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EXISTENCE RESULTS FOR INITIAL VALUE PROBLEMS FOR
NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS

IN BANACH SPACES

A. SGHIR

Abstract. Existence results for initial value problems for neutral functional
differential inclusions are given. The results are proved by direct applica-
tions of topological transversality methods based on the degree theory for
χ-Lipschitz multimappings.

1. Introduction

The topological transversality method (see [1 − 3]), which requires the exis-
tence of a priori bounds for solutions, is used to establish existence results for
boundary value problems. Recently this method was applied to initial value
problems for functional differential inclusions. See for example [11, 17, 20]. The
advantage of this method is that it yields simultaneously the existence of a solu-
tion and the maximal interval of existence.

Our aim in this paper is to apply this method to initial value problems for
neutral functional differential inclusions in Banach spaces in order to generalize
some results such that papers of Ntouyas and al [16] and O’Regan and Lee [18]...

Initial value problems for neutral functional differential equations have been
studied by many authors, see for example [8, 10, 12, 16, ..] and references therein.

The paper is organized as follows. In section 2, we present notations and de-
finitions. In section 3, we give a result of existence for initial value problem for
neutral functional differential inclusions, by assuming a priori bounds on solu-
tions and using an argument presented in [16], we give immediately our existence
theorem for initial value problem for neutral functional differential inclusions.
Finally in section 4, we apply our results to a control system governed by an
integro-differential equation.

2. Preliminaries

Let (E, |.|E) be a Banach space. For a fixed r > 0, we define
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C = C ([−r, 0] ;E) to be the Banach space of continuous E-valued functions on
J = [−r, 0] with the usual supremum norm ‖.‖.

For any continuous function x defined on the interval [−r, ω] (ω > 0), and any
t ∈ I = [0, ω] we denote by xt the element of C, defined by

xt(θ) = x(t+ θ), θ ∈ J.

The symbol CC(E) denotes the collection of nonempty compact convex subsets
of E.

Let B be a bounded set in E, the Kuratowski measure of noncompactness of
B, χ(B) (see for example, [5, 15]) is defined as

χ(B) = inf{d > 0 : B has a finite covering of diameter 6 d}.
Now, let K be a convex closed subset of E, Ω ⊂ K an open bounded set for the
relative topology, Ω and ∂Ω denote the closure and the boundary of Ω relative to
K respectively. Let Γ : Ω → CC(K) be a closed and χ-Lipschitz map i.e.

∃k ∈ [0, 1[: ∀B ⊂ Ω χ(Γ(B)) 6 kχ(B).

Assume that the fixed point set, FixΓ = {x ∈ Ω : x ∈ Γ(x)}, has no inter-
section with the boundary ∂Ω. Then, following the works [2, 3], the topological
degree deg(Γ,Ω) can be defined. This topological degree has the following usual
properties:

i)

deg (Γ,Ω) =
{

1 if Γ(Ω) ⊂ Ω
0 if Γ(Ω) ⊂ K\Ω.

ii) If the closed χ-Lipschitz maps Γ0,Γ1 : Ω → CC(K) are homotopic, i.e.
there exists a closed χ-Lipschitz family of maps, H : Ω × [0, 1] → CC(K) such
that

[ ∪
λ∈[0,1]

FixH(., λ)]∩ ∂Ω = ∅ and H(., 0) = Γ0, H(., 1) = Γ1,

then deg(Γ0,Ω) = deg(Γ1,Ω).
iii) If deg(Γ,Ω) 6= 0 then ∅ 6= FixΓ ⊂ Ω.
In the sequel we suppose that E is a separable Banach space.

3. Main results

In this section we examine initial value problems for neutral functional differ-
ential inclusions of the type

P (ϕ)
{

d
dt [x(t) − g(t, xt)] ∈ F (t, xt), t ∈ I
x0 = ϕ, ϕ ∈ C

where g and F satisfy the following assumptions:
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(H1) g : I×C → E is a continuous function and satisfies the following conditions:
i) there exists k1 ∈ [0, 1[ such that for every nonempty bounded set B ⊂ C and

for all t ∈ I,

χ(g(t, B)) 6 k1χ0(B)

where χ (resp. χ0) is the Kuratowski measure of noncompactness in E (resp. C);
ii) for any bounded set B in Cω := C ([−r, ω] ;E), the set

{t 7−→ g(t, xt) : x ∈ B} is equicontinuous in C(I ;E).
(H2) F : I × C → CC(E) satisfies the following conditions:
F1) for every ψ ∈ C, the multimapping F (., ψ) admits a measurable selection.

