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INEQUALITIES FOR DIRICHLET SERIES

WITH POSITIVE TERMS

P. CERONE AND S. S. DRAGOMIR

Abstract. Some fundamental inequalities for Dirichlet series with positive
terms by utilising certain classical results due to Hölder, �Ceby�sev, Pólya-Szegö,
Grüss and others are established.

1. Introduction

In the following we consider Dirichlet series of the form

ψ (s) :=

∞∑

n=1

an
ns
,(1.1)

with s > 1 and an assumed to be nonnegative for n � 1.
In this class of series one can find the celebrated Zeta function defined by

ζ (s) :=

∞∑

n=1

1

ns
, s > 1(1.2)

and the Dirichlet Lambda function given by

λ (s) :=

∞∑

n=0

1

(2n+ 1)s
=
(
1− 2−s

)
ζ (s)(1.3)

for s > 1.

If Λ (n) is the von Mangoldt function

Λ (n) :=




log p, n = pk (p prime, k � 1)

0, otherwise,
(1.4)

then [2, p. 3]

−ζ
′ (s)

ζ (s)
=

∞∑

n=2

Λ (n)

ns
, s > 1.(1.5)
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If d (n) is the number of divisors of n, we have [2, p. 35] the following relationships
with the Zeta function

ζ2 (s) =

∞∑

n=1

d (n)

ns
,(1.6)

ζ3 (s)

ζ (2s)
=

∞∑

n=1

d
(
n2

)

ns
,(1.7)

ζ4 (s)

ζ (2s)
=

∞∑

n=1

d2 (n)

ns
,(1.8)

and [2, p. 36]

ζ2 (s)

ζ (2s)
=

∞∑

n=1

2ω(n)

ns
, s > 1,(1.9)

where ω (n) is the number of distinct prime factors of n.

Further, if ϕ (n) denotes Euler’s function defined by

ϕ (n) := n
∏

p|n

(
1− 1

p

)
,

where the product is over all prime divisors of n, then

ζ (s− 1)
ζ (s)

=
∞∑

n=1

ϕ (n)

ns
, s > 2.(1.10)

For a ∈ R we define
σa (n) :=

∑

d|n
da

and in particular σ (n) = σ1 (n) =
∑
d|n d is the sum of the divisors of n, then

these are related to the Zeta function [2, p. 37] by

ζ (s) ζ (s− a) =
∞∑

n=1

σa (n)

ns
, s > 1, s > a+ 1;

and

ζ (s) ζ (s− a) ζ (s− b) ζ (s− a− b)
ζ (2s− a− b) =

∞∑

n=1

σa (n) σb (n)

ns
,

where s > max {1, a+ 1, b+ 1, a+ b+ 1} .
One can prove in various ways that such functions ψ defined in (1.1) are

monotonic non-increasing on (1,∞) and logarithmic convex. This means that
the function logψ is convex or, alternatively

ψ (us1 + vs2) � [ψ (s1)]u [ψ (s2)]v(1.11)

for any s1, s2 > 1 and u, v � 0 with u+ v = 1.
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Since, by the geometric mean — arithmetic mean inequality we have

[ψ (s1)]
u [ψ (s2)]

v � uψ (s1) + vψ (s2)

for s1, s2 > 1 and u, v � 1, u + v = 1, we can also state that these classes of
functions ψ are also convex on (1,∞) .
The main aim of this paper is to establish a number of fundamental inequalities

for ψ that can be stated by utilising some classical inequalities for nonnegative real
numbers such as Hölder’s inequality, �Ceby�sev’s inequality, Polyá-Szegö’s reverse
of Schwarz’s inequality, Grüss’ inequality and others.

2. Inequalities for Dirichlet series with positive terms

We consider the Dirichlet series given by (1.1). We assume that the series
which defines ψ is uniformly convergent for s > 1. Then we have the following
result.

Proposition 2.1. Let α,β > 1 with α−1 + β−1 = 1. If s, p, q ∈ R are such that
s+ p+ q > 1, s+ pα > 1 and s+ qβ > 1, then

ψ (s+ p+ q) � [ψ (s+ pα)]
1
α [ψ (s+ qβ)]

1
β .(2.1)

Proof. We use Hölder’s inequality to state that

ψ (s+ p+ q) =

∞∑

n=1

an
ns
· 1
np
· 1
nq

�
[ ∞∑

n=1

an
ns
·
(
1

np

)α] 1
α
[ ∞∑

n=1

an
ns
·
(
1

nq

)β] 1
β

=

( ∞∑

n=1

an
ns+αp

) 1
α
( ∞∑

n=1

an
ns+βq

) 1
β

= [ψ (s+ pα)]
1
α [ψ (s+ qβ)]

1
β ,

which proves the desired inequality (2.1).

