ON COFINITELY δ -SEMIPERFECT MODULES

L. V. THUYET, M. T. KOŞAN AND T. C. QUYNH

ABSTRACT. Supplemented modules and ⊕-supplemented modules are useful in characterizing semiperfect modules and rings. Recently, the notion of cofinitely supplemented modules and δ -supplemented modules were introduced as generalizations of supplemented modules. In this paper, $\oplus -\cos f_{\delta}$ supplemented and cofinitely δ -semiperfect modules are defined as generalizations of ⊕-cofinitely supplemented modules and cofinitely semiperfect modules. Several properties of these modules are obtained.

1. INTRODUCTION

Throughout this paper, we assume that R is an associative ring with unity, M is a unital right R-module. The symbols, " \leq " will denote a submodule, " \leq ^{⊕"} a module direct summand, " $\leq e$ " an essential submodule and "Rad" the radical of a module. The texts by Anderson and Fuller [2] and Wisbauer [15] are the general references for notion of rings and modules not defined in this work.

A submodule N of M is called *small* in M, denoted by $N \ll M$, if for every submodule K of M the equality $N+K=M$ implies $K=M$. Let M be a module and N, P be submodules of M. We call P a supplement of N in M if $M = P + N$ and $P \cap N$ is small in P. A submodule N of M has an ample supplement in M if every submodule L such that $M = N + L$ contains a supplement of N in M. A module M is called (amply, resp.) supplemented if every submodule of M has a (an ample, resp.) supplement. Supplemented modules have been discussed by several authors (see $[5]$, $[8]$, $[15]$).

If P and M are modules, we call an epimorphism $p : P \to M$ a small cover in case $\text{Ker}(p) \ll P$. If P is projective, then it is called projective cover. An R -module M is called *semiperfect* if every factor module of M has a projective cover. If R_R is semiperfect, then R is called a *semiperfect* ring.

Following Zhou [16], a submodule N of a module M is said to be a δ -small submodule (denoted by $N \ll_{\delta} M$) if, whenever $M = N + X$ with M/X singular, we have $M = X$. In [11], δ -supplemented modules are introduced as generalization of supplemented modules. Let M be a module and N, P be submodules of M . According to [11, Lemma 2.9], P is called a δ -supplement of N in M if $M = P + N$ and $P \cap N$ is δ -small in P. A module M is said to be a δ -supplemented module

Received October 17, 2007; in revised form December 6, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 16L30, 16E50.

Key words and phrases. $\oplus -\cot s$ -supplemented modules, cofinitely δ -semiperfect modules.

if every submodule of M has a δ -supplement in M. A submodule N of M has δ-ample supplement in M if every submodule L such that $M = N + L$ contains a δ-supplement of N in M. A module M is called (amply, resp.) δ-supplemented if every submodule of M has a (an ample, resp.) δ -supplement. This type modules is used to characterize δ -semiperfect and δ -perfect rings introduced and discussed in [16]. In [16], a projective module P is called a projective δ -cover of a module M if there exists an epimorphism $f: P \longrightarrow M$ with $\text{Ker}(f) \ll_{\delta} M$, and an R-module M is called δ - semiperfect if, for every submodule N of M, there exists a decomposition $M = A \oplus B$ such that A is a projective module with $A \leq N$ and $B \cap N \ll_{\delta} M$ (see [11]). A ring is called δ -perfect (or δ -semiperfect, resp.) if every R-module (or every simple R-module, resp.) has a projective δ -cover. For more discussion on δ -small submodules, δ -perfect and δ -semiperfect rings, we refer to $[11]$ and $[16]$.

A submodule N of M is called *cofinite* (in M) if M/N is a finitely generated module. A module M is called *cofinite* δ -*supplemented module* if every cofinite submodule of M has a δ -supplement in M.

By $[3]$, an R-module M is called *cofinitely semiperfect* if every finitely generated factor module of M has a projective cover. Calisici and Pancar gave some properties of semiperfect ring via cofinitely semiperfect modules. In this paper, we will use their techniques to obtain some properties of $\oplus -\cot \delta$ -supplemented modules.

2. \oplus – cof_δ-SUPPLEMENTED MODULES.

Definition 2.1. An R-module M is called $⊕$ -cof_δ-supplemented if every cofinite submodule of M has a δ -supplement that is a direct summand of M.

Clearly, every ⊕-supplemented module is $\oplus -\cot_{\delta}$ -supplemented module. But in general the converse is not true.

