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LIPSCHITZ ESTIMATES FOR MULTILINEAR
LITTLEWOOD-PALEY OPERATORS
ON HARDY TYPE SPACES

LIU LANZHE

ABSTRACT. In this paper, the boundedness for some multilinear operators
generated by Littlewood-Paley operators and Lipschitz functions on Hardy
and Herz-Hardy spaces is obtained.

1. INTRODUCTION AND RESULTS

In this paper, we will consider a class of multilinear operators related to
Littlewood-Paley operators, whose definitions are as follows.
Let m be a positive integer and A be a function on R"™. We denote
1
Rmi1(Asz,y) = Alw) = D>, —DA(y)(@ — )"
|a|<m
and
1 (64 (64
Qmi1(A;3,y) = Rn(Ai2,y) = D — D Ax)(z —y)*.
la|=m
Fixd > 0,e > 0and p > 1. Let ¥ be a fixed function which satisfies the following
properties:

(1) Jpa(x)dz =0,
(2) |()] < O@+ |zf)~(H179),
(3) [(z+y) —v(@)] < Clyl*(L + |a|)~ "+ when 2[y| < |z];

Denote I'(z) = {(y,t) € R : |z — y| < t} and the characteristic function of
['(x) by Xr(z)- The multilinear Littlewood-Paley operators are defined by

st = ([ IEA(f)(w)IQ%y/Z,

1/2
SAf)(@) = [/ /F(x) !FtA(f)(%y)\foff]
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and 1/2
e dyd
o)) = [ [ (i) 1 OenrGi|
where
m+1(A; T,
FAD@) = [ B ) )y
m+1(A; T,
FAD @) = [ IR ity - 2

and oy (z) = t™"T9(x/t) for t > 0. The variants of g;Z‘, S£ and g} are defined

by
o 1/2
e = ([T O
1/2
SAU)(a) = [ /] |ﬁtA<f><m,y>|foff] ,
and
t e dydt V2
7)) = [ [ =) |FtA<f><m,y>|2tn+1] ,
where
@ = [ DS e ) fo)dy
and
PN ) = [ TR - o p(s

Set Fi(f)(y) = f *¢(y). We also define
00 1/2
wn@ = ([T1rn@ee)

1/2
Sy = ( [, R )

- 1/2
gu(f)(f)Z(/ / - (5o=) |Ft<f><y>|2fi’ff) ,

which are the Littlewood-Paley operators (see [14]).

and

Note that for m = 0 and § = 0, g;g, S;Z‘ and g;‘ are just the commutator
of Littlewood-Paley operators (see [1], [9]), while for m > 0 they are nontrivial
generalizations of the commutators. It is well known that multilinear operators
are of great interest in harmonic analysis and have been widely studied by many
authors when A has derivatives of order m in BMO(R™) (see [3-6]). In [2] and
[15], the authors obtain the boundedness of multilinear singular integral operators



LIPSCHITZ ESTIMATES FOR MULTILINEAR LITTLEWOOD-PALEY OPERATORS 55

generated by singular integrals and Lipschitz functions. The main purpose of this
paper is to discuss the boundedness properties of the multilinear Littlewood-Paley
operators on Hardy and Herz-Hardy spaces.

Let us introduce some more definitions (see [7], [11], [12], [13]). Throughout
this paper, M(f) denotes the Hardy-Littlewood maximal function of f, @ de-
notes a cube in R™ with sides parallel to the axes. Denote the Hardy spaces by
HP(R™). It is well known that HP(R")(0 < p < 1) has the atomic decomposition
characterization (see [14]). The Lipschitz space Lipg(R™) is the space of functions
f such that

I fllzips = sup  |f(x+h) = f(@)|/|n)° < oo,
z,h € R"
h#0

where 8 > 0 (see [13]).
De fhition 1.1. Let 0 < p, ¢ < o0, a € R, By, = {z € R" : |z| < 2¥} and

Cr = By \ Bi—1,k € Z. Denote xp=xc, for k € Z and xo=xB,, where xg is the
characteristic function of a set E.