Remark 2.1. We observe that for α = β = 2, one obtains from (2.1) the follow-
ing inequality

ψ2 (s+ p+ q) � ψ (s+ 2p)ψ (s+ 2q) ,(2.2)

provided the real numbers s, p, q satisfy the conditions s+p+q, s+2p, s+2q > 1. In
its turn, the inequality (2.2), and in fact (2.1), is a generalisation of the following
result

ψ2 (s+ 1) � ψ (s)ψ (s+ 2) ,(2.3)

provided s > 1.
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We remark that for ψ = ζ one obtains from (2.3) that

ζ (s+ 1)

ζ (s)
� ζ (s+ 2)

ζ (s+ 1)
for s > 1.(2.4)

This inequality is an improvement of a recent result due to Laforgia and Natalini
[3] who proved that

ζ (s+ 1)

ζ (s)
� s+ 1

s
· ζ (s+ 2)
ζ (s+ 1)

for s > 1.

Their arguments make use of an integral representation of the Zeta function and
Turán-type inequalities.

It should be further noted that, if s = 2n, n ∈ N, then (2.4) shows that

ζ (2n+ 1) �
√
ζ (2n) ζ (2n+ 2),

demonstrating that the value of Zeta at the odd integers is bounded above by
the geometric mean of its immediate even Zeta values.

We also have the following result.

Proposition 2.2. If a > 1, b, c ∈ R such that bc � (�) 0 and a + b, a + c,
a+ b+ c > 1, then

ψ (a)ψ (a+ b+ c) � (�)ψ (a+ b)ψ (a+ c) .(2.5)

Proof. Consider the sequence αn := nb, n � 1, b ∈ R. It is clear that αn is
increasing if b > 0 and decreasing if b < 0. Therefore, the sequences 1

nb
, 1nc are

synchronous if bc � 0 and asynchronous when bc < 0.
Utilising �Ceby�sev’s inequality for synchronous (asynchronous) sequences, we

have

ψ (a)ψ (a+ b+ c) =

∞∑

n=1

an
na
·
∞∑

n=1

an
na
· 1
nb
· 1
nc

� (�)
∞∑

n=1

an
na
· 1
nb
·
∞∑

n=1

an
na
· 1
nc

= ψ (a+ b)ψ (a+ c) ,

and the inequality (2.5) is proved.

Remark 2.2. Utilising Inequality (2.5) (for c = b) we can state the following
result

ψ2 (a+ b) � ψ (a)ψ (a+ 2b) ,(2.6)

provided the real numbers a, b are such that a, a+ b, a+ 2b > 1. We also remark
that the choice b = 1 will produce Inequality (2.3).

From a different perspective, we can state the following result as well.
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Proposition 2.3. Assume that m � 2 and k1, . . . , km > 1
2 . Then

∑

1�i<j�m
ψ (ki + kj) �

m− 1
2

m∑

j=1

ψ (2kj) .(2.7)

Proof. By Schwarz’s inequality

m

m∑

j=1

z2j �




m∑

j=1

zj



2

we have

m

m∑

j=1

1

n2kj
�




m∑

j=1

1

nkj



2

=

m∑

i=1

m∑

j=1

1

nki+kj
(2.8)

=

m∑

j=1

1

n2kj
+ 2

∑

1�i<j�m

1

nki+kj

giving

m− 1
2

m∑

j=1

1

n2kj
�

∑

1�i<j�m

1

nki+kj
.(2.9)

If we multiply (2.9) by an > 0 and sum up over n � 1, we get
m− 1
2

m∑

j=1

( ∞∑

n=1

an

n2kj

)
�

∑

1�i<j�m

( ∞∑

n=1

an

nki+kj

)

which gives the desired inequality (2.7).

Remark 2.3. If a, b, c > 1 then from (2.7) applied for m = 3 we deduce the
following inequality

ψ

(
a+ b

2

)
+ ψ

(
b+ c

2

)
+ ψ

(
c+ a

2

)
� ψ (a) + ψ (b) + ψ (c) .(2.10)

In particular, the choice a = x, b = x+ 2, c = x+ 4 will produces the inequality

ψ (x+ 1) + ψ (x+ 3) � ψ (x) + ψ (x+ 4) ,(2.11)

for each x > 1.

If more information about the size of kj , j = 1, . . . ,m is known, then the
following reverse of (2.7) may be stated as well.