F1) is satisfied if for example F (., ψ) is measurable for all ψ ∈ C (see [4]);
F2) for almost all t ∈ I, the multimapping F (t, .) is upper semi-continuous i.e.

{ψ ∈ C : F (t, ψ) ⊂ V } is an open subset of C for every open set V ⊂ E;
F3) for every nonempty bounded set B ⊂ C there exists m ∈ L1

+(I) such that,
for all ψ ∈ B and almost all t ∈ I

‖F (t, ψ)‖ := sup{|y|E : y ∈ F (t, ψ)} 6 m(t)h(‖ψ‖)

where h is a continuous nondecreasing function on [0,+∞[ and is positive on
]0,+∞[;
F4) there exists k2 > 0 such that, for every nonempty bounded set B ⊂ C and

all t ∈ I

χ(F (t, B)) 6 k2χ0(B)

where k1 + k2ω < 1.
For x ∈ Cω , let Gx : I → CC(E) be the multimapping defined by Gx(t) =

F (t, xt). From conditions F1)− F3) it follows that for all x ∈ Cω

I1
Gx

:= {f ∈ L1(I ;E) : f(t) ∈ Gx(t) a.e.} 6= ∅ (see, for example [21] ).

Definition 3.1. A function x ∈ Cω is said to be a solution of P (ϕ), if there
exists a function f ∈ I1

Gx
such that

x(t) =
{
ϕ(0)− g(0, ϕ)+ g(t, xt) +

∫ t
0 f(s)ds

ϕ(t)
if t ∈ I
if t ∈ J.

We put C∗ = {y ∈ Cω : y0 = 0} and

ϕ̃(t) =
{
ϕ(0), t ∈ I
ϕ(t), t ∈ J.

In order to investigate the existence of solutions of P (ϕ) we shall use the multi-
valued integral operator Γ defined on the space C∗ by

Γ(y) =
{
z ∈ C∗: z(t) = −g(0, ϕ)+g(t, yt + ϕ̃t)+

∫ t

0
f(s)ds, t ∈ I and f ∈ I1

Gy+ϕ̃

}



20 A. SGHIR

It is easy to see that x is a solution of P (ϕ) if and only if x = y + ϕ̃ where
y ∈ Γ(y) and the set Γ(y) is nonempty and convex for every y ∈ C∗.

Now, let us describe the main properties of Γ.

Lemma 3.1. The operator Γ is closed.

Proof. We give a sketch of proof; see [11, 14, 20].
Let (yn), (zn) ⊂ C∗ be two sequences with zn ∈ Γ(yn) for all n ∈ N and

lim
n→+∞

(yn) = y, lim
n→+∞

(zn) = z. We shall prove that z ∈ Γ(y). For every n ∈ N,

we have

zn(t) = −g(0, ϕ) + g(t, yn
t + ϕ̃t) +

∫ t

0

fn(s)ds, t ∈ I

where fn(s) ∈ F (s, yn
s + ϕ̃s) a.e. From condition F4) it follows that for almost

every t ∈ I,

χ({fn(t) : n ∈ N}) 6 k2χ0({yn
t + ϕ̃t : n ∈ N}) = 0,

hence for almost every t ∈ I, {fn(t) : n ∈ N} is relatively compact in E, but from
condition F3)

|fn(t)|E 6 m(t)h(‖yn
t + ϕ̃t‖) < +∞

for every n ∈ N. Then from Diestel’s theorem (see [6]) it follows that the sequence
(fn) is relatively weakly compact in L1 (I ;E) . We can assume that (fn) converges
weakly to a function f ∈ L1(I ;E) (if necessary we can use a subsequence of (fn)).
By Mazur’s theorem [7], there exists a sequence (f̃m) such that lim

m→+∞
(f̃m) = f

in L1(I ;E) and from condition F2), we obtain f ∈ I1
Gy+ϕ̃

and then z ∈ Γ(y).

Lemma 3.2. For every bounded set Ω ⊂ C∗, the set Γ(Ω) is bounded and equicon-
tinuous.

