bimonad on an autonomous C. Then T is a Hopf monad if
and only if the category T - C of T -modules is autonomous.

(e) Let T be a bimonad on a monoidal category C. Any R-matrix R for T
yields a braiding τ on T - C as follows:

τ(M,r),(N,s) = (s⊗ t)RM,N : (M, r) ⊗ (N, s) → (N, s) ⊗ (M, r).

This assignment gives a bijection between R-matrices for T and braidings
on T - C.

(f) Let T be a quasitriangular Hopf monad on an autonomous category C.
Any twist θ for T yields a twist Θ on T - C as follows:

Θ(M,r) = rθM : (M, r) → (M, r).
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This assignment gives a bijection between twists for T and twists on T - C.
Moreover, in this correspondence, θ is self-dual (and so T is ribbon) if
and only if Θ is self-dual (and so T - C is ribbon).

4. Quantum double of Hopf monads

In this section, we review the construction of the double of a Hopf monad and
its relations with the center construction (see [4] for details).

4.1. The center of an monoidal category category. Let C be a braided
category. Recall that the center of C is the category Z(C) defined as follows: the
objects are pairs (M,σ), where M is an object of C and σY : M ⊗ Y → Y ⊗M

is a natural isomorphism verifying σY ⊗Z = (idY ⊗ σZ)(σY ⊗ idZ). A morphism
f : (M,σ) → (M ′, σ′) in Z(C) is a morphism f : M → M ′ in C which satisfies
(idY ⊗ f)σY = σ′Y (f ⊗ idY ). The composition and identities are inherited from
that of C.

The center Z(C) of C is monoidal with unit object (1, idM ) and monoidal
product defined by (M,σ)⊗ (N, γ) =

(
M⊗N, (σ⊗ idN )(idM ⊗γ)

)
. Furthermore,

if C is autonomous, then so is Z(C).

We define the forgetful functor U : Z(C) → C by U(M,σ) = M and U(f) = f .
This is a strict monoidal functor.

4.2. The double of a Hopf monad. Let T be a Hopf monad on an autonomous
category C. Assume T is centralizable, that is, such that the coend:

ZT (X) =

∫ Y ∈C
∨T (Y ) ⊗X ⊗ Y

exists for every object X of C. Denote iX,Y : ∨T (Y ) ⊗ X ⊗ Y → ZT (X) the
associated universal dinatural transformation. By the parameter theorem for
coends, ZT is an endofunctor of C and iX,Y is natural in X and dinatural in Y .

In [4], we construct an explicit a Hopf monad structure on ZT , inherited from
that of T . The Hopf monad ZT is called the centralizer of T .

Now, since T preserves colimits (see [3, Remark 3.13]) and so coends, T (i) is a
universal dinatural transformation. Therefore we can define a natural transfor-
mation Ω: TZT → ZTT by:

ΩXT (iX,Y ) = iT (X),T (Y )

(
∨µY s

l
T (Y )T (∨µY ) ⊗ T2(X,Y )

)
T2(

∨T (Y ),X ⊗ Y ),

where η and u the units of T and ZT respectively, and sl is the left antipode of
T .

Theorem 4.1 ([4]). Ω: TZT → ZTT is a bijective comonoidal distributive law5.

5A comonoidal distributive law between two Hopf monads makes their composition a Hopf
monad.
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The distributive law Ω is called the canonical distributive law of T over ZT .
Since Ω is a comonoidal distributive law, we get that DT = ZT ◦Ω T is a Hopf
monad on C (whose underlying endofunctor is ZT ◦ T ). We call DT the double
of T , as justified by the following theorem:

Theorem 4.2 ([4]). Let T be a centralizable Hopf monad on an autonomous
category C. Then the forgetful functor U : Z(T - C) → C, given by

(
(M, r), σ

)
7→

M , is monadic with monad the double DT of T . Furthermore:

RX,Y = (uT (Y ) ⊗ ZT (ηX)
)
(idT (Y ) ⊗ iX,Y )(coevY ⊗ idX)

is a R-matrix for DT , making the Hopf monad DT quasitriangular, and

Z(T - C) ∼= DT - C

as braided categories.

