IDEAL AMENABILITY OF VARIOUS CLASSES OF BANACH ALGEBRAS

A. JABBARI

ABSTRACT. Let \mathcal{A} be a Banach algebra. If $n \in \mathbb{N}$ and \mathcal{I} is a closed two sided ideal in \mathcal{A} , then \mathcal{A} is $n-\mathcal{I}$ -weakly amenable if the first cohomology group of \mathcal{A} with coefficients in the n-th dual space $\mathcal{I}^{(n)}$ is zero, i.e., $H^1(\mathcal{A}, \mathcal{I}^{(n)}) = \{0\}$. Further, \mathcal{A} is n-ideally amenable (ideally amenable) if \mathcal{A} is $n - \mathcal{I}$ -weakly amenable ($1 - \mathcal{I}$ -weakly amenable) for every closed two sided ideal \mathcal{I} in \mathcal{A} . In this paper we investigate $(2m + 1) - \mathcal{I}$ -weakly amenability of Banach algebras for $m \geq 1$, and ideal amenability of Segal algebras and triangular Banach algebras $T = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ \mathcal{B} \end{bmatrix}$ (where \mathcal{A} and \mathcal{B} are Banach algebras and \mathcal{M} is a \mathcal{A}, \mathcal{B} -module).

1. INTRODUCTION

Let \mathcal{A} be a Banach algebra, and suppose that X is a Banach \mathcal{A} -bimodule such that

$$||a.x|| \le ||a|| ||x||$$
 and $||x.a|| \le ||a|| ||x||$

for all $a \in \mathcal{A}$ and $x \in X$.

We can define the right and left actions of \mathcal{A} on the dual space X^* of X by

$$\langle x, \lambda.a \rangle = \langle a.x, \lambda \rangle, \\ \langle x, a.\lambda \rangle = \langle x.a, \lambda \rangle,$$

for all $a \in A$, $x \in X$ and $\lambda \in X^*$.

Similarly, the second dual X^{**} of X becomes a Banach \mathcal{A} -bimodule under the actions

$$\begin{aligned} \langle \lambda, a.\Lambda \rangle &= \langle \lambda.a, \Lambda \rangle, \\ \langle \lambda, \Lambda.a \rangle &= \langle b.\lambda, \Lambda \rangle, \end{aligned}$$

for all $a \in \mathcal{A}$, $x \in X$, $\lambda \in X^*$, and $\Lambda \in X^{**}$.

Suppose that X is a Banach \mathcal{A} -bimodule. A derivation $D : \mathcal{A} \to X$ is a linear map that satisfies D(ab) = a.D(b) + D(a).b for all $a, b \in \mathcal{A}$. A derivation δ is said to be inner if there exists $x \in X$ such that $\delta(a) = \delta_x(a) = a.x - x.a$ for all $a \in \mathcal{A}$. Denoting the linear space of bounded derivations from \mathcal{A} into X by $Z^1(\mathcal{A}, X)$ and the linear subspace of inner derivations by $N^1(\mathcal{A}, X)$, we consider

Received December 15, 2009; in revised form January 8, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 46H25.

Key words and phrases. Amenability, ideal amenability, Segal algebra, triangular Banach algebra, weak amenability.

the quotient space $H^1(\mathcal{A}, X) = Z^1(\mathcal{A}, X)/N^1(\mathcal{A}, X)$, called the first Hochschild cohomology group of \mathcal{A} with coefficients in X. A Banach algebra \mathcal{A} is said to be amenable if $H^1(\mathcal{A}, X^*) = \{0\}$ for all Banach \mathcal{A} -bimodules X, and \mathcal{A} is called weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$ (see [12] and [13]). Let $n \in \mathbb{N}$. A Banach algebra \mathcal{A} is called *n*-weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^{(n)}) = \{0\}$ (see [2]). A Banach algebra \mathcal{A} is called ideally amenable if $H^1(\mathcal{A}, \mathcal{I}^*) = \{0\}$ for every closed two sided ideal \mathcal{I} of \mathcal{A} (see [6, 8, 9, 11]). A Banach algebra \mathcal{A} is $n - \mathcal{I}$ -weakly amenable if $H^1(\mathcal{A}, \mathcal{I}^{(n)}) = \{0\}$, where \mathcal{I} is a closed two sided ideal in \mathcal{A} , and \mathcal{A} is n-ideally amenable if \mathcal{A} is $n - \mathcal{I}$ -weakly amenable for every closed two sided ideal \mathcal{I} in \mathcal{A} (see [5, 7, 10, 11]). In this paper, for abbreviation we write *b.a.i.* instead of bounded approximate identity.

2. $(2m+1) - \mathcal{I}$ -Weak Amenability of Banach Algebras

Lemma 2.1. Suppose that \mathcal{I} is a closed two sided ideal in \mathcal{A}^{**} . Then, \mathcal{I} is a closed two sided ideal in $\mathcal{A}^{(2m)}$ for $m \geq 1$.