Lemma 2.1. Let N and L be submodules of a module M such that $N + L$ has a δ-supplement H in M and $N \cap (H + L)$ has a δ-supplement G in N. Then $H + G$ is a δ -supplement of L in M.

Proof. Let H be a δ -supplement of $N + L$ in M and G be a δ -supplement of $N \cap (H + L)$ in N. Then $M = (N + L) + H$ such that $(N + L) \cap H \ll_{\delta} H$ and $N = [N \cap (H + L)] + G$ such that $(H + L) \cap G \ll_{\delta} G$. Since $(H + G) \cap L \le H \cap (L + G) + G \cap (L + H)$. $H + K$ is a δ -supplement of L in M. $H \cap (L+G) + G \cap (L+H), H+K$ is a δ -supplement of L in M.

Corollary 2.1. Let M_1, M_2 be submodules of M such that $M = M_1 \oplus M_2$. If M₁, M₂ are $\oplus -\cot_{\delta}$ -supplemented modules, then M is also a $\oplus -\cot_{\delta}$ supplemented module.

Proof. Let $L \leq M$ such that M/L is finitely generated. Then $M = M_1 + M_2 + L$ has a δ -supplement 0 in M. We have

$$
M_2/[M_2 \cap (M_1 + L)] \cong (M_1 + M_2 + L)/(M_1 + L) \cong M/(M_1 + L),
$$

so that $M_2 \cap (M_1 + L)$ is a cofinite submodule of M_2 . Since M_2 is $\oplus -\cos f_{\delta}$ supplemented, there exists $H \leq \theta M_2$ such that H is a δ -supplement of $M_2 \cap$ $(M_1 + L)$ in M_2 . By Lemma 2.1, H is a δ -supplement of $M_1 + L$ in M. Similarly, since M_2 is $\oplus -\text{cof}_{\delta}$ -supplemented, there exists $K \leq \theta M_1$ such that K is a δ-supplement of $M_1 \cap (H + L)$ in M_1 . Again applying Lemma 2.1, $H + K$ is a δ-supplement of L in M. Since $K \leq \theta$ M₁ and $H \leq \theta$ M₂, $K + H = K \oplus H$ is a direct summand of M. direct summand of M.

Theorem 2.1. A direct sum \bigoplus i∈I N_i of $\oplus -\textit{cof}_{\delta}$ -supplemented modules N_i is a $\oplus -\cos f_{\delta}$ -supplemented module.

Proof. Let $N = \bigoplus$ i∈I N_i and $L \leqslant N$ such that N/L is finitely generated. Then there exists a finitely generated submodule H of N such that $N = L + H$. There exists a finite subset I' of I such that $H \leq \bigoplus$ $j \in I'$ N_j and so $N = L + \bigoplus$ $j \in I'$ N_j . By Corollary 2.1, \bigoplus $j \in I'$ N_j is a $\oplus -\cot\delta$ -supplemented module. Let $L' = \bigoplus$ $j \in I'$ N_j and so $N = L + L'$.

Note that

$$
N/L = (L + L')/L \cong L'/L \cap L'
$$

so that $L \cap L'$ is a cofinite submodule of L' . Since L' is \bigoplus - cof_δ-supplemented, there exists $H \leq \theta L'$ such that $L' = H + L \cap L'$ and $H \cap L \ll_{\delta} H$. Now $N = L + L' = L + H$ and $H \cap L \ll_{\delta} H$. Hence H is a δ -supplement of L in N and $H \leq \mathcal{F}$ N because $L' \leq \mathcal{F}$ N. and $H \leq \theta N$ because $L' \leq \theta N$.

From this theorem we have the following example:

Example 1. Let $R = \mathbb{Z}$, $M_i = \mathbb{Z}(p^{\infty})$ be the Prüfer p-group for all $i \in \mathbb{N}$. Then M_i are supplemented modules. Let $M = \bigoplus$ i∈N M_i . By Theorem 2.1, M is $a \oplus -\cos\theta$ -supplemented module, but M is not \oplus -supplemented by [11, Example 2.14].

Proposition 2.1. Assume that M is a \oplus – cof_δ-supplemented module. Then every cofinite submodule of the module $M/\delta(M)$ is a direct summand of $M/\delta(M)$.