Remark 4.3. Let C be an autonomous category which is centralizable, that is,
such that the trivial Hopf monad 1C is centralizable. In that case, the centralizer
Z = Z1C and the double D1C of 1C coincide. Then, by Theorem 4.2, Z is a
quasitriangular Hopf monad on C such that Z(C) ∼= Z- C as braided category. In
particular Z(C) is seen as the category of modules over a quasitriangular Hopf
monad. In Section 5.1, we explicitly describe Z in terms of C when C is a fusion
category.

Example 4.4. Let H be a finite-dimensional Hopf algebra over a field k. Then
the Hopf monad T =?⊗kH on vectk is centralizable. We have: ZT =?⊗kH

∗ and
so DT =? ⊗k H ⊗k H

∗. From Theorem 4.2, the vector space D(H) = H ⊗k H
∗

inherits a quasitriangular Hopf algebra structure from the quasitriangular Hopf
monad DT . In particular the algebra structure on D(H) is a twist of that of
H ⊗ H∗ by an isomorphism H∗ ⊗ H → H ⊗ H∗ coming from the distributive
law Ω: TZT → ZTT . This quasitriangular Hopf algebra D(H) is precisely the
Drinfeld double of H. Furthermore, since T - vectk = repH and DT - vectk =
repD(H), one recovers that Z(repH) ∼= repD(H) as braided categories.

The previous example may be generalized to Hopf algebras in braided cate-
gories. Indeed, let C be a braided category which admits a coend:

C =

∫ Y ∈C
∨Y ⊗ Y.

Recall C is then a Hopf algebra in C (see Section 1.5). Let A be a Hopf algebra
in C. Then the Hopf monad ? ⊗A on C is centralizable and we have:

Z?⊗A =? ⊗ ∨A⊗ C, D?⊗A =? ⊗A⊗ ∨A⊗C.

From Theorem 4.2, we get that the object D(A) = A⊗∨A⊗C is a quasitriangular
Hopf algebra in C, whose structure is inherited from the quasitriangular Hopf
monad D?⊗A. Here D(A) quasitriangular means that there exists a R-matrix:

R : C ⊗ C → D(A) ⊗D(A)
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verifying axioms generalizing the usual ones (when C = vectk, we have C =
k and R ∈ D(H) ⊗ D(H)). This R-matrix makes the category repCD(A) of
right D(A)- modules (in C) braided, so that Z(repCA) ∼= repCD(A) as braided
categories. We refer to [4] for more details.

4.3. The coend of a category of modules over a Hopf monad. Let T
be a centralizable Hopf monad on an autonomous category C. Denote ZT its
centralizer, iX,Y : ∨T (Y ) ⊗ X ⊗ Y → ZT (X) its associated universal dinatural
transformation, and Ω: TZT → ZTT the canonical distributive law of T over ZT .
Then

Theorem 4.5 ([4]). The category T - C of T -modules admits a coend, which is:
∫ (M,r)∈T - C

∨(M, r) ⊗ (M, r) =
(
ZT (1), ZT (T0)Ω1),

with I(M,r) = i1,M (∨r⊗ idM ) : ∨(M, r)⊗ (M, r) →
(
ZT (1), ZT (T0)Ω1) as universal

dinatural transformation.

Note that if T is furthermore quasitriangular, then T - C is braided and so the
coend

(
ZT (1), ZT (T0)Ω1) is a Hopf algebra in T - C.

Remark 4.6. If we apply this to the double DT of a centralizable Hopf monad,
which we suppose to be itself centralizable, we get an explicit description of
the coend of the braided category DT - C ∼= Z(T - C) in terms of the monad T .
Using this description and Hopf diagrams, we hence have a way of computing
the quantum invariants of 3-manifolds defined using Z(T - C), see Section 2.3. In
the next section, we detail the case where C is a spherical fusion category and
T = 1C .

5. Reshetikhin-Turaev invariants from categorical centers

In this section, we treat in detail the case of the center Z(C) of a spherical
fusion category C. This leads to an explicit algorithm for computing Reshetikhin-
Turaev-like invariants defined using Z(C) in terms of C.