(1) The homogeneous Herz space is defined by
KgP(RY) = {f € L, (R"\{0}) : || f| gow < o0},
where
o] 1/p
[1£1l zor = [ > 2’mp||f><k||’zq] :
k=—o0
(2) The nonhomogeneous Herz space is defined by
KgP(R") = {f € Lj,(R") : || fl| gg» < oo},

where
o

1/p
£ o = [Z 25| fel Dy + ||f><o||iq] :

k=1
De fnition 1.2. Let a € R, 0 < p,q < o0.
(1) The homogeneous Herz type Hardy space is defined by
HKgP(R") = {f € S'(R") : G(f) € KgP(R")},
and
1 llasr = G g
(2) The nonhomogeneous Herz type Hardy space is defined by
HEJP(R") ={f € §'(R") : G(f) € Kg'"(R")},
and

U rer = G lxgr;

where G(f) is the grand maximal function of f.

The Herz type Hardy spaces have the atomic decomposition characterization.
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De fnition 1.3. Let « € R, 1 < ¢ < oo. A function a(z) on R" is called a
central («, g)-atom (or a central (a, g)-atom of restrict type) if

1) Suppa C B(0,r) for some r > 0 (or for some r > 1),

2) lallze < B(0,r)[~*/™,

3) [a(z)xVdz =0 for |y| < [a —n(1—1/q)].
Lemma 1.1 (see [12]). Let 0 <p< o0, 1 <g< oo and o >n(l—1/q). A tem-
perate distribution f belongs to HKg"P(R™)(or HKZ"P(R™)) if and only if there
exist central (o, q)-atoms (or central (o, q)-atoms of restrict type) a; supported
on Bj = B(0,27) and constants \;, > [AjIP < oo such that f =372 Ajaj(or
f=2>220Nja;) in the S'(R™) sense, and

1/p

1l grgcor Corllf Il zrcgr) ~ | D 1A17
i

Now we can state our results as follows.

Theorem 1.1. Let0 < < 1,0< 6 <n—pF, max(n/(n+06),n/(n+e)) <p<1
and 1/p—1/q = (6 + B)/n. If D*A € Lipg(R"™) for |a| = m, then g;’?, S;;‘ and
g/‘j are all bounded from HP(R™) to LI(R™).

Theorem 1.2. Let 0 < § < min(l,e), 0 < d <n—p. If D*A € Lipg(R") for
|a| = m, then f)z‘;}, S{Z‘ and gf} are all bounded from H™ "B (R™) to L™ ("0 (R™).
Theorem 1.3. Let 0 < § < min(l,e), 0 < § < n— . If D*A € Lipg(R")
for |a| = m, then 91‘2, S;;‘ and gl‘? are all bounded from H™+P)(R™) to weak
Theorem 1.4. Let 0 < <1, 0<d0<n—0,0<p<oo,1<q,qp < o,

1/g1—1/q2 = (6+5)/n andn(l—-1/q1) < a < min(n(1—1/q1)+8,n(1-1/q1)+e).
If D*A € Lipg(R"™) for |a| = m, then 91‘2, S;Z‘ and gf are all bounded from

HEKgP(R") to KgP(R™).
Remark 1. Theorem 1.4 also holds for the nonhomogeneous Herz type Hardy
space.

2. SOME LEMMAS

For proving the above results we need the following two lemmas.

Lemma 2.1 (see [5]). Let A be a function on R™ and D*A € LY(R"™) for|a| =m
and some ¢ > n. Then

1/q
1
rattinn <6l 2 (o, oraem)
) z,y

|a|=m

where Q(z,y) is the cube centered at x and having side length 5v/n|z — y|.
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Lemma 2.2. Let 0 < 3 < 1,1 <p<n/(6+8), 1/g=1/p— 0+ 8)/n and
D*A € Lipg(R") for |a| =m. Then g£, S;Z‘ and gl‘? are all bounded from LP(R™)
to LY(R™).