Proposition 2.4. Assume that m � 2 and 1
2 < γ � k1, . . . , km � Γ <∞. Then

(2.12) (0 �) m− 1
2

m∑

j=1

ψ (2kj)−
∑

1�i<j�m
ψ (ki + kj)

� m2

8
[ψ (2Γ) + ψ (2γ)− 2ψ (γ + Γ)] .
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Proof. We use the following Grüss type inequality

1

m

m∑

j=1

z2j −


 1

m

m∑

j=1

zj



2

� 1

4
(Γ− γ)2 ,

provided γ � zj � Γ for each j ∈ {1, . . . ,m} .
Since γ � kj � Γ for j ∈ {1, . . . , m} , then

1

m

m∑

j=1

1

n2kj
− 1

m2




m∑

j=1

1

nkj



2

� 1

4

(
1

nγ
− 1

nΓ

)2

=
1

4

(
1

n2γ
+

1

n2Γ
− 2

nγ+Γ

)

for n � 1, which gives

1

m

m∑

j=1

1

n2kj
− 1

m2




m∑

j=1

1

n2kj
+ 2

∑

1�i<j�m

1

nki+kj




� 1

4

(
1

n2γ
+

1

n2Γ
− 2

nγ+Γ

)

for n � 1. Multiplying with m2 and rearranging the terms, we get
m− 1
2

m∑

j=1

1

n2kj
−

∑

1�i<j�m

1

nki+kj
� m2

8

(
1

n2γ
+

1

n2Γ
− 2

nγ+Γ

)
(2.13)

for any n � 1.
Finally, if we multiply (2.13) by an � 0 and sum up over n � 1, we get the

desired inequality (2.12).

Remark 2.4. If R > a, b, c > r > 1 then from (2.12) applied for m = 3 we
deduce the following result

0 � ψ (a) + ψ (b) + ψ (c)− ψ
(
a+ b

2

)
− ψ

(
b+ c

2

)
− ψ

(
c+ a

2

)
(2.14)

� 9

4
·
�
ψ (r) + ψ (R)

2
− ψ

(
r +R

2

)]
.

We have the following result as well.

Proposition 2.5. Assume that m � 1 and 1
2 < γ � k1, . . . , km � Γ <∞. Then

m∑

j=1

[ψ (kj + γ) + ψ (kj + Γ)] �
m∑

j=1

ψ (2kj) +mψ (γ + Γ) .(2.15)

Proof. We have (
1

nγ
− 1

nkj

)(
1

nkj
− 1

nΓ

)
� 0
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for each j ∈ {1, . . . , m} and n � 1. This is clearly equivalent to
1

nγ+kj
+

1

nΓ+kj
� 1

n2kj
+

1

nγ+Γ

for j ∈ {1, . . . ,m} and n � 1.
Summing up over j from 1 to m, we get

m∑

j=1

1

nγ+kj
+

m∑

j=1

1

nΓ+kj
�

m∑

j=1

1

n2kj
+

m

nγ+Γ
(2.16)

for each n � 1.
Multiplying (2.16) with an � 0 and summing up over n � 1, we deduce the

desired inequality (2.15).

We have the following result as well.

Proposition 2.6. Assume that m � 1 and 1
2 < γ � k1, . . . , km � Γ <∞. Then

(
m− 1

2

) m∑

j=1

ψ (2kj) �
1

2

m∑

j=1

�
ψ (2kj − γ + Γ) + ψ (2kj − Γ+ γ)

2

]

+
∑

1�i<j�m

�
ψ (ki + kj − Γ+ γ) + ψ (ki + kj − γ + Γ)

2

]

+
∑

1�i<j�m
ψ (ki + kj) .

(2.17)

Proof. We apply Polyá-Szegö’s inequality

(1 �)
m

∑m
j=1 z

2
j(∑m

j=1 zj

)2 �
(Γ+ γ)2

4γΓ
,(2.18)

provided γ � zj � Γ, j ∈ {1, . . . , m} .
Observe that

1

nΓ
� 1

nkj
� 1

nγ
, j = 1, . . . , m.

Hence, by (2.18) we have

m

m∑

j=1

1

n2kj
�
(
1
nγ +

1
nΓ

)2

4 1nγ ·
1
nΓ




m∑

j=1

1

nkj



2

=
1

4

(
nΓ−γ + nγ−Γ + 2

)


m∑

j=1

1

n2kj
+ 2

∑

1�i<j�m

1

nki+kj
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=
1

4



m∑

j=1

1

n2kj−Γ+γ
+

m∑

j=1

1

n2kj−γ+Γ
+ 2

m∑

j=1

1

n2kj




+
1

2


 ∑

1�i<j�m

1

nki+kj−Γ+γ
+

∑

1�i<j�m

1

nki+kj−γ+Γ
+ 2

∑

1�i<j�m

1

nki+kj


 ,

which is clearly equivalent to

(
m− 1

2

) m∑

j=1

1

n2kj
�1
4



m∑

j=1

1

n2kj−Γ+γ
+

m∑

j=1

1

n2kj−γ+Γ


(2.19)

+
1

2


 ∑

1�i<j�m

1

nki+kj−Γ+γ
+

∑

1�i<j�m

1

nki+kj−γ+Γ




+
∑

1�i<j�m

1

nki+kj

for any n � 1.
Multiplying (2.19) by an � 0 and summing up over n, we deduce the desired

result (2.17).