Proof. Let $N/\delta(M)$ be any cofinite submodule of $M/\delta(M)$. Since $(M/\delta(M))/N/M$ $\delta(M)$ \cong M/N , we have M/N is finitely generated. Then N is a cofinite submodule of M. Since M is a $\oplus -\cos f_{\delta}$ -supplemented module, there exist submodules K and K' of M such that $M = N + K = K \oplus K'$, and $N \cap K \ll_{\delta} K$. Since $N \cap K$ is also δ -small in $M, N \cap K \leq \delta(M)$. Thus $M = N + K$ and $M/\delta(M)=(N + K)/\delta(M) = N/\delta(M) \oplus [(K + \delta(M))/\delta(M)]$. Hence $N/\delta(M)$ is a direct summand of $M/\delta(M)$ a direct summand of $M/\delta(M)$.

Corollary 2.2. Assume that M is $a \oplus -\cot \delta$ -supplemented module. If $\delta(M)$ is a cofinite submodule of M, then $M/\delta(M)$ is a semisimple module.

Let M be a module. A submodule X of M is called *fully invariant* if for every $h \in \text{End}_R(M), h(X) \subseteq X$. The module M is called duo, if every submodule of M is fully invariant.

It is well known that if $M = M_1 \oplus M_2$ is a duo module, then $A = (A \cap M_1) \oplus$ $(A \cap M_2)$ for any submodule A of M.

Proposition 2.2. Assume that M is a \oplus – cof_δ-supplemented duo module and $N \leq M$. Then M/N is a \bigoplus – cof_δ-supplemented module.

Proof. Let $N \leq K \leq M$ with K/N cofinite submodule of M/N . Then $M/K \cong$ $(M/N)/(K/N)$ is finitely generated. Since M is a $\oplus -cof_{\delta}$ -supplemented module, there exist submodules L and L' of M such that $M = K + L = L \oplus L'$, and $K \cap L$ is δ -small in L. Note that $M/N = K/N + (L+N)/N$, by modularity, $K \cap (L+N)=(K \cap L)+N$. Since $K \cap L \ll_{\delta} L$, we have $(K/N) \cap (L+N)/N =$ $((K \cap L) + N)/N \ll_{\delta} (L + N)/N$ by [16, Lemma 1.3 (2)]. This implies that $(L+N)/N$ is a δ -supplement of K/N in M/N . Now $N = (N \cap L) \oplus (N \cap L')$ implies that

$$
(L+N)\cap (L^{'}+N)\leq N+(L+N\cap L+N\cap L^{'})\cap L^{'}.
$$

It follows that $(L+N) \cap (L'+N) \le N$ and $M/N = [(L+N)/N] \oplus [(L'+N)/N]$. Then $(L+N)/N$ is a direct summand of M/N . Consequently, M/N is $\oplus -\cot \delta$ -supplemented. supplemented.

A module M is called distributive if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of M, $N+(K\cap L)=(N+K)\cap(N+L)$ or $N \cap (K + L) = (N \cap K) + (N \cap L)$. A module M is said to have the summand sum property (SSP, for short) if the sum of any two direct summands of M is a direct summand of M . A module M has the summand intersection property $(SIP, for short)$ if the intersection of two direct summands of M is again a direct summand of M.

Theorem 2.2. Let M be $a \oplus -\cos\delta$ -supplemented module and N a submodule of M.

- 1. If for every direct summand K of M, $(N + K)/N$ is a direct summand of M/N, then M/N is a $\oplus -\cot_{\delta}$ -supplemented module.
- 2. If M has the SSP, then every direct summand of M is θ −cof_δ-supplemented.
- 3. If M is a distributive module, then M/N is a $\oplus -\cos f_{\delta}$ supplemented module.

Proof. (1). Any cofinite submodule of M/N has the form T/N where T is a cofinite submodule of M and $N \leq T$. Since M is a $\oplus -\cot s$ -supplemented module, there exists a direct summand D of M such that $M = D \oplus D' = T + D$ and $D \cap T \ll_{\delta} D$ for some submodule D' of M. Now $M/N = T/N + (D + N)/N$. By hypothesis, $(D + N)/N$ is a direct summand of M/N . Note that (T/N) $[(D+N)/N] = (T \cap (D+N))/N = (N + (D \cap T))/N$. Since $D \cap T \ll_{\delta} D$, $(N+(D\cap T))/N \ll_{\delta} (D+N)/N$. This implies that $(D+N)/N$ is a δ -supplement of T/N in M/N , which is a direct summand.

(2). Let N_1 be a direct summand of M. Then $M = N_1 \oplus N'$ for some $N' \leq M$. We want to show that M/N' is $\oplus -cof_{\delta}$ -supplemented. In fact, assume that L is a direct summand of M. Since M has the SSP, $L+N'$ is a direct summand of M. Let $M = (L+N')\oplus K$ for some $K \leqslant M$. Then $M/N' = (L+N')/N'\oplus (K+N')/N'$. Therefore M/N' is a $\oplus -\cot\delta$ -supplemented module by (1).

