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IDEAL AMENABILITY OF VARIOUS CLASSES

OF BANACH ALGEBRAS

A. JABBARI

Abstract. Let A be a Banach algebra. If n ∈ N and I is a closed two sided
ideal in A, then A is n−I−weakly amenable if the first cohomology group of A
with coefficients in the n−th dual space I(n) is zero, i.e., H1(A, I(n)) = {0}.
Further, A is n−ideally amenable (ideally amenable) if A is n − I−weakly
amenable (1 − I−weakly amenable) for every closed two sided ideal I in A.
In this paper we investigate (2m + 1) − I−weakly amenability of Banach
algebras for m ≥ 1, and ideal amenability of Segal algebras and triangular

Banach algebras T =

[

A M
B

]

(where A and B are Banach algebras and

M is a A,B−module).

1. Introduction

Let A be a Banach algebra, and suppose that X is a Banach A-bimodule such
that

‖a.x‖ ≤ ‖a‖‖x‖ and ‖x.a‖ ≤ ‖a‖‖x‖
for all a ∈ A and x ∈ X.

We can define the right and left actions of A on the dual space X∗ of X by

〈x, λ.a〉 = 〈a.x, λ〉,

〈x, a.λ〉 = 〈x.a, λ〉,

for all a ∈ A, x ∈ X and λ ∈ X∗.
Similarly, the second dual X∗∗ of X becomes a Banach A-bimodule under the

actions
〈λ, a.Λ〉 = 〈λ.a,Λ〉,

〈λ,Λ.a〉 = 〈b.λ,Λ〉,

for all a ∈ A, x ∈ X, λ ∈ X∗, and Λ ∈ X∗∗.
Suppose that X is a Banach A-bimodule. A derivation D : A → X is a linear

map that satisfies D(ab) = a.D(b) + D(a).b for all a, b ∈ A. A derivation δ is
said to be inner if there exists x ∈ X such that δ(a) = δx(a) = a.x − x.a for
all a ∈ A. Denoting the linear space of bounded derivations from A into X by
Z1(A,X) and the linear subspace of inner derivations by N1(A,X), we consider
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the quotient space H1(A,X) = Z1(A,X)/N1(A,X), called the first Hochschild
cohomology group of A with coefficients in X. A Banach algebra A is said to
be amenable if H1(A,X∗) = {0} for all Banach A-bimodules X, and A is called
weakly amenable if H1(A,A∗) = {0} (see [12] and [13]). Let n ∈ N. A Banach

algebra A is called n-weakly amenable if H1(A,A(n)) = {0} (see [2]). A Banach
algebra A is called ideally amenable if H1(A,I∗) = {0} for every closed two sided
ideal I of A (see [6, 8, 9, 11]). A Banach algebra A is n− I−weakly amenable if

H1(A,I(n)) = {0}, where I is a closed two sided ideal in A, and A is n−ideally
amenable if A is n − I−weakly amenable for every closed two sided ideal I in
A (see [5, 7, 10, 11]). In this paper, for abbreviation we write b.a.i. instead of
bounded approximate identity.

2. (2m+ 1)− I−Weak Amenability of Banach Algebras

Lemma 2.1. Suppose that I is a closed two sided ideal in A∗∗. Then, I is a
closed two sided ideal in A(2m) for m ≥ 1.

Proof. Let I be a left ideal of A(2m) for m ≥ 1. By using module direct sum
decomposition we have

A(2m) = (A∗)⊥ + (A∗∗)∧ and A(2m+1) = (A)⊥ + (A∗)∧,

where Â is the image of A in A(2m) under the canonical embedding and A⊥ =

{F ∈ A(2m+1) : F |
Â
= 0}. For F ∈ A(2m+1) let F = f1+ f̂2 be such that f1 ∈ A⊥

and f2 ∈ A∗. Since I is a left ideal in A(2m), it then holds af1 = 0 for each a ∈ I.
Thus, we have

aF = af̂2 = (af2)
∧.

For Ψ ∈ A(2m+2) let Ψ = ψ + ϕ̂ be such that ψ ∈ (A∗)⊥ and ϕ ∈ A∗∗. Since
ψ ∈ (A∗)⊥, it then holds 〈(af2)

∧, ψ〉 = 0 for each a ∈ I and f2 ∈ A∗. Thus, we
have

〈F,Ψa〉 = 〈(af2)
∧, ψ + ϕ̂〉 = 〈(af2)

∧, ϕ̂〉 = 〈F, (ϕa)∧〉.