3. Representations as double sums

Consider the sequences

I±k (p, s) :=
1

2

k∑

n=1

k∑

m=1

(np ±mp)2

nsms
anam, k � 1(3.1)

where an � 0, n � 1 and s, p ∈ R. We have the following representation.

Proposition 3.1. If s > 1 and p ∈ R such that s− 1 > 2p and s− 1 > p, then

I± (p, s) := lim
k→∞

I±k (p, s) = ψ (s− 2p)ψ (s)± [ψ (s− p)]
2 (� 0) .(3.2)

Proof. We observe that

I±k (p, s) =
1

2

k∑

n=1

k∑

m=1

(
n2p ± 2npmp +m2p

nsms

)
anam

=
1

2

[
k∑

n=1

an
ns−2p

k∑

m=1

am
ms

± 2
k∑

n=1

an
ns−p

k∑

m=1

am
ms−p

+
k∑

n=1

an
ns

k∑

m=1

am
ms−2p

]
.
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Since, for s > 1, s− 1 > 2p, s− 1 > p,

lim
k→∞

k∑

n=1

an
ns−2p

= ψ (s− 2p) , lim
k→∞

k∑

n=1

an
ns−p

= ψ (s− p) , lim
k→∞

k∑

n=1

an
ns
= ψ (s) ,

limk→∞ I
±
k (p, s) exists and the relation (3.2) is proved.

Remark 3.1. We observe that for s > 1 and p = −1, one has

ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2 = 1

2
lim
k→∞

k∑

n=1

k∑

m=1

(n−m)2

ns+2ms+2
anam � 0.(3.3)

We have the following result.

Proposition 3.2. Let α, β > 1 with α−1+β−1 = 1. If s, p, q, r ∈ R are such that
s+ q+r > 1, s+ q+r−1 > 2p, s+ q+r−1 > p and s+αq > 1, s+αq−1 > 2p,
s+ αq − 1 > p, s+ βr > 1, s+ βr − 1 > 2p, s+ βr − 1 > p, then

I± (p, s+ q + r) �
[
I± (p, s+ αq)

] 1
α
[
I± (p, s+ βr)

] 1
β .(3.4)

Proof. Using the representation (3.1), (3.2) and Hölder’s inequality for double
sums, we have

I± (p, s+ q + r) =
1

2
lim
k→∞

k∑

n=1

k∑

m=1

(np ±mp)2

ns+q+rms+q+r
anam

=
1

2
lim
k→∞

k∑

n=1

k∑

m=1

1

nq ·mq
· 1

nr ·mr
· (n

p ±mp)2

ns ·ms
anam

�
[
1

2
lim
k→∞

k∑

n=1

k∑

m=1

(np ±mp)2

ns ·ms anam

(
1

nq ·mq

)α] 1
α

×
[
1

2
lim
k→∞

k∑

n=1

k∑

m=1

(np ±mp)2

ns ·ms
anam

(
1

nr ·mr

)β] 1
β

=
[
I± (p, s+ αq)

] 1
α
[
I± (p, s+ βr)

] 1
β

and Inequality (3.4) follows.

Remark 3.2. In particular, if we define

I (s) := ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2 for s > 1,(3.5)

then we have

I (s+ q + r) � [I (s+ αq)]
1
α [I (s+ βr)]

1
β ,(3.6)

where α,β > 1, 1α +
1
β = 1 and s, q, r ∈ R with s+ q + r, s+ αq and s+ βr > 1.

We have the following log-convexity property.
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Proposition 3.3. Let p ∈ R and s0 := max {1, p+ 1, 2p+ 1} . Then the function
s 	→ I±k (p, s) is log-convex on the interval (s0,+∞) .

Proof. Let s1, s2 ∈ (s0,+∞) . Then for α,β > 0, α+β = 1 by Hölder’s inequality
for double sums we have

I±k (p,αs1 + βs2) =
1

2

k∑

n=1

k∑

m=1

(np ±mp)2

nαs1+βs2mαs1+βs2
anam

=
1

2

k∑

n=1

k∑

m=1

(np ±mp)2 anam

(nm)αs1 (nm)βs2

�
[
1

2

k∑

n=1

k∑

m=1

(np ±mp)2 anam

[(nm)αs1]1/α

]α

×


1
2

k∑

n=1

k∑

m=1

(np ±mp)2 anam[
(nm)βs2

]1/β




β

=
[
I±k (p, s1)

]α [
I±k (p, s2)

]β

for any k � 1.
Taking the limit over k → ∞, and using the representation (3.2) we deduce

the desired result.

Corollary 3.1. The function I (s) := ψ (s+ 2)ψ (s) − [ψ (s+ 1)]2 is log-convex
on (1,∞) .