Proof. By the Minkowski inequality and the condition on 1,

> tdt o
/0 (t+ |z — 2|)2nt2-20 = Clz — 2|7V,

For gﬁ we have

cx oo 1/2
O el AN IR [ B

|z —y|™ t
. 00 —2n+25 1/2
R |z —y[™ o (1+ |z —y|/t)2nt1-0) ¢

|Rm+1(Aa z, y)|

< c |;l? _y|m+n76

1f (y)ldy.

ForS , noting that 2t+ |y —z| > 2t+ |z — 2| — |z —y| > t+|xr — 2| when |z —y| <

and
e tdt
=Clx — —2n+4-26
|, TR = Ol
we obtain
S ()(x)
R A 22n+2—25 Ltl-n 1/2
< ¢ TR (Aiz,2) / / dydt | dz
Rn |l — z|™ e—yl<t ( (2t + |y — 2|)2n 220
¢ of WOl (= "
S e el o EF o=
< of MRz,

Rn |z — z|mtn—0

For gl‘j‘, noting that

tn/ t h il < OM 1
w\i7 ) @i arer S M are e
1

< C )
(t+ @ — 2|)2nT2-20
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we obtain
gn(f)(x)
< C |f ()| Rimy1(A; 7, 2)]
EEE
/ / e t " dydt\ ' d
n (1 + |y — Z|/t)2n+2726 t+ |;l? — y| YR 2
< C |f(z )||Rm+1(A x, z)|
Rn |z — z|™
1/2
oo ‘ np dy
. e tdt d
[/0 ( /R (t+ |z — y!) (t+y - z!)2”+“5) ] ’
‘f(z)’ /oo tdt 1/2
Rn \:C—z’m| +1( x Z)| A (t+]x—z])2"+2—25 A
< C |f(z)||Rm+1(A;va)|dz-
Rn |m — Z|m+n76
Thus, the lemma follows from [2]. -

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. For simplicity, we denote T4 = gﬁ or S;Z‘ or gl‘?. It suffices
to show that there exists a constant C' > 0 such that for every HP-atom a,

174 (@)llzs < C.

Let a be a HP-atom, that is a is supported on a cube Q = Q(zo,7), ||a||rL~ <
Q|77 and [ a(x)zYdx = 0 for |y| < [n(1/p — 1)]. We write

| @) - ( /| o /| ) l>2>[TA<a><x>]qu:z+u.

For I, taking 1 < p; < n/(6 + B) and ¢; such that 1/p; —1/q1 = (6 + B3)/n, by
Holder’s inequality and the (LP', L9')-boundedness of T4 (see Lemma 2.2), we
see that

I < CITa)l[]a 12Q1" Y4 < Cllal|fy QI < C.
To obtain the estimate of 11, we need to estimate T4(a)(x) for = € (2Q)°. Let
Q@ = 5v/nQ and
A(z) = A(z) — ) ~ (DC‘A)

|lal=m

Then R, (A;x,y) = Ryn(A; z,y) and D*A(y) = D*A(y) — (D*A)q.
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For g;;‘, by the vanishing moment of a, we write

a(y)dy

[z —y[™ |z — zo[™

FA(a)(z) = /n [@bt(fc —y)Rm(A;2,9)  u(x — z0) Ren(A; 2, 20)

-y ai Yi(z —y)(z — y)O‘D“A(y)a(y)dy'

oo ' JRn |z —y[™

By Lemma 2.1 and the inequality
1 8 8
[b(x) = bg| < 10l o 10l |Zips |z — yI”dy < ||bl|Lips (|2 — 20| +7)7,

we get

[Bon(As2,9)| < D [ID*AllLipg (J& = y| + )" .

|ae|=m
By the formula (see [5])