Proof. i) Let y ∈ Ω and z ∈ Γ(y), then for some f ∈ I1
Gy+ϕ̃

we have for t ∈ I

|z(t)|E 6 |g(0, ϕ)|E + |g(t, yt + ϕ̃t)|E +
∫ t

0
|f(s)|E ds

6 |g(0, ϕ)|E + |g(t, yt + ϕ̃t)|E +
∫ t

0
m(s)h(‖ys + ϕ̃s‖)ds

6 |g(0, ϕ)|E +M1 + h(ρ+ ‖ϕ‖) ‖m‖1

6 |g(0, ϕ)|E +M(1 + ‖m‖1)

where ‖m‖1 =
∫ ω
0 m(s)ds and M = max(M1, h(ρ+ ‖ϕ‖)) with

M1 = sup{|g(t, yt + ϕ̃t|E : t ∈ I, y ∈ Ω}

and ρ > 0 such that ∀y ∈ Ω, ‖y‖ω := sup
t∈[−r,ω]

|y(t)|E < ρ.



EXISTENCE RESULTS FOR INITIAL VALUE PROBLEMS 21

ii) For every t, t0 ∈ I and z ∈ Γ(y) where y ∈ Ω, one has

|z(t) − z(t0)|E 6 |g(t, yt + ϕ̃t)− g(t0, yt0 + ϕ̃t0)|E +
∣∣∣∣
∫ t

t0

|f(s)|E ds
∣∣∣∣

where f ∈ I1
Gy+ϕ̃

then, for ε > 0 and by condition ii) of assumption (H1) , there
exists η1 > 0 such that for |t − t0| < η1, |g(t, yt + ϕ̃t)− g(t0, yt0 + ϕ̃t0)|E < ε

2 , and
from the integral absolute continuity there exists η2 > 0 such that for |t − t0| < η2,∣∣∣
∫ t
t0
|f(s)|E ds

∣∣∣ < ε
2 , we conclude that

∀ε > 0, ∃η > 0 : |t − t0| < η, ∀z ∈ Γ(Ω), |z(t) − z(t0)|E < ε.

Lemma 3.3. For every bounded set Ω ⊂ C∗,

χ1
0(Γ(Ω)) 6 (k1 + k2ω)χ1

0(Ω),

where χ1
0 is the Kuratowski measure of noncompactness in C∗.

Proof. Using Lemma 3.2, the set Γ(Ω) is bounded and equicontinuous, and by
Ambrosetti’s theorem [5, 15]

χ1
0(Γ(Ω)) = sup

t∈[−r,ω]
χ[(Γ(Ω))(t)] = sup

t∈I
χ[(Γ(Ω))(t)].

For each t ∈ I ,
χ[(Γ(Ω))(t)]

6 χ({g(t, yt + ϕ̃t): y ∈ Ω})+χ({
∫ t

0
f(s)ds where f ∈ I1

Gy+ϕ̃
, y ∈ Ω})

6 k1χ0(Ωt + ϕ̃t) + k2ωχ0(Ωt + ϕ̃t)
6 k1χ0(Ωt) + k2ωχ0(Ωt)
6 k1χ

1
0(Ω) + k2ωχ

1
0(Ω) (see, for example [19] )

where Ωt + ϕ̃t = {yt + ϕ̃t : y ∈ Ω}.

The properties of the integral multimapping Γ described above allow to use
the theory of the relative topological degree of χ-Lipschitz multimappings for
searching solutions of problem P (ϕ).

Theorem 3.1. Assuming that (H1) , (H2) hold and there exists a positive con-
stant ρ such that ‖x‖ω < ρ for each solution x of the following problem

Pλ(ϕ)
{

d
dt [x(t)− λg(t, xt)] ∈ λF (t, xt), t ∈ I, λ ∈ [0, 1]
x0 = ϕ,

then the initial value problem P (ϕ) has at least one solution.

Proof. In order to apply the topological degree principle, we take

Ω = {y ∈ C∗ : ‖y‖ω < 2ρ}, K = co({0} ∪ Γ(Ω)) and ΩK = Ω ∩K.
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We know that the multimapping Γ : ΩK → CC(K) is closed and χ1
0-Lipschitz.