For given s, p ∈ R and k ∈ N, k � 1, we consider the sequence

∆k (s, p) :=
1

2

k∑

n=1

k∑

m=1

(an − am)
(
1

ms
− 1

ns

)
1

npmp
,

where an is also a sequence of real numbers.

The following representation result may be stated:

Proposition 3.4. If an � 0, n ∈ N, n � 1 and p > 1, s ∈ R such that s+ p > 1,
then we have the representation

lim
k→∞

∆k (s, p) = ψ (p) ζ (s+ p)− ζ (p)ψ (s+ p) ,(3.7)

where ζ is the Zeta function, i.e.,

ζ (p) :=
∞∑

n=1

1

np
, p > 1.

Proof. Observe that, by Korkine’s identity
m∑

i=1

pi

m∑

i=1

piaibi −
m∑

i=1

piai

m∑

i=1

pibi =
1

2

m∑

i=1

n∑

j=1

pipj (ai − aj) (bi − bj) ,
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we have

k∑

n=1

1

np

k∑

n=1

1

np
· an ·

1

ns
−

k∑

n=1

1

np
· an ·

k∑

n=1

1

np
· 1
ns

=
1

2

m∑

i=1

n∑

j=1

1

npmp
(an − am)

(
1

ns
− 1

ms

)

= −∆k (s, p)

for each k � 1 and p, s as above.
Since

lim
k→∞

k∑

n=1

1

np
= ζ (p) and lim

k→∞

k∑

n=1

an
np
= ψ (p) ,

limk→∞∆k (p, s) exists and the identity (3.7) holds true.

Corollary 3.2. If the sequence (an)n∈N is decreasing (increasing) then

ζ (s+ p)ψ (p) � (�) ζ (p)ψ (s+ p)(3.8)

for p > 1 and s ∈ R such that s+ p > 1.

The following result concerning some bounds for the quantity

ζ (s+ p)ψ (p)− ζ (p)ψ (s+ p)

in the case when the sequences (an)n∈N satisfy some Lipschitz type conditions
may be stated as well.

Proposition 3.5. Assume that for (an)n∈N there exist constants γ,Γ ∈ R such
that

γ � an − am
n−m � Γ(3.9)

for any n,m ∈ N, n �= m. Then for p > 2 and s ∈ R such that, p+ s > 2
γ [ζ (p− 1) ζ (p+ s)− ζ (p) ζ (p+ s− 1)](3.10)

� ζ (s+ p)ψ (p)− ζ (p)ψ (s+ p)
� Γ [ζ (p− 1) ζ (p+ s)− ζ (p) ζ (p+ s− 1)] .

Proof. With the assumption (3.9) we have

(3.11)
1

2
γ

k∑

n=1

k∑

m=1

(n−m)
(
1

ms
− 1

ns

)
1

npmp

� ∆k (p, s) �
1

2
Γ

k∑

n=1

k∑

m=1

(n−m)
(
1

ms
− 1

ns

)
1

npmp

for each k ∈ N, k � 1.
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Further, utilising Korkine’s identity produces

Ik :=
1

2

k∑

n=1

k∑

m=1

(n−m)
(
1

ms
− 1

ns

)
1

npmp

=
k∑

n=1

n

np
·
k∑

n=1

1

ns
· 1
np
−

k∑

n=1

1

np

k∑

n=1

1

np
· n · 1

ns

=

k∑

n=1

1

np−1

k∑

n=1

1

np+s
−

k∑

n=1

1

np

k∑

n=1

1

np+s−1

for each k ∈ N, k � 1 and so, for p > 2, s ∈ R with p+ s, p+ s− 1 > 1, we have
lim
k→∞

Ik = ζ (p− 1) ζ (p+ s)− ζ (p) ζ (p+ s− 1) .

Taking the limit in (3.11) we deduce the desired inequality (3.10).

The following simple result also holds.

Proposition 3.6. Let an � 0, n ∈ N, n � 1 and s > 1.
(i) If an is increasing and

M := sup
k∈N
k�1

{
1

k

k∑

n=1

an

}
,

then

ψ (s) �M · ζ (s) .(3.12)

(ii) If an is decreasing and

m := inf
k∈N
k�1

{
1

k

k∑

n=1

an

}

then

ψ (s) � m · ζ (s) .(3.13)

Proof. Utilising Korkine’s identity we have for each k � 1 that

k

k∑

n=1

an
ns
−

k∑

n=1

an

k∑

n=1

1

ns
=
1

2

k∑

n=1

k∑

m=1

(an − am)
(
1

ns
− 1

ms

)
.(3.14)

(i) If an is increasing, then by (3.14) we deduce that

k∑

n=1

an
ns
�

(
1

k

k∑

n=1

an

)
k∑

n=1

1

ns
�M

k∑

n=1

1

ns
.(3.15)

Taking the limit over k →∞ in (3.15) we deduce (3.12).
(ii) is treated similarly and we omit the details.
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4. Inequalities in terms of the first and second derivatives

We consider the sequence

Sk (s) :=
1

2

k∑

n=1

k∑

m=1

(lnn− lnm)2

nsms
anam, s > 1,(4.1)

where k ∈ N, k � 1. The following representation holds.