(3). Let D be a direct summand of M. Then $M = D \oplus D'$ for some submodule D' of M. Now $M/N = [(D+N)/N] + [(D'+N)/N]$ and $N = N + (D \cap D') =$ $(N+D) \cap (N+D')$ by distributivity of M. This implies that $M/N = [(D+D) \cap (N+D')]$ $N/N \oplus [(D'+N)/N]$. By (1), M/N is a $\oplus -\frac{cof_{\delta}}{s}$ -supplemented module. \Box

Lemma 2.2 ([12], Corollary 18). Let M be a duo module. Then M has the SIP and the SSP.

As a result of Theorems 2.2 and Lemma 2.2, we obtain the following result:

Corollary 2.3. Let M be $a \oplus -\cot \delta$ -supplemented duo module. Then every direct summand of M is $\oplus -\cot_{\delta}$ -supplemented.

A module M is called δ -small if it can be embedded as a δ -small submodule of some module. It is clear that:

- 1. Every small module is a δ -small module.
- 2. Any nonzero nonsingular injective semisimple module is a δ -small module, but not a small module.

Proposition 2.3. M is a δ -small module if and only if M is δ -small in $E(M)$.

Proof. Suppose M is a δ -small submodule of a module N. Then M is δ -small in $E(N)$ by [16, Lemma 2.1]. Since $E(M)$ is a direct summand of $E(N)$, M is a δ -small in $E(M)$ by [16, Lemma 1.5]. The converse is clear. \Box

Let M, N be R -modules. We denote

$$
\overline{\delta(M)} = \bigcap \{ \mathrm{Ker}(g) : g \in \mathrm{Hom}(M,N), N \ll_{\delta} E(N) \}.
$$

Clearly, in case $\overline{\delta(M)} = M$, the class

$$
\bigcap \{ \mathrm{Ker}(g) : g \in \mathrm{Hom}(M,N), N \ll_{\delta} E(N) \}
$$

is closed under homomorphic images.

Lemma 2.3.

- 1. Let M be a module with $\overline{\delta(M)} = M$. If N is a δ -small module with $N \leq M$, then $N \ll_{\delta} M$.
- 2. Let $B \leq A \leq M$. If A is a direct summand of M and $A/B \ll_{\delta} M/B$ then $A = B$.

Proof. (1). Let $M = N + K$ with M/K singular. Since $N/(N \cap K)$ is a homomorphic image of N, it is a δ -small module. Since $N/(N \cap K)$ is a homomorphic image of M, we have $\overline{\delta(N/(N \cap K))} = N/(N \cap K)$. Hence $N \cap K = N$ and so $K = M$.

(2). Let $B \leq A \leq M$ and $M = A \oplus A'$ for some submodule A' of M. Then $M/B = A/B + (A' + B)/B$ and $(M/B)/((A' + B)/B) \cong M/(A' + B)$. Since $A/B \ll_{\delta} M/B$, we have two cases:

Case (i): Assume that $A' + B \leq_{e} M$. Then $M = A' + B$. By modularity, we have $A = A \cap M = A \cap (A' + B) = B + (A \cap A') = B.$

Case (ii): Assume that $A' + B$ is not essential in M. Then there exits a submodule X of M such that $(A'+B) \oplus X \leq_e M$. This implies that $M = (A'+B) \oplus X$,
 $A = A \cap (B + A' + X) = B \cap (A + A' + X) = B \cap M = B$ $A = A \cap (B + A' + X) = B \cap (A + A' + X) = B \cap M = B.$

M is said to satisfy (D3) if M_1 and M_2 are direct summands of M with $M =$ $M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

Theorem 2.3. Let M be a module.

- 1. Assume that M is a $\oplus -\cot_{\delta}$ -supplemented module satisfying (D3). Then every cofinite direct summand of M is $\oplus -\cos f_{\delta}$ -supplemented.
- 2. Assume that M satisfies $(D3)$. Let K and N be cofinite direct summands of M such that $\overline{\delta(M/(N \cap K))} = M/(N \cap K)$. If M/N is $a \oplus -\cos f_{\delta}$ supplemented module then $(N + K)/N$ is a direct summand of M/N .
- 3. Assume that M satisfies (D3) with $\overline{\delta(M)} = M$. If M is a $\oplus -\cos f_{\delta}$ supplemented module then M has the SSP on cofinite direct summands.