_ _ 1 -
Ron(A;2,y) = R(A;2,m0) = D = Ry (D" A; 20, ) (@ — 20)7,
Inl<m "

noting that |z —y| ~ |z — x¢| for y € Q and z € R™ \ Q, similarly as in the proof
of Lemma 2.2, we obtain

A aal ly — o ly — @0l
g’g[)(a)(x) < c Z ||D A||L’Lpﬁ /Rn[|£l?—(130|n+16’6 + |(E—;l?0|n+5767ﬁ

|al=m

|y — o™ A" ly — xol°
2 oS s el

Inl<m

< C Y |IDYAllip,

|al=m

[|Q|ﬁ/n+1—1/p |Q|5/n+1—1/p ]
+ .

|£l? _ (E0|"_5 |£l? _ m0|n+6—5—ﬁ

For Sﬁ, by the vanishing moment of a, we write

|z — z|™ |z — zo|™

FtA(a)(m,y) _ / [¢t(y - Z)Rm(A; x, Z) . '([)t(y — fEO)Rm(A;QE,;Eo)] ds

— a(z)dz.

a! Jpn |z — z|™

B Z 1 Yi(y — 2)(z — z)O‘DO‘fl(z)
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Similarly as in the proof of Lemma 2.2, we have
A |y — ol ly — ol
) < © 3 10y, |t
a|l=m

|y — x| A ly — o|°
+ 3 T s lewlds

[|Q|ﬁ/n+l—l/p |Q|5/n+1—1/p ]

< C Y |IDYAllip,

- |‘,]j _ x0|n76 |£IT _ x0|n+5767ﬁ
al=m

For gl‘j‘, it holds

N Q B/n+1-1/p Q e/n+1-1/p
@@ <C Y 11D Al [’ | C |

o ‘.% _ xo‘n—ts ’$ _x0’n+6—5—ﬂ
Thus,
<y / T4(a)(2)]"d
=1 2k+1Q\2kQ
q o0
< C Z | D Al| Lip, [2kan(1/p=(n+B)/n) | gkan(1/p—(nte)/n)]
|a|=m k=1

q

< C| Y IID*Allnip, |

|ae|=m
which together with the estimate for I yields the desired result. This finishes the
proof of Theorem 1.1. O

Proof of Theorem 1.2. We only give the proof of the boundedness of g;;‘. The

proofs of the boundedness of S’;Z‘ and g;j‘ are omitted for their similarity to the
first one. It suffices to show that there exists a constant C' > 0 such that for
every H™ ("+8)_atom a supported on Q = Q(zg,r), we have

1135 (@)] /o) < C.
Write

| @@/ - [ /| ot /| ) >2] G @)@y = T+1J

For J, by the equality

Qm+1(4;7,y) = Rp1 (A 2,y) — > i(w —y)*(D"A(z) — D*A(y)),

|al=m
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we have, similarly as in the proof of Lemma 2.2,

gia)(z) < z)+C > / DAz DaA(y)|la(y)ldy,

|z —y[no

laj=m

thus §£ is (LP, L9)-bounded by Lemma 2.1 and [8], where 1 < p < n/(d + 3) and
1/¢q=1/p— (6 + B)/n. We see that

a n/(n—>4) n/((n— n/(n—9o) “n/((n—
T < Cllgh @)D 2 (=90 < ¢la 2D~/ (n-99) < .
To obtain the estimate of JJ, we denote
~ 1 o o
A(J;) :A(J;) - Z J(D A)QQ{L‘ .
|a|=m

Then Qo (4A;z,y) = Qm(A;z,y). For z € (2Q)¢, by the vanishing moment of a
and

Qmir(A2,9) = Bn(Aia,y) — 3 2w —y)"DYA(w),

|a)l=m
we can write
Fa)(@) N
_ Yi(z — y)_ngnA; w,y)a(y)dy
Rn |z -yl ’
o Z a' Q,bt Tz — )’f_fz(’fn)(m _y) a(y)dy
la|=m
[, | ‘,i”f;”,ﬁf”’y) e
3 Y@ —y) (@ —y)* iz —20)(x — 30)*
P al [ ool ]
x D A(z)a(y)dy.