Proposition 4.1. Consider the Dirichlet series ψ (s) :=
∑∞
n=1

an
ns with an � 0

and assume it to be uniformly convergent on (1,∞). Then

S (s) := lim
k→∞

Sk (s) = ψ
′′ (s)ψ (s)−

[
ψ′ (s)

]2
(� 0) ,(4.2)

for s ∈ (1,∞) .

Proof. It is obvious that

ψ′ (s) = −
∞∑

n=1

an
ns
· lnn

and

ψ′′ (s) =
∞∑

n=1

an
ns
· (lnn)2

for s > 1.

Now, observe that for k � 1

Sk (s) =
1

2

k∑

n=1

k∑

m=1

[
(lnn)2 + (lnm)2 − 2 lnn · lnm

nsms

]
anam

=

k∑

n=1

an
ns
· (lnn)2

k∑

n=1

an
ns
−

( ∞∑

n=1

an
ns
· lnn

)2
,

and since

lim
k→∞

k∑

n=1

an
ns
· (lnn)2 = ψ′′ (s) and lim

k→∞

∞∑

n=1

an
ns
· lnn = ψ′ (s) ,

(4.2) holds true.

We have the following result concerning the convexity property of S (s).

Proposition 4.2. The function S (s) = ψ′′ (s)ψ (s) − [ψ′ (s)]2 is log-convex on
(1,∞) .

The proof follows by making use of the representation (4.2) and utilising the
Hölder inequality for double sums. The details are omitted.
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Theorem 4.1. The inequality

(0 �)ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2 � ψ (s− 1)ψ (s+ 1)− [ψ (s)]2 ,(4.3)

holds true for any s > 2.

Proof. We use the following inequality between the geometric mean and the log-
arithmic mean of two positive numbers a, b, a �= b,

b− a
ln b− ln a >

√
ab,

to state that

lnn− lnm
n−m � 1√

nm
for n,m � 1, n �= m.

This obviously implies that

(lnn− lnm)2 � (n−m)2

nm

for each n,m � 1 and then from (4.1)

Sk (s) �
1

2

k∑

n=1

k∑

m=1

(n−m)2

ns+1ms+1
anam(4.4)

=

k∑

n=1

1

ns−1
an ·

k∑

n=1

an
ns+1

−
(

k∑

n=1

an
ns

)2
,

for each k ∈ N, k � 1.
Since

lim
k→∞

k∑

n=1

an
ns
= ψ (s)

for s > 1, by (4.4) we deduce the desired inequality (4.3).

In [4], F. Topsøe obtained among other results, the following inequality for the
logarithmic function

|lnx| � 1

2

∣∣∣∣x−
1

x

∣∣∣∣ for x > 0.(4.5)

We can state the following result based on (4.5).

Theorem 4.2. We have the inequality

(0 �)ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2 � 1

2

[
ψ (s+ 2)ψ (s− 2)− [ψ (s)]2

]
,(4.6)

for any s > 3.
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Proof. Making use of (4.5), we have

(lnn− lnm)2 � 1

2

( n
m
− m
n

)2
for n,m ∈ N, n �= m;n,m � 1

which together with (4.1) give

Sk (s) �
1

4

k∑

n=1

k∑

m=1

n4 − 2n2m2 +m4

ns+2ms+2
anam

=
1

2




k∑

n=1

an
ns−2

k∑

n=1

an
ns+2

−
(

k∑

n=1

an
ns

)2
 .

This implies the desired inequality (4.6).

Remark 4.1. From (4.3) and (4.6), a computer comparison of the bounds

B1 (s) := ψ (s− 1)ψ (s+ 1)− [ψ (s)]2 , s > 2

and

B2 (s) :=
1

2

[
ψ (s+ 2)ψ (s− 2)− [ψ (s)]2

]
, s > 3

for s > 3 and ψ = ζ (Zeta function) shows that

B2 (s) � B1 (s) for all s > 3.

However, we do not have an analytic proof for this inequality.

We have the following result as well.

Theorem 4.3. The inequality

(0 �)ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2 � ψ′′ (s)ψ (s)−
[
ψ′ (s)

]2
(4.7)

holds true for any s > 1.

Proof. We use the following elementary inequality for the logarithmic mean

b− a
ln b− ln a �

a+ b

2
, a, b > 0 (a �= b)

which implies

lnn− lnm
n−m � 2

n+m
for n,m ∈ N, n �= m;n,m � 1.