Proof. (1). Let N be a cofinite direct summand of M. Then $M = N \oplus N'$ for some submodule N of M. Let K be a cofinite submodule of N. Then K is a cofinite submodule of M. Since M is $\oplus -\frac{cof_{\delta}}{su}$ -supplemented, there exist submodules L, L' of M such that $M = K + L = L \oplus L'$ and $K \cap L \ll_{\delta} L$. This implies that $N = K + (N \cap L)$. By (D_3) , $N \cap L$ is a direct summand of M and so is a direct summand of N. By [16, Lemma 1.3], we have $K \cap (N \cap L) = K \cap L \ll_{\delta} N \cap L$.

(2). Since $(K + N)/N$ is a cofinite submodule of M/N and M/N is a \oplus − cof_{δ} -supplemented module, there exist submodules N_1, N_2 such that $M/N =$ $N_1/N \oplus N_2/N = (K + N)/N + N_2/N$ and $[(K + N)/N] \cap (N_2/N) = (N + (K \cap$ $(N_2)/N \ll_{\delta} N_2/N$. This implies that $N = N_1 \cap N_2$ and $M = N_1 + N_2 = K + N_2$. Note that $(N + (K \cap N_2))/N$ is a δ -small module by definition. We consider the monomorphism $f : ((K \cap N_2) + N_1)/N_1 \rightarrow ((K \cap N_2) + N)/N$ defined by $f(x+N_1) = x + N$ for all $x \in K \cap N_2$. Thus $((K \cap N_2) + N_1)/N_1$ is a δ -small module. Then $((K \cap N_2) + N_1)/N_1 \cong (K \cap N_2)/(K \cap N)$ is a δ -small module. Hence $(K \cap N_2)/(K \cap N) \ll_{\delta} M/(N \cap K)$ by Lemma 2.3(1). Since N_2 is a direct summand of M and M satisfies (D3), $(K \cap N_2)$ is a direct summand of M. We have $K \cap N_2 = K \cap N$. Hence $(N + K)/N$ is a direct summand of M/N .

(3). Let N and K be cofinite direct summands of M . Then

$$
\overline{\delta(M/(N\cap K))} = M/(N\cap K).
$$

By (1), M/N is a \oplus – $\cot \delta$ -supplemented module, then $(N+K)/N$ is a cofinite direct summand of M/N by (2). Clearly $N + K$ is a direct summand of M. \Box

Clearly, $SIP \Rightarrow (D3)$. On the other hand, by [10, Lemma 2.6], every module satisfying (D3) with the *SSP* has the *SIP*.

Lemma 2.4. Assume that M satisfies $(D3)$. If M has the SSP on cofinite direct summands then M has the SIP on cofinite direct summands.

Proof. Assume that M satisfies $(D3)$ and M has the SSP on cofinite direct summands of M. Let N and K be cofinite direct summands of M. Then M/N and M/K are finitely generated and so $M/(N+K)$ is also finitely generated. Since M has the SSP on cofinite direct summands of M, then $N + K$ is also a direct summand of M. Let $M = (N + K) \oplus L$ for some submodule L of M. Note that $M/(N+L)$ and $M/(K+L)$ are finitely generated. Hence $N+L$ and $K + L$ are cofinite direct summands of M because M has the SSP. Since $M = (N + L) + (K + L)$ and M satisfies (D3), then $(N + L) \cap (K + L)$ is a direct summand of M. Let $M = [(N + L) \cap (K + L)] \oplus X$ for some submodule X of M. Since $M/(N \cap K)$ is finitely generated and $N \cap (K + L) \le N \cap K$, then $M = (N \cap K) \oplus L \oplus X$. $M = (N \cap K) \oplus L \oplus X.$

Proposition 2.4. (1) Assume that M satisfies (D3) with $\delta(M) = M$. If M is a \oplus – cof_δ-supplemented module then M has the SIP on cofinite direct summands. (2) Assume that M is $a \oplus -\cos f_{\delta}$ -supplemented module with $\delta(M) = M$. Then M satisfies $(D3)$ if and only if M has the SIP on cofinite direct summands.

Proof. (1). It follows from Lemma 2.4 and Theorem 2.3. (2). It is clear from definition of (D3) and (1).

 \Box

3. COFINITELY δ -SEMIPERFECT MODULES

Definition 3.1. An R-module M is called *cofinitely* δ *-semiperfect* if every finitely generated factor module of M has a projective δ -cover.

Clearly, δ -semiperfect modules and cofinitely semiperfect modules are cofinitely δ-semiperfect. It is well-known that the δ-semiperfect module is not semiperfect. Thus a cofinitely δ -semiperfect module is not cofinitely semiperfect in general, see [16, Example 4.1].