Thus, Ψa = (ϕa)∧ ∈ Î for a ∈ I and Ψ ∈ A(2m+2). Therefore, I is a left ideal of

A(2m+2). For the other case, the proof is similar.
�

Lemma 2.2. Let A be a Banach algebra with a left (right) b.a.i.. Suppose that
I is a closed two sided ideal in A and J is a w∗−closed ideal of I∗. If the left
(right) module action on J is trivial, then H1(A,J ) = {0}.

Proof. Suppose that D : A → J is a continuous derivation. Let (ei) be a left
b.a.i. of A, and let b ∈ J be a w∗−cluster of D(ei). Since AJ = {0} we have

D(a) = limD(aei) = ba = ba− ab (a ∈ A).

Hence D is inner and therefore H1(A,J ) = {0}.
�

Theorem 2.3. Suppose that A is I−weakly amenable, has a left (right) b.a.i.
and I is a left ideal in A∗∗. Then, A is (2m+1)−I−weakly amenable for m ≥ 1.
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Proof. Suppose that A has a left b.a.i.. We have

H1(A,I(2m+1)) = H1(A,I∗) +H1(A,I⊥).

If A is I−weakly amenable, thenH1(A,I∗) = {0}. I⊥ is a w∗−closed submod-

ule of I(2m+1). Since I is a left ideal in A∗∗ it is left ideal in A(2m) (Lemma 2.1),
thus the left module action on I⊥ is trivial. Then, H1(A,I⊥) = {0} and therefore

H1(A,I(2m+1)) = {0} (Lemma 2.2). This prove that A is (2m+ 1)− I−weakly
amenable for m ≥ 1. �

3. Results For Segal Algebras

Let (A, ‖·‖) be a Banach algebra. Then, (B, ‖·‖
′

) is an abstract Segal algebra
with respect to (A, ‖ · ‖) if

(1) B is a dense left ideal in A, and B is a Banach algebra with respect to

‖ · ‖
′

;

(2) There exists M > 0 such that ‖b‖ ≤M‖b‖
′

for each b ∈ B;

(3) There exists C > 0 such that ‖ab‖
′

≤ C‖a‖
′

‖b‖
′

for each a, b ∈ B.
Let G be a locally compact group. A linear subspace S1(G) of L1(G) is said

to be a Segal algebra if it satisfies the following conditions:
(i) S1(G) is dense in L1(G);
(ii) If f ∈ S1(G) then Lxf ∈ S1(G), i.e. S1(G) is left translation invariant;
(iii) S1(G) is a Banach space under some norm ‖ · ‖S , and ‖Lxf‖s = ‖f‖s for

all f ∈ S1(G) and x ∈ G;
(iv) The map x 7→ Lxf from G into S1(G) is continuous.

Theorem 3.1. Let A be a commutative ideally amenable Banach algebra. Then,
any abstract Segal subalgebra of A having an approximate identity is ideally
amenable.

Proof. Let B be an abstract Segal subalgebra of A satisfying the hypothesis of
the theorem, with (eα) an approximate identity of B. Let D be a continuous
derivation from B into I∗, where I∗ is an arbitrary two sided closed ideal of B.
We define the maps Dα : A → I∗ by Dα(a) = D(eα.a)−D(eα).a for a ∈ A.

Now, for all a, b ∈ A we have

Dα(a.b) = D(eα.a.b)−D(eα)(a.b)

= norm− lim
β
(D(eα.a.eβ .b)−D(eα)(a.b))

= norm− lim
β
(D(eα.a).eβ .b+ eα.a.D(eβ .b)−D(eα)(a.b))

= D(eα.a).b−D(eα)(a.b) + w∗ − lim
β
(eα.a.D(eβ .b))

= (D(eα.a)−D(eα).a).b + w∗ − lim
β
(eα.a.D(eβ .b))

= (D(eα.a)−D(eα).a).b + w∗ − lim
β
(a.D(eα.eβ .b)− a.D(eα)(eβ .b)

= (D(eα.a)−D(eα).a).b + a.D(eα.b)− a.D(eα).b

= Dα(a).b+ a.Dα(b).
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Therefore, each Dα is a derivation. Since I∗ is a symmetric A−bimodule, it
follows that Dα = 0 (see [15]). Hence D = 0. �

Corollary 3.2. Every Segal algebra on an abelian locally compact group is ideally
amenable.