This obviously implies

(lnn− lnm)2 � 4 (n−m)2

(n+m)2
for any n,m ∈ N, n,m � 1.
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Consequently, with the above notation, we have from (4.1)

Sk (s) � 2
k∑

n=1

k∑

m=1

(n−m)2

(n+m)2
· 1

nsms
anam(4.8)

= 2
k∑

n=1

k∑

m=1

(n−m)2
(
1
n +

1
m

)2 ·
1

ns+2ms+2
anam

� 1

2

k∑

n=1

k∑

m=1

(n−m)2

ns+2ms+2
· anam

=: Lk (s) ,

where we have used the fact that 1n +
1
m � 2 for n,m � 1.

Observe that

Lk (s) =
1

2

k∑

n=1

k∑

m=1

n2 − 2nm+m2

ns+2ms+2
anam(4.9)

=

k∑

n=1

an
ns+2

k∑

n=1

an
ns
−

(
k∑

n=1

an
ns+1

)2

=Mk (s) .

Then, using (4.8) and (4.9) we deduce

Sk (s) �Mk (s) for k � 1 and s > 1.(4.10)

Further, since

lim
k→∞

Sk (s) = ψ
′′ (s)ψ (s)−

[
ψ′ (s)

]2

and

lim
k→∞

Mk (s) = ψ (s+ 2)ψ (s)− [ψ (s+ 1)]2

uniformly for s > 1, (4.7) follows from (4.10).

Remark 4.2. Theorem 4.3 provides a lower bound for ψ′′ (s)ψ (s) − [ψ′ (s)]2
whereas Theorems 4.1 and 4.2 give upper bounds.

5. Other inequalities for the first derivative

In this section we establish some bounds for the quantity

Q (s) :=
ζ ′ (s)

ζ (s)
− ψ

′ (s)

ψ (s)
, s > 1(5.1)

provided ψ is defined by the Dirichlet series

ψ (s) :=

∞∑

n=1

an
ns
, s > 1(5.2)

and ζ is the Zeta function.
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We observe that if (an)n∈N is nonnegative and monotonic nondecreasing (non-
increasing) then (see [1])

ζ ′ (s)

ζ (s)
� (�) ψ

′ (s)

ψ (s)
for s > 1.(5.3)

We have the following result as well.

Theorem 5.1. If (an)n∈N is nonnegative and nondecreasing, then we have the
reverse inequality

(0 �) ζ
′ (s)

ζ (s)
− ψ

′ (s)

ψ (s)
�
ψ
(
s− 1

2

)
ζ
(
s+ 1

2

)
− ψ

(
s+ 1

2

)
ζ
(
s− 1

2

)

ζ (s)ψ (s)
,(5.4)

for any s > 3
2 .

Proof. Consider the sequence

Qk (s) :=

∑k
n=1

an lnn
ns ·

∑k
n=1

1
ns −

∑k
n=1

an
ns ·

∑k
n=1

lnn
ns

ζ (s)ψ (s)

for k � 1. We observe that for s > 1 the sequence Qn (s) is uniformly convergent
and

lim
n→∞

Qn (s) = Q (s) =
ζ ′ (s)

ζ (s)
− ψ

′ (s)

ψ (s)
, s > 1.

Utilising Korkine’s identity, we also have

Qk (s) =
1

2
·
∑k
n=1

∑k
m=1 (an − am) (lnn− lnm) 1

nsms∑k
n=1

1
ns ·

∑k
n=1

an
ns

(5.5)

for k � 1, s > 1.
Utilising the fact that (an) is monotonic nondecreasing and the elementary

inequality

lnn− lnm
n−m � 1√

nm
, n,m � 1, n �= m,

we get

Qk (s) �
1

2
·

∑k
n=1

∑k
m=1 (an − am) (n−m) 1

ns+
1
2ms+1

2∑k
n=1

1
ns ·

∑k
n=1

an
ns

(5.6)

=

∑k
n=1

an·n
ns+

1
2
·
∑k
n=1

1

ns+
1
2
−

∑k
n=1

an

ns+
1
2
·
∑k
n=1

n

ns+
1
2∑k

n=1
1
ns ·

∑k
n=1

an
ns

=: Vk (s) , s > 1.

Since

lim
k→∞

Vk (s) =
ψ
(
s− 1

2

)
ζ
(
s+ 1

2

)
− ψ

(
s+ 1

2

)
ζ
(
s− 1

2

)

ζ (s)ψ (s)

for s > 3
2 , we deduce by (5.6) the desired result (5.4).
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The following upper bound for Q (s) , s > 1, can be established as well.

Theorem 5.2. With the assumptions of Theorem 5.1, we have

(0 �) ζ
′ (s)

ζ (s)
− ψ

′ (s)

ψ (s)
� 1

2
·
�
ψ (s− 1) ζ (s+ 1)− ψ (s+ 1) ζ (s− 1)

ζ (s)ψ (s)

]
(5.7)

for any s > 2.