Proof. Let \mathcal{I} be a left ideal of $\mathcal{A}^{(2m)}$ for $m \geq 1$. By using module direct sum decomposition we have

$$\mathcal{A}^{(2m)} = (\mathcal{A}^*)^{\perp} + (\mathcal{A}^{**})^{\wedge}$$
 and $\mathcal{A}^{(2m+1)} = (\mathcal{A})^{\perp} + (\mathcal{A}^*)^{\wedge}$,

where $\widehat{\mathcal{A}}$ is the image of \mathcal{A} in $\mathcal{A}^{(2m)}$ under the canonical embedding and $\mathcal{A}^{\perp} = \{F \in \mathcal{A}^{(2m+1)} : F|_{\widehat{\mathcal{A}}} = 0\}$. For $F \in \mathcal{A}^{(2m+1)}$ let $F = f_1 + \widehat{f}_2$ be such that $f_1 \in \mathcal{A}^{\perp}$ and $f_2 \in \mathcal{A}^*$. Since \mathcal{I} is a left ideal in $\mathcal{A}^{(2m)}$, it then holds $af_1 = 0$ for each $a \in \mathcal{I}$. Thus, we have

$$aF = a\widehat{f_2} = (af_2)^{\wedge}$$

For $\Psi \in \mathcal{A}^{(2m+2)}$ let $\Psi = \psi + \widehat{\varphi}$ be such that $\psi \in (\mathcal{A}^*)^{\perp}$ and $\varphi \in \mathcal{A}^{**}$. Since $\psi \in (\mathcal{A}^*)^{\perp}$, it then holds $\langle (af_2)^{\wedge}, \psi \rangle = 0$ for each $a \in \mathcal{I}$ and $f_2 \in \mathcal{A}^*$. Thus, we have

$$\langle F, \Psi a \rangle = \langle (af_2)^{\wedge}, \psi + \widehat{\varphi} \rangle = \langle (af_2)^{\wedge}, \widehat{\varphi} \rangle = \langle F, (\varphi a)^{\wedge} \rangle.$$

Thus, $\Psi a = (\varphi a)^{\wedge} \in \widehat{\mathcal{I}}$ for $a \in \mathcal{I}$ and $\Psi \in \mathcal{A}^{(2m+2)}$. Therefore, \mathcal{I} is a left ideal of $\mathcal{A}^{(2m+2)}$. For the other case, the proof is similar.

Lemma 2.2. Let \mathcal{A} be a Banach algebra with a left (right) b.a.i.. Suppose that \mathcal{I} is a closed two sided ideal in \mathcal{A} and \mathcal{J} is a w^* -closed ideal of \mathcal{I}^* . If the left (right) module action on \mathcal{J} is trivial, then $H^1(\mathcal{A}, \mathcal{J}) = \{0\}$.

Proof. Suppose that $D : \mathcal{A} \to \mathcal{J}$ is a continuous derivation. Let (e_i) be a left *b.a.i.* of \mathcal{A} , and let $b \in \mathcal{J}$ be a w^* -cluster of $D(e_i)$. Since $\mathcal{AJ} = \{0\}$ we have

$$D(a) = \lim D(ae_i) = ba = ba - ab \qquad (a \in \mathcal{A}).$$

Hence D is inner and therefore $H^1(\mathcal{A}, \mathcal{J}) = \{0\}$.

Theorem 2.3. Suppose that \mathcal{A} is \mathcal{I} -weakly amenable, has a left (right) b.a.i. and \mathcal{I} is a left ideal in \mathcal{A}^{**} . Then, \mathcal{A} is $(2m+1)-\mathcal{I}$ -weakly amenable for $m \geq 1$. *Proof.* Suppose that \mathcal{A} has a left *b.a.i.*. We have

$$H^1(\mathcal{A}, \mathcal{I}^{(2m+1)}) = H^1(\mathcal{A}, \mathcal{I}^*) + H^1(\mathcal{A}, \mathcal{I}^\perp).$$

If \mathcal{A} is \mathcal{I} -weakly amenable, then $H^1(\mathcal{A}, \mathcal{I}^*) = \{0\}$. \mathcal{I}^{\perp} is a w^* -closed submodule of $\mathcal{I}^{(2m+1)}$. Since \mathcal{I} is a left ideal in \mathcal{A}^{**} it is left ideal in $\mathcal{A}^{(2m)}$ (Lemma 2.1), thus the left module action on \mathcal{I}^{\perp} is trivial. Then, $H^1(\mathcal{A}, \mathcal{I}^{\perp}) = \{0\}$ and therefore $H^1(\mathcal{A}, \mathcal{I}^{(2m+1)}) = \{0\}$ (Lemma 2.2). This prove that \mathcal{A} is $(2m+1) - \mathcal{I}$ -weakly amenable for $m \geq 1$.