5.1. On the center of a fusion category. Fix a commutative ring k. Let C
be a fusion category over k (see Section 1.8). Then the trivial Hopf monad 1C is
centralizable. Its centralizer Z = Z1C is:

Z(X) =
⊕

i∈I

∨V i ⊗X ⊗ Vi,

with associated dinatural transformation iX,Y : ∨Y ⊗X ⊗ Y → Z(X) given by:

iX,Y =
∑

i∈I
16α6N i

Y

∨q
i,α
Y ⊗ idX ⊗ p

i,α
Y .

The double of 1C isD1C = Z◦1C = Z. Hence Z is a quasitriangular Hopf monad
and Z(C) ∼= Z- C as braided categories. Furthermore, if C is spherical, then Z is
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Z2(X,Y ) =
∑

i∈I

ViVi

ViX

X

Y

Y

∨V i

∨V i
∨V i

, Z0 =
∑

i∈I Vi
∨V i

,

µX =
∑

i,j,k∈I

16α6Nk
i,j Vi Vj

Vk
∨V k

∨V j
∨V i X

X

∨q
k,α
i,j p

k,α
i,j

, ηX =

V0X

X

∨V 0

,

sl
X =

∑

i∈I
∨∨V i V∨i

∨V ∨i
∨V i

∨X

∨X

, sr
X =

∑

i∈I Vi Vi∨
∨V i∨ V

∨
i X∨

X∨

,

RX,Y =
∑

i∈I
16α6N i

Y

ViV0
∨V 0

∨V i X

X Y

Y

pi
Y

qi
Y

, θX =
∑

i∈I
16α6N i

X

V∨i
∨V ∨i

X

X

pi
X

qi
X

φVi

.

Figure 7. Structural morphisms of Z

a ribbon Hopf monad (and so Z(C) is ribbon). The structural morphisms of Z

can be described only in terms of the category C, that is, only using the p, q’s (see
Section 1.8), the duality morphisms, and the sovereign structure φX : X → ∨∨X.
They are depicted in Figure 7. The dotted lines in the figure represent idV0

= id1
and can be removed without changing the morphisms. We depicted them in
order to remember which factor of Z(X) is concerned. To simplify the reading,
we denote AVi1

⊗···⊗Vin
by Ai1,...,in for A = pi,α, qi,α, or N i.

Using the Maschke theorem for Hopf monad’s which characterize semisimplic-
ity (see [3, Theorem 6.5]), we have:

Proposition 5.1. [5] Let C be a spherical fusion category. Then the (ribbon)
Hopf monad Z is semisimple if and only if dimC is invertible.

Since Z(C) ∼= Z- C, a direct consequence of Proposition 5.1 is then:

Corollary 5.2. Let C be a spherical fusion category over an algebraic closed field.
Assume dim C is invertible. Then Z(C) is a ribbon fusion category.

5.2. The coend of the center of a fusion category. Let us describe the
structure of the coend (C, r) of Z- C ∼= Z(C), where C is a spherical fusion cate-
gory. Recall that C is an object of C and r : Z(C) → C is an action of Z on C.
From Theorem 4.5, we get:

C =
⊕

j∈I

∨Z(Vj) ⊗ Vj =
⊕

i,j∈I

∨V i ⊗
∨V j ⊗

∨∨V i ⊗ Vj .
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∆C =
∑

i,j,k,m,n∈I

16α6Nk
k,m

16β6Nn
∨k,j,k

∨V i
∨V j

∨∨V i

Vj

Vj

∨V m
∨V n

∨∨V m Vn
∨V k

∨V j
∨∨V k

∨p
n,β
∨k,j,k

∨q
n,β
∨k,j,k

∨p
i,α
k,m

∨∨q
i,α
k,m

, εC =
∑

j∈I
∨V 0

∨V j
∨∨V 0 Vj

,

SC =
∑

i,j,k,l∈I

16α6N
∨i
j,k,j∨

16β6N l
∨j,∨i,∨j,∨∨i,j ∨V i

∨V j
∨∨V i Vj

p
l,β
∨j,∨i,∨j,∨∨i,j

∨q
l,β
∨j,∨i,∨j,∨∨i,j

∨p
∨i,α
j,k,j∨

∨∨q
∨i,α
j,k,j∨

∨V k
∨V l

∨∨V k Vl

,

ωC =
∑

i,j,k,l∈I

16α6N
∨k
∨i,j,i

16β6N i
∨k,∨l,∨∨k

p
∨k,α
∨i,j,i

q
i,β
∨k,∨l,∨∨k

∨q
∨k,α
∨i,j,i

p
i,β
∨k,∨l,∨∨k

∨V i
∨V j

∨∨V i Vj
∨V k

∨V l
∨∨V k Vl

,

θ+
C =

∑

i∈I

φ∨V i

∨V i
∨V i

∨∨V i Vi

, θ−C =
∑

i∈I

φ∨V i

∨V i
∨V ∨i

∨∨V i V∨i

,

τC,C =
∑

i,j,k,l,a,b,m∈I
16α6Nm

∨k,∨l,∨∨k,l

16β6Nb
∨m,j,m

16γ6N i
m,a,m∨

∨p
i,γ
m,a,m∨

∨∨q
i,γ
m,a,m∨ p

m,α
∨k,∨l,∨∨k,l

q
m,α
∨k,∨l,∨∨k,l

∨q
b,β
∨m,j,m p

b,β
∨m,j,m

∨V i
∨V j

∨∨V i Vj
∨V k

∨V k

∨V l

∨V l

∨∨V k

∨∨V k

Vl

Vl
∨V a

∨V b
∨∨V a Vb

,

Λ =
∑

j∈I

dim(Vj) φ−1
Vj

∨V 0
∨V j

∨∨V 0 Vj

.

Figure 8. Structural morphisms of the coend of Z(C)

Note that an immediate consequence of this is: dimZ(C) = (dim C)2.

The structural morphisms of C can be expressed using only the category C.
Those needed to represent Hopf diagrams are depicted in Figure 8.

Theorem 5.3 ([5]). The morphism Λ: 1 → C of Figure 8 is a SC-invariant
integral of the coend of Z- C ∼= Z(C).
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Following [13], a braided category B is said to be modular if it admits a coend C
whose Hopf pairing ωC : C ⊗ C → 1 is non-degenerate (meaning there exists
σ : 1 → C⊗C such that (ωC ⊗ idC)(idC ⊗σ) = idC = (idC ⊗ωC)(σ⊗ idC)). Note
this extends the usual notion of modularity to the non-semisimple case (when B
is a ribbon fusion category, B is modular in the above sense if and only if the
S-matrix is invertible).

Corollary 5.4 ([5]). The center of a spherical fusion category is modular.

Remark 5.5. Let C a spherical fusion category over an algebraic closed field
such that dim C is invertible. Then by Corollary 5.2 and Theorem 5.3, we get
that the center Z(C) of C is a modular ribbon fusion category. This last result
was first shown in [17] using a different method.

5.3. Computing RTZ(C)(M
3) from C. Let C be a spherical fusion category over

a commutative ring k. As explained in Sections 5.1 and 5.2, the center Z(C) of C
is a ribbon category which admits a coend C.

The integral Λ of C is then a normalizable Kirby element since θ+
CΛ = 1k and

θ−CΛ = 1k. Hence the invariant τZ(C)(M,Λ) of 3-manifolds (see Section 2.2).

Furthermore, since we have an explicit description of the structural morphisms
of the coend C (see Figures 8), we have a way to compute this invariant by using
Hopf diagrams (see Section 2.3). For example, we have:

τZ(C)(S
3; Λ) = 1 and τZ(C)(S

2 × S1; Λ) = dimC.

Note that the invariant τZ(C)(M,Λ) is well-defined even if dim C is not in-
vertible. When dim C is invertible and k is an algebraic closed field (so that
Z(C) is a modular fusion category, see Remark 5.5), the invariant τZ(C)(M,Λ)
equals the Reshetikhin-Turaev invariant RTZ(C)(M) (up to a different normal-
ization, see Remark 2.2). Hence we get a way to compute RTZ(C)(M) in terms
of the structural morphisms of C (recall one cannot use the original algorithm of
Reshetikhin-Turaev since the simple objects of Z(C) are unknown in general).
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