Proposition 3.1. Let M be a module and U a fully invariant submodule of M. If M is a cofinitely δ -semiperfect module, then M/U is a cofinitely δ -semiperfect module. If, moreover, U is a cofinite direct summand of M, then U is also a cofinitely δ-semiperfect module.

Proof. Suppose that M is cofinitely δ -semiperfect and L/U is a cofinite submodule of M/U . Thus $M/L \cong (M/U)/(L/U)$ is a finitely generated module and hence L is a cofinite submodule of M. Since M is a cofinitely δ -semiperfect module, there exist submodules N and N' of M such that $M = N \oplus N'$, $M = N + L$ and $N \cap L \ll_{\delta} N$. It is easy to see that $(N + U)/U$ is a δ -supplement of L/U in M/U and $U = (U \cap N) \oplus (N \cap N')$. Thus we have $(N + U) \cap (N' + U) = U$ and $((N+U)/U) \oplus ((N'+U)/U) = M/U$ and hence $(N+U)/U$ is a direct summand of M/U . So M/U is a cofinitely δ -semiperfect module.

Now suppose that U is a cofinite direct summand of M . Then there exists a finitely generated submodule U' of M such that $M = U \oplus U'$. Let V be a cofinite submodule of U. Note that $M/V = (U \oplus U')/V \cong U/V \oplus U'$ is finitely generated so that V is a cofinite submodule of M. Since M is a cofinitely δ -semiperfect module, there exist submodules K and K' of M such that $M = K \oplus K'$, $M = V + K$ and $V \cap K \ll_{\delta} K$. Thus $U = V + (U \cap K)$. But $U = (U \cap K) \oplus (U \cap K')$ and hence $U \cap K$ is a direct summand of U. Moreover, $V \cap (U \cap K) = V \cap K \ll_{\delta} K$. Then $V \cap (U \cap K) \ll_{\delta} U \cap K$ by [16, Lemma 1.3]. Therefore $U \cap K$ is a δ -supplement of V in U and it is a direct summand of U. Thus U is a cofinitely δ -semiperfect module. П

Theorem 3.1. Let M be a projective module. Then M is cofinitely δ -semiperfect if and only if M is $\oplus -\cot_{\delta}$ -supplemented.

Proof. (\Rightarrow) Let N be a cofinite submodule of M. Then M/N is finitely generated and so, by assumption, M/N has a projective δ -cover. Then by [16, Lemma 2.4], there are $M_1, M_2 \leqslant M$ such that $M = M_1 \oplus M_2$ with $M_1 \leqslant N$ and $M_2 \cap N \ll_{\delta} M$. Hence by [16, Lemma 1.3], $M_2 \cap N \ll_{\delta} M_2$ or M_2 is a δ -supplement of N in M.

 (\Leftarrow) Let M/N be a finitely generated factor module of M. Then N is cofinite. Since M is $\oplus -\cos f_{\delta}$ -supplemented, there exist submodules K and K' of M such that $M = N + K$, $N \cap K \ll_{\delta} K$, and $M = K \oplus K'$. Clearly, K is projective. For the inclusion homomorphism $i : K \to M$ and the canonical epimorphism $\sigma : M \to M/N$, Ker $\sigma i = N \cap K \ll_{\delta} K$. $\sigma : M \to M/N$, Ker $\sigma i = N \cap K \ll_{\delta} K$.

Corollary 3.1. Let M be a projective module. Then the following conditions are equivalent:

- (1) M is cofinitely δ -semiperfect.
- (2) M is \oplus cof_δ-supplemented.
- (3) For each cofinite submodule N of M, there is a decomposition $M = K \oplus K'$ such that $K \leq N$ and $K' \cap N \ll_{\delta} K'$.

Proof. (1) \Leftrightarrow (2). By Theorem 3.1.

 $(2) \Rightarrow (3)$. Let N be a cofinite submodule of M. By hypothesis, there exist submodules K and K' of M such that $M = N + K'$, $K' \cap N \ll_{\delta} K'$ and $M =$ $K \oplus K'$. Since M is projective, there exists a submodule $K'' \leq N$ such that $M = K'' \oplus K'$ by [15, 4.14]. $(3) \Rightarrow (2)$ is clear. \Box

Theorem 3.2. Let M be a projective module with $\delta(M) \ll_{\delta} M$. Then the following conditions are equivalent:

- 1. M is a cofinitely δ -semiperfect module.
- 2. For every cofinite submodule N of M, M/N has a projective δ -cover.
- 3. Every cofinite submodule N of M can be written as $N = A \oplus S$ with $A \leq_{e} M$ and $S \ll_{\delta} M$.
- 4. M is $a \oplus -\cos\theta$ -supplemented module.