Furthermore ∀λ ∈ [0, 1] , ∀y ∈ FixλΓ then x = y + ϕ̃ is a solution of Pλ(ϕ), thus
‖y‖ω 6 ‖y + ϕ̃‖ω + ‖ϕ̃‖ω < 2ρ, and hence FixλΓ ∩ ∂ΩK = ∅. Take Γ0 = 0 and
Γ1 = Γ, since there exists a closed χ-Lipschitz family of maps H : ΩK × [0, 1] →
CC(K) such that

[ ∪
λ∈[0,1]

FixH(., λ)]∩ ∂ΩK = ∅ and H(., 0) = Γ0, H(., 1) = Γ1,

(it suffices to takeH(., λ) = λΓ), then Γ0 and Γ1 are homotopic. So, deg(Γ0,ΩK) =
deg(Γ1,ΩK), but deg(Γ0,ΩK) = 1 as 0 ∈ ΩK ,
hence deg(Γ,ΩK) = deg(Γ1,ΩK) = 1, therefore ∅ 6= FixΓ ⊂ ΩK . Thus P (ϕ) has
at least a solution.

We suppose below that g and F satisfy the assumptions
(H ′

1) g satisfies (H1) and there exist constants 0 6 c1 < 1 and c2 > 0 such that

|g(t, ψ)|E 6 c1 ‖ψ‖+ c2 for every t ∈ I and ψ ∈ C.

(H ′
2) F satisfies the conditions (F1) , (F2) , (F4) and (F ′

3): there exists m ∈ L1
+(I)

such that, for all ψ ∈ C and almost all t ∈ I

‖F (t, ψ)‖ 6 m(t)h(‖ψ‖),

where h is a continuous nondecreasing function on [0,+∞[ and is positive on
]0,+∞[.

Theorem 3.2. Assuming that (H ′
1), (H

′
2) hold, then the initial value problem

P (ϕ) has a solution if

1
1 − c1

∫ ω

0
m(s)ds <

∫ +∞

c

ds

h(s)

where c = 1
1−c1

[(1 + c1) ‖ϕ‖ + 2c2].

Proof. To prove the existence of a solution of P (ϕ) we apply Theorem 3.1. In
order to apply this theorem we must establish a priori bounds for the initial value
problem Pλ(ϕ). Let x be a solution of Pλ(ϕ). From

x(t) = ϕ(0)− λg(0, ϕ)+ λg(t, xt) + λ

∫ t

0
f(s)ds, t ∈ I and f ∈ I1

Gx
,

we have

|x(t)|E 6 (1 + c1) ‖ϕ‖ + c1 ‖xt‖ + 2c2 +
∫ t

0
m(s)h(‖xs‖)ds.

Using an argument presented in [16], we put

u(t) = sup{|x(s)|E : −r 6 s 6 t} for t ∈ I

and let t∗ ∈ [−r, t] be such that u(t) = |x(t∗)|E .
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If t∗ ∈ [0, t], by the previous inequality we have

u(t) = |x(t∗)|E 6 (1 + c1) ‖ϕ‖+ c1 ‖xt∗‖ + 2c2 +
∫ t∗

0
m(s)h(‖xs‖)ds

6 (1 + c1) ‖ϕ‖+ c1u(t) + 2c2 +
∫ t

0

m(s)h(u(s))ds, t ∈ I

or

u(t) 6 1
1 − c1

[(1 + c1) ‖ϕ‖ + 2c2 +
∫ t

0

m(s)h(u(s))ds], t ∈ I. (∗)

If t∗ ∈ J, then u(t) = ‖ϕ‖ and (∗) is verified.
Put

v(t) =
1

1 − c1
[(1 + c1) ‖ϕ‖ + 2c2 +

∫ t

0
m(s)h(u(s))ds], t ∈ I,

we have u(t) 6 v(t), t ∈ I, v(0) = c and

v′(t) =
1

1− c1
m(t)h(u(t)) 6

1
1 − c1

m(t)h(v(t)), t ∈ I.

Then
∫ v(t)

v(0)

ds

h(s)
6

1
1 − c1

∫ ω

0
m(s)ds <

∫ +∞

c

ds

h(s)
, t ∈ I.

This inequality implies that there exists a constant ρ > 0 such that v(t) < ρ and
hence ‖x‖ω < ρ, where ρ depends only on ω and the functions m and h.