4. Results For Triangular Banach Algebras

Let A and B be unital Banach algebras and suppose that M is a Banach
A,B-module. We define a triangular Banach algebra

T =

[
A M

B

]
,

with sum and product being given by the usual 2 × 2 matrix operations and
internal module actions. The norm on T is

‖

[
a m

b

]
‖ = ‖a‖A + ‖m‖M + ‖b‖B.

As a Banach space, T is isomorphic to the `1−direct sum of A,B and M,
so we have T (2m−1) ' A(2m−1) ⊕1 M

(2m−1) ⊕1 B
(2m−1) and T (2m) ' A(2m) ⊕∞

M(2m) ⊕∞ B(2m) for each m ≥ 1. We identify T ∗∗ with

[
A∗∗ M∗∗

B∗∗

]
, and the

module action of T on T ∗∗ coincides with the restriction of the (first or second)
Arens product on T ∗∗ to image of T in T ∗∗ under the canonical embedding. The
module action of T on T (3) coincides with the restriction of the dual action of T ∗∗

on T (3) to the image of T in T ∗∗ under the canonical embedding and we define
the product ◦ of action of T on T (3) by:

[
α γ

β

]
◦

[
a m

b

]
=

[
α ◦ a γ ◦ a

γ ◦m+ β ◦ β

]

and [
a m

b

]
◦

[
α γ

β

]
=

[
a ◦ α+m ◦ γ b ◦ γ

b ◦ β

]

for each

[
a m

b

]
∈ T and

[
α γ

β

]
∈ T (3).

It is clear that if I is a closed two sided ideal of T , then there exist closed
ideals I of A and J of B and a closed A,B−submodule M

′

of M such that
I = I ⊕M

′

⊕ J and IM∪MJ ⊆ M
′

. In this paper we identify every closed

two sided ideal I of T with

[
I M

′

J

]
, where I is a closed two sided ideal of A

and J is a closed two sided ideal of B. The following theorem is proved in [1].

Theorem 4.1. Let A and B be unital Banach algebras, let M be a unital Banach
A,B−module, and let I, I and J be closed two sided ideals of T , A and B,
respectively. Then,

H1(T,I∗) ' H1(A,I∗)⊕H1(B,J ∗).
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Corollary 4.2. Let A and B be unital Banach algebras and M be a unital Banach
A,B−module. Then T is ideally amenable if and only if both A and B are ideally
amenable.

Corollary 4.3. Let A and B be unital Banach algebras and let M = 0. Then,
A⊕ B is ideally amenable if and only if both A and B are ideally amenable.

By repeating the same calculations as for derivations D from T into I∗, we
have

H1(T,I(3)) ' H1(A,I(3))⊕H1(B,J (3)).

So, T is 3−ideally amenable if and only if A and B are 3−ideally amenable, and
we have the following theorem:

Theorem 4.4. Let A and B be unital Banach algebras and let M be a unital
Banach A,B−module. Then, for each n ≥ 1 it holds

H1(T,I(2n−1)) ' H1(A,I(2n−1))⊕H1(B,J (2n−1)).

So, T is (2n − 1)−ideally amenable if and only if A and B are (2n − 1)−ideally
amenable.

Corollary 4.5. Let A and B be unital Banach algebras and M = 0. Then, A⊕B
is (2n − 1)−ideally amenable if and only if both A and B are (2n − 1)−ideally
amenable.

Derivations from T into I(2n) are different from those into I(2n−1) for n ≥ 1.
Therefore, we have different results in this case.

Lemma 4.6. Let δ : T → I(2n) be a continuous derivation. Then, there exist
γδ ∈ M

′(2n) continuous derivations δ1 : A → I(2n), δ4 : B → J (2n), and a
continuous map ρ : M → M

′(2n) such that

(i) δ

[
a 0

0

]
=

[
δ1(a) a.γδ

0

]
for all a ∈ A,

(ii) δ

[
0 0

b

]
=

[
0 −γδ.b

δ4(b)

]
for all a ∈ B,

(iii) δ

[
0 m

0

]
=

[
0 ρ(m)

0

]
for all m ∈ M.