3. Results For Segal Algebras

Let $(\mathcal{A}, \|\cdot\|)$ be a Banach algebra. Then, $(\mathfrak{B}, \|\cdot\|')$ is an abstract Segal algebra with respect to $(\mathcal{A}, \|\cdot\|)$ if

(1) \mathfrak{B} is a dense left ideal in \mathcal{A} , and \mathfrak{B} is a Banach algebra with respect to $\|\cdot\|'$;

(2) There exists M > 0 such that $||b|| \le M ||b||'$ for each $b \in \mathfrak{B}$;

(3) There exists C > 0 such that $||ab||' \leq C ||a||' ||b||'$ for each $a, b \in \mathfrak{B}$.

Let G be a locally compact group. A linear subspace $S^1(G)$ of $L^1(G)$ is said to be a Segal algebra if it satisfies the following conditions:

(i) $S^1(G)$ is dense in $L^1(G)$;

(ii) If $f \in S^1(G)$ then $L_x f \in S^1(G)$, i.e. $S^1(G)$ is left translation invariant;

(iii) $S^1(G)$ is a Banach space under some norm $\|\cdot\|_S$, and $\|L_x f\|_s = \|f\|_s$ for all $f \in S^1(G)$ and $x \in G$;

(iv) The map $x \mapsto L_x f$ from G into $S^1(G)$ is continuous.

Theorem 3.1. Let \mathcal{A} be a commutative ideally amenable Banach algebra. Then, any abstract Segal subalgebra of \mathcal{A} having an approximate identity is ideally amenable.

Proof. Let \mathfrak{B} be an abstract Segal subalgebra of \mathcal{A} satisfying the hypothesis of the theorem, with (e_{α}) an approximate identity of \mathfrak{B} . Let D be a continuous derivation from \mathfrak{B} into \mathcal{I}^* , where \mathcal{I}^* is an arbitrary two sided closed ideal of \mathfrak{B} . We define the maps $D_{\alpha} : \mathcal{A} \to \mathcal{I}^*$ by $D_{\alpha}(a) = D(e_{\alpha}.a) - D(e_{\alpha}).a$ for $a \in \mathcal{A}$.

Now, for all $a, b \in \mathcal{A}$ we have

$$D_{\alpha}(a.b) = D(e_{\alpha}.a.b) - D(e_{\alpha})(a.b)$$

= $norm - \lim_{\beta} (D(e_{\alpha}.a.e_{\beta}.b) - D(e_{\alpha})(a.b))$
= $norm - \lim_{\beta} (D(e_{\alpha}.a).e_{\beta}.b + e_{\alpha}.a.D(e_{\beta}.b) - D(e_{\alpha})(a.b))$
= $D(e_{\alpha}.a).b - D(e_{\alpha})(a.b) + w^{*} - \lim_{\beta} (e_{\alpha}.a.D(e_{\beta}.b))$
= $(D(e_{\alpha}.a) - D(e_{\alpha}).a).b + w^{*} - \lim_{\beta} (e_{\alpha}.a.D(e_{\beta}.b))$
= $(D(e_{\alpha}.a) - D(e_{\alpha}).a).b + w^{*} - \lim_{\beta} (a.D(e_{\alpha}.e_{\beta}.b) - a.D(e_{\alpha})(e_{\beta}.b))$
= $(D(e_{\alpha}.a) - D(e_{\alpha}).a).b + a.D(e_{\alpha}.b) - a.D(e_{\alpha}).b$
= $D_{\alpha}(a).b + a.D_{\alpha}(b).$

Therefore, each D_{α} is a derivation. Since \mathcal{I}^* is a symmetric \mathcal{A} -bimodule, it follows that $D_{\alpha} = 0$ (see [15]). Hence D = 0.

Corollary 3.2. Every Segal algebra on an abelian locally compact group is ideally amenable.

4. Results For Triangular Banach Algebras

Let \mathcal{A} and \mathcal{B} be unital Banach algebras and suppose that \mathcal{M} is a Banach \mathcal{A}, \mathcal{B} -module. We define a triangular Banach algebra

$$T = \left[\begin{array}{cc} \mathcal{A} & \mathcal{M} \\ & \mathcal{B} \end{array} \right],$$

with sum and product being given by the usual 2×2 matrix operations and internal module actions. The norm on T is

$$\left\| \begin{bmatrix} a & m \\ b \end{bmatrix} \right\| = \|a\|_{\mathcal{A}} + \|m\|_{\mathcal{M}} + \|b\|_{\mathcal{B}}.$$

As a Banach space, T is isomorphic to the ℓ^1 -direct sum of \mathcal{A}, \mathcal{B} and \mathcal{M} , so we have $T^{(2m-1)} \simeq \mathcal{A}^{(2m-1)} \oplus_1 \mathcal{M}^{(2m-1)} \oplus_1 \mathcal{B}^{(2m-1)}$ and $T^{(2m)} \simeq \mathcal{A}^{(2m)} \oplus_{\infty} \mathcal{M}^{(2m)} \oplus_{\infty} \mathcal{B}^{(2m)}$ for each $m \ge 1$. We identify T^{**} with $\begin{bmatrix} \mathcal{A}^