Remark 1. If g = 0, the initial value problem P (ϕ) becomes

(P )
{
x′(t) ∈ F (t, xt), t ∈ I
x0 = ϕ.

In this case Theorem 3.2 leads immediately to the following corollary.

Corollary 3.1. Assuming that (H ′
2) hold, then the initial value problem (P ) has

a solution if

k2ω < 1 and
∫ ω

0
m(s)ds <

∫ +∞

‖ϕ‖

ds

h(s)
.

4. Application

In this section we shall consider some applications of the obtained results to
the optimal control of the systems described by the integral-differential equations
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having the following form

(N)





∂
∂t [v(t, s)−

∫ 0
−r k(t+ θ) v(t+ θ, s)dθ] = f(t, s, v(t, s),

∫ ω
0 q(t, s, ν)v(t, ν)dν)

+
m∑

i=1
ui(t)ei(t, s, v(t, s))

where t, s ∈ I and (u1(t), ..., um(t)) ∈ U(v(t− r, .)) (r > 0)
v(t, 0) = v(t, ω), t ∈ I

v(θ, s) = ϕ(θ)(s), (θ, s) ∈ J × I.

Put E = {y ∈ C(I ; R) : y(0) = y(ω)} and suppose that if q(t, s, ν) is the kernel,
then q(t, 0, ν) = q(t, ω, ν) and the integral operator Q(t) defined by

(Q(t)y)(s) =
∫ ω

0

q(t, s, ν)y(ν)dν

is compact in the space E and continuous with respect to t.
The function f : I2 × R2 → R is such that

f(t, 0, ν, τ) = f(t, ω, ν, τ),

|f(t, s, ν, τ)| 6 m1(t)h1(|ν|)

where m1 ∈ L1
+ (I), h1 is a continuous nondecreasing function on [0,+∞[,

|f(t, s, ν, τ)− f(t, s, ν1, τ)| 6 γ(s) |ν − ν1| , (α)

where γ ∈ C(I) with ‖γ‖ 6 α and generates the continuous operator f : I×E2 →
E defined by

f(t, y, z)(s) = f(t, s, y(s), z(s)).

The functions ei : I2 × R → R are such that

ei(t, 0, ν) = ei(t, ω, ν), and |ei(t, s, ν)| 6 Mi, i = 1, ..., m,

and generate the operators ei : I × E → E defined by

ei(t, y)(s) = ei(t, s, y(s)), i = 1, ..., m

and t 7−→ ei(t, .) are continuous mappings and

|ei(t, y)− ei(t, z)|E 6 βi |y − z|E , t ∈ I and y, z ∈ E. (β)

The controls ui are measurable functions satisfying the following delay feedback
condition

(u1(t), ..., um(t)) ∈ U(v(t− r, .))

where U : E → CC(U) is an upper semicontinuous multimapping, U ⊂ Rm is a
bounded closed convex set.
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Let β = sup
(u1(t),...,um(t))∈U

m∑
i=1

|ui(t)|βi. Define the multimapping F : I × C →

P (E) by

F (t, ψ)

=f(t, ψ(0), Q(t)ψ(0))+{
m∑

i=1

ui(t)ei(t, ψ(0)): (u1(t), ..., um(t)) ∈ U(ψ(−r))}.

For this multimapping the assumption (H ′
2) is fulfilled (see for example [11]).

Indeed, (F1) follows from the continuity of f, ei and measurability of ui (i =
1, ..., m), (F2) follows from the upper semicontinuity of U , (F ′

3) follows from the
boundedness of U with

m(t) = max[m1(t), m2(t) := sup
(u1(t),...,um(t))∈U

m∑

i=1

|ui(t)|Mi]

h(t) = h1(t) + 1,

and (F4) follows from (α) and (β) where k2 = α + β.
We define the mapping g : I × C → E by

g(t, ψ)(s) =
∫ 0

−r
k(t+ θ)ψ(θ)(s)dθ

where k : [−r, ω] → R is a continuous function. It is trivial to see that the
assumption (H ′

1) is verified with k1 = r sup
t∈[−r,ω]

|k(t)| = c1 and c2 = 0.

If we suppose that k1 + ωk2 < 1, and

1
1 − c1

∫ ω

0
m(s)ds <

∫ +∞

c

ds

h(s)

where c = 1+c1
1−c1

‖ϕ‖, then the problem (N) has at least one solution.
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