Proof. From Inequality (4.9) we have

lnn− lnm
n−m � n+m

2nm
, for any n,m � 1, n �= m.

Therefore (5.5) implies that

Qk (s) �
1

4
·
∑k
n=1

∑k
m=1 (an − am) (n−m) n+m

ns+1ms+1∑k
n=1

1
ns ·

∑k
n=1

an
ns

(5.8)

=
1

2
·
∑k
n=1

an·n2
ns+1

·
∑k
n=1

1
ns+1

−
∑k
n=1

an
ns+1

·
∑k
n=1

n2

ns+1∑k
n=1

1
ns ·

∑k
n=1

an
ns

=: Wk (s) , s > 1.

Since

lim
k→∞

Wk (s) =
1

2
· ψ (s− 1) ζ (s+ 1)− ψ (s+ 1) ζ (s− 1)

ζ (s)ψ (s)

for s > 1, inequality (5.8) implies the desired result (5.7).

Finally, we have the following refinement of the inequality (5.3).

Theorem 5.3. With the assumptions of Theorem 5.1, we have the inequality

0 � ζ (s+ 1)

ζ (s)
− ψ (s+ 1)

ψ (s)
� ζ ′ (s)

ζ (s)
− ψ

′ (s)

ψ (s)
,(5.9)

for s > 1.

Proof. Utilising the inequality

lnn− lnm
n−m � 2

n+m
, for n,m ∈ N, n �= m, n,m � 1,

we have

Qk (s) �
1

2
·
∑k
n=1

∑k
m=1 (an − am) (n−m) · 2

n+m ·
1

nsms

∑k
n=1

1
ns ·

∑k
n=1

an
ns

(5.10)

� 1

2
·
∑k
n=1

∑k
m=1 (an − am) (n−m) · 1

ns+1ms+1∑k
n=1

1
ns ·

∑k
n=1

an
ns

= Zk (s)

since for n,m > 1,

2

n+m
=

2

nm
(
1
n +

1
m

) � 1

nm
.
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Observe that

Zk (s) =

∑k
n=1

an·n
ns+1

·
∑k
n=1

1
ns+1

−
∑k
n=1

an
ns+1

·
∑k
n=1

n
ns+1∑k

n=1
1
ns ·

∑k
n=1

an
ns

=

∑k
n=1

an
ns ·

∑k
n=1

1
ns+1

−
∑k
n=1

an
ns+1

·
∑k
n=1

n
ns+1∑k

n=1
1
ns ·

∑k
n=1

an
ns

for k � 1, and

lim
k→∞

Zk (s) =
ζ (s+ 1)ψ (s)− ψ (s+ 1) ζ (s)

ψ (s) ζ (s)

=
ζ (s+ 1)

ζ (s)
− ψ (s+ 1)

ψ (s)
.

Hence by (5.10) we deduce the desired result (5.9).

Remark 5.1. Inequalities (5.4), (5.7) and (5.9) are obviously equivalent to

(0 �)ζ ′ (s)ψ (s)− ψ′ (s) ζ (s)(5.11)

� ψ
(
s− 1

2

)
ζ

(
s+

1

2

)
− ψ

(
s+

1

2

)
ζ

(
s− 1

2

)
, s >

3

2

(0 �)ζ ′ (s)ψ (s)− ψ′ (s) ζ (s)(5.12)

� 1

2
[ψ (s− 1) ζ (s+ 1)− ψ (s+ 1) ζ (s− 1)] , s > 2

and

(0 �)ζ (s+ 1)ψ (s)− ψ (s+ 1) ζ (s)(5.13)

� ζ ′ (s)ψ (s)− ψ′ (s) ζ (s) , s > 1,

respectively.

Now, consider ψ (s) :=
∑∞
n=1

lnn
ns , s > 1. We observe that this Dirichlet se-

ries satisfies the assumptions of Theorem 5.1. Further, ψ (s) = −ζ ′ (s) , s > 1.
Therefore, by (5.11), (5.12) and (5.13) we have the inequalities

(0 �)ζ ′′ (s) ζ (s)−
[
ζ ′ (s)

]2
(5.14)

� ζ ′
(
s+

1

2

)
ζ

(
s− 1

2

)
− ζ ′

(
s− 1

2

)
ζ

(
s+

1

2

)
, s >

3

2

(0 �)ζ ′′ (s) ζ (s)−
[
ζ ′ (s)

]2
(5.15)

� 1

2

[
ζ ′ (s+ 1) ζ (s− 1)− ζ ′ (s− 1) ζ (s+ 1)

]
, s > 2

and

(0 �)ζ ′ (s+ 1) ζ (s)− ζ (s+ 1) ζ ′ (s)(5.16)

� ζ ′′ (s) ζ (s)−
[
ζ ′ (s)

]2
, s > 2,

respectively.
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