5. Every cofinite submodule of the module $M/\delta(M)$ is a direct summand of $M/\delta(M)$ and each cofinite direct summand of $M/\delta(M)$ lifts to a direct summand of M.

Proof. By Corollary 3.1.

Proposition 3.2. Every homomorphic image of a cofinitely δ -semiperfect module is cofinitely δ -semiperfect.

Proof. Let $f : M \to N$ be a homomorphism and M be a cofinitely δ -semiperfect module. Let $f(M)/U$ be a finitely generated factor module of $f(M)$. Consider the epimorphism $\psi : M \to f(M)/U$, defined by $m \mapsto f(m) + U$. Since M is cofinitely δ -semiperfect, by the natural isomorphism $M/f^{-1}(U) \cong f(M)/U$, we have $f(M)/U$ has a projective δ -cover. Hence $f(M)$ is cofinitely δ -semiperfect. \Box

Corollary 3.2. Every factor module of a cofinitely δ -semiperfect module is cofinitely δ-semiperfect.

A module N is called a δ -small cover of a module M if there exists an epimorphism $f: N \to M$ with $\text{Ker } f \ll_{\delta} N$.

Proposition 3.3. Every δ -small cover of a cofinitely δ -semiperfect module is $cofinitely \delta-semiperfect.$

Proof. Let N be a δ -small cover of a module M and $f : N \to M$ be an epimorphism with Kerf $\ll_{\delta} N$. For a finitely generated factor module N/U of N, the homomorphism $\varphi : N/U \to M/f(U)$, defined by $n + U \mapsto f(n) + f(U)$ is epic. We have Ker $\varphi = (U + \text{Kerf})/U$. Let $L/U \le N/U$ such that $(U +$ $Kerf)/U + L/U = N/U$ and $(N/U)/(L/U)$ is singular. Then $L + Ker f = N$ and $N/L \cong (N/U)/(L/U)$ is singular. This implies $L = N$ since Ker $f \ll_{\delta} N$. Hence Ker $\varphi \ll_{\delta} N/U$. Note that

$$
M/f(U) = \varphi(N/U) \cong (N/U)/((U + \text{Ker} f)/U)
$$

so that $M/f(U)$ is finitely generated. Because M is cofinitely δ -semiperfect, $M/f(U)$ has a projective δ -cover $\pi : P \to M/f(U)$. Since P is projective, there is a homomorphism $h : P \to N/U$ such that the diagram

is commutative; i.e., we have $\pi = \varphi h$. Then $N/U = h(P) + \text{Ker}\varphi$.

Since Ker $\varphi \ll_{\delta} N/U$, there exists a semi-simple projective submodule Y of Ker φ such that $N/U = h(P) \oplus Y$. Let $\phi : P \oplus Y \longrightarrow N/U$, defined by $\phi(p, y) =$ $h(p) + y$. Then ϕ is an epimorphism and Ker $\phi = \text{Ker}h \oplus 0$. Because Kerh \leq

 \Box

Kerπ \ll_{δ} *P*, Kerh \ll_{δ} *P*. This implies Kerh ⊕ 0 \ll_{δ} *P* ⊕ *Y*. Thus *P* ⊕ *Y* is a projective δ-cover of *N*/*U*. projective δ -cover of N/U .

Corollary 3.3. If $N \ll_{\delta} M$ and M/N is cofinitely δ -semiperfect, then M is $cofinitely \delta-semiperfect.$

Corollary 3.4. Let π : $P \longrightarrow M$ be a projective δ -cover of M. Then the following conditions are equivalent:

- (1) M is cofinitely δ -semiperfect.
- (2) P is cofinitely δ -semiperfect
- (3) P is cofinitely δ -supplemented.

Proof. (1) \Leftrightarrow (2) By Proposition 3.3 and Proposition 3.2. $(2) \Leftrightarrow (3)$ By Theorem 3.1.

Theorem 3.3. A direct sum $\bigoplus P_i$ of projective modules P_i is a cofinitely δ - ${i \in I}$
semiperfect module if and only if every summand P_i is cofinitely δ -semiperfect.