(iv) ρ(a.m) = δ1(a).m+ a.ρ(m),

(v) ρ(m.b) = ρ(m).b+m.δ4(b),

(vi) if δA : A → I(2n) and δB : B → J (2n) are continuous derivations and ρM :

M → M
′(2n) is a continuous map that satisfies (iv) and (v), then D : T → I(2n)

defined by

[
a m

b

]
7→

[
δA(a) ρM(m)

δB(b)

]
is a continuous derivation.
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In [4] the following sets are defined. For every n ≥ 1 we denote the centralizer

of A in I(2n) by ZA(I
(2n)) = {x ∈ I(2n) : x.a = a.x for all a ∈ A}, and similarly

ZB(J
(2n)) = {z ∈ J (2n) : z.b = b.z for all b ∈ B}. The set

ZRA,B(M,M
′(2n)) = {ρx,z : M → M

′(2n) : x ∈ ZA(I
(2n)), z ∈ ZB(J

(2n))}

is called the set of central Rosenblum operators on M with coefficients in M
′(2n)

and ρx,z(m) = x.m−m.z (M is unital). We also have

HomA,B(M,M
′(2n)) = {ϕ : M → M

′(2n) : ϕ(a.m) = a.ϕ(m),

ϕ(m.b) = ϕ(m).b, for all a ∈ A,m ∈ M, b ∈ B}.

Theorem 4.7. Let A and B be unital Banach algebras and let M be a unital
Banach A,B−module. Then, we have

(i) ZRA,B(M,M
′(2n)) ⊆ HomA,B(M,M

′(2n)).

(ii) If ϕ ∈ HomA,B(M,M
′(2n)) then

∆ϕ

[
a m

b

]
=

[
0 ϕ(m)

0

]
∈ Z1(T,I(2n)),

and ∆ϕ is inner if and only if ϕ is a central Rosenblum operator on M with

coefficients in M
′(2n).

(iii) If A and B are (2n)−ideally amenable, then

H1(T,I(2n)) '
HomA,B(M,M

′(2n))

ZRA,B(M,M′(2n))
·

Proof. The proof of statements (i) and (ii) is clear. For (iii), let the linear map

f : HomA,B(M,M
′(2n)) → H1(T,I(2n)) be defined by ϕ 7→ ∆ϕ, where ∆ϕ denotes

the equivalence class of ∆ϕ in H1(T,I(2n)). Then f is surjective, so we have

H1(T,I(2n)) '
HomA,B(M,M

′(2n))

ker f
·

If ϕ ∈ ker f then, by statement (ii), f(ϕ) is inner and, again by (ii), ϕ ∈

ZRA,B(M,M
′(2n)). Hence,

H1(T,I(2n)) '
HomA,B(M,M

′(2n))

ZRA,B(M,M
′(2n))

·

�

Theorem 4.8. Let T be a triangular Banach algebra and let I be a two sided
closed ideal of T . If D : T → I is a continuous derivation, then D∗∗ : T ∗∗ → I∗∗

is a continuous derivation.

Proof. It is clear that D∗∗ is a continuous linear operator. Let α1, α2 ∈ A∗∗,
β1, β2 ∈ B∗∗ and γ1, γ2 ∈ M∗∗. Then, there are nets (ai), (aj) in A, (bi), (bj)
in B and (mi), (mj) in M such that α1�α2 = w∗ − limi limj aiaj , β1�β2 =
w∗−limi limj bibj , γ1�γ2 = w∗−limi limj mimj, α1�γ2 = w∗−limi limj aimj and
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γ12β2 = w∗ − limi limj aibj . Let Φ =

[
α1 γ1

β1

]
and Ψ =

[
α2 γ2

β2

]
∈ T ∗∗.

Then, we have

D∗∗ (Φ2Ψ) = D∗∗

([
α1 γ1

β1

]
2

[
α2 γ2

β2

])

= D∗∗

([
α12α2 α12γ2 + γ12β2

β12β2

])

= D∗∗

(
w∗ − lim

i
lim
j

[
aiaj aimj +mibj

bibj

])

= w∗ − lim
i

lim
j
D

([
aiaj aimj +mibj

bibj

])

= Φ.D∗∗(Ψ) +D∗∗(Ψ).Ψ.

�
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