Thus, similarly to the proof of Theorem 1.1, for each z € (2Q)¢ we obtain
[ @ QP
|

.xo‘n—i—l—(s—ﬁ ‘:IZ‘ _ $0’n+€—(5—ﬂ

Gp(a)(@)] < ClRIP™ Y (1D AllLip,

|a|=m
o] Q" Q"
+|D A(fE)| |(]Z‘ — $0|n+176 |£l? — $0|n+€*6 )
so that,
n/(n—6)
JI<C| Y IID*AllLip, 3 k(81 n=8) | gkn(B-2)/(n=0)) < g,
lajl=m k=1
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which together with the estimate for J yields the desired result. This finishes the
proof of Theorem 1.2. O

Proof of Theorem 1.3. We only give the proof for gﬁ. By the equality
1 (0% (0% (63
lo|l=m
as in the proof of Lemma 2.2 we get

e <@ +e Y [ 'DaA |f°;“‘<y>'rf<y>rdy.

|lal=m

From Theorems 1.1, 1.2 and from [8] we obtain

[{z € R": gj(f)(x) > A}
< Hz e R™: g5 (f)(@) > A/2}]

roer: Y [ PEE=TE )0 oy

|al=m

< C(Hf"Hn/(n+ﬁ)/)\)n/(n*5).

This completes the proof of Theorem 1.3. d

Proof of Theorem 1.4. We only give the proof for g;;}‘. Let f € HKJP(R™) and
flx) =372 Ajaj(x) be the atomic decomposition for f as in Lemma 1.1. We

j=—00

write
[e%s) k—3 P

A
g (f )llKap < D0 271 3 lllgd (ag) Xk e
k=—00 j=—o00
0 p

+ Z 257 (" Il (ag)xkl e
k=—o00 j=k—2

For Lo, by the (L%, L%) boundedness of g£ (see Lemma 2.2), we have

o0 o0 p
Ly < €Y 2% [ 3" |)lllagllza
k=—o0 j=k—2
0o 7j+2
< C Z p\j’p( Z Q(k—j)ap>
j=—00 k=—00
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whenever 0 < p < 1. If p > 1, then

o J+2 42 p/p’
Ly < C Z ‘)\j’p( Z Q(kj)ap/Q) < Z 2(kj)ap’/2>

Jj=—00 k=—o00 k=—o00
o0
< C Z ‘)‘j’p < CHinIKgI,p'
j=—o00
For L, similarly as in the proof of Theorem 1.1, we have
|B/n |e/n
A |Bil |Bj]
gw(aj)(:l:') < C < |x|n—5 + |m|n+s—5—ﬁ \aj(y)]dy

< C <2j(ﬁ+ﬂ(1—1/q1)—a)’x’5—n + 2j(5+’n(1—1/q1)—a)‘x’5+ﬁ—n—6>

k — 3. Thus
Cgfka(Q(jfk)(ﬁJrn(l*l/ql)*a) + 2(J*’€)(€+n(1*1/q1)*a))

whenever x € Cf, j <
193 (az)xkl o2 <

and

00 k—3 P
o< ¢y [ 3 l@uhEma-va)-w | oG-bemi-1/m-a)

k=—o0c0 \j=—o00
DI DS (2(j—k)(ﬁ+n(1—1/q1)—a)+2(j—k)(6+'n(1—1/q1)—a)>p

j=—o00 k=j+3
whenever 0 < p < 1. If p > 1, then

no<oy Wy (2(j—k>p<ﬁ+n<1—1/q1)—a)/z+2(j—k)p(a+n(1—1/q1>—a)/2>
j=—o0 k=j+3
< C NP
j=—o00
< CISFIE. ap-
HfHHquP
This finishes the proof of Theorem 1.4. O
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