 \Box

Proof. (\Rightarrow). Let $P_i(i \in I)$ be a collection of projective R-modules and $P = \bigoplus_{i \in I} P_i$ i∈I be a cofinitely δ -semiperfect module. Since $P_j \cong P/(\Box \bigoplus$ $i\in I\backslash\{j\}$ $P_i)$ for all $j \in I$, by

Corollary 3.2, every P_i is cofinitely δ -semiperfect.

 (\Leftarrow) . Since every P_i is projective and cofinitely δ -semiperfect, by Theorem 3.1, every P_i is ⊕−cof_δ-supplemented and so P is ⊕−cof_δ-supplemented by Theorem 2.1. Thus P is cofinitely δ -semiperfect by Theorem 3.1. 2.1. Thus P is cofinitely δ -semiperfect by Theorem 3.1.

Let M and N be R -modules. N is said to be *(finitely)* M -generated if there is an epimorphism $f : M^{(\Lambda)} \longrightarrow N$ for some (finite) index set Λ .

Lemma 3.1. Let M be a projective module. If M is δ -semiperfect then every Mgenerated module is cofinitely δ -semiperfect. The converse holds if M is finitely generated.

Proof. If M is δ -semiperfect, then M is cofinitely δ -semiperfect by [16, Lemma 2.4]. By Theorems 3.1 and 3.3, for every index set Λ , $M^{(\Lambda)}$ is cofinitely δ semiperfect. If M is a finitely generated and cofinitely δ -semiperfect module, then it is δ -semiperfect. \Box

Theorem 3.4. For a ring R , the following conditions are equivalent:

- (1) R is δ -semiperfect.
- (2) Every free R-module is cofinitely δ -semiperfect.
- (3) Every finitely generated free R-module is δ -semiperfect.

Proof. (1) \Rightarrow (2). Assume that R is δ -semiperfect, R is cofinitely δ -semiperfect by Lemma 3.1. Thus every free R -module is cofinitely δ -semiperfect by Theorem 3.3.

 $(2) \Rightarrow (3)$ is clear.

(3) \Rightarrow (1). By hypothesis, R is cofinitely δ -semiperfect. Thus we have (1) by mma 3.1. Lemma 3.1.

ACKNOWLEDGMENTS

The authors would like to thank the referee for giving them many useful suggestions which help to modify the presentation of this article.

REFERENCES

- [1] R. Alizade, G. Bilhan and P. F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra 29 (2001), 2389-2405.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- [3] H. Calisici and A. Pancar, *Cofinitely semiperfect modules*, Siberian Math. J. 46 (2005), 359-363.
- [4] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
- [5] D. Keskin, *On lifting modules*, Comm. Algebra **28** (2000), 3427-3440.
[6] D. Keskin, A. Harmanci and P. F. Smith, *On* \oplus -*supplemented module*
- D. Keskin, A. Harmanci and P. F. Smith, $On \oplus \text{-supplemented modules}$, Acta Math. Hungar. 83 (1999), 161-169.
- [7] D. Keskin, P. F. Smith and W. Xue, Rings whose modules are ⊕-supplemented, Journal of Algebra 218 (1999), 470-487.
- [8] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, London Math. Soc. LNS 147, Cambridge Univ. Press, Cambridge, 1990.
- [9] M. T. Kosan, ⊕-Cofinitely Supplemented Modules, Commun. Fac. Sci. Univ. Ank. Series A1 53 (2004), 21-32.
- [10] M. T. Koşan, The Lifting ondition and fully invariant submodules, East-West J. of Mathematics **7** (2005), 99-106.
- [11] M. T. Koşan, δ –lifting and δ –supplemented modules, Algebra Colloquium 14 (2007), 53-60.
- [12] A. Leghwel, T. Koşan, N. Agayev and A. Harmancı, Duo modules and Duo rings, Far East J. Math. 20 (2006), 341-346.
- [13] M. Rayar, On small and cosmall modules, Acta Math. Hung. 39 (1982), 389-392.
- [14] P. F. Smith, Finitely generated supplemented modules are amply supplemented, The Arab. J. For Sci. Eng. 25 (2000), 69-79.
- [15] R. Wisbauer, Foundations of module and ring theory; Gordon and Breach: Reading, 1991.
- [16] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium 7 (2000), 305-318.

Department of Mathematics, Hue University, Hue City, Vietnam E-mail address: lvthuyethue@gmail.com

Department of Mathematics, GEBZE INSTITUTE OF TECHNOLOGY, 41400 , C¸ ayirova - Gebze, Kocaeli- Turkey

E-mail address: mtkosan@gyte.edu.tr

Department of Mathematics, Danang University, Danang, Vietnam

E-mail address: tc quynh@ud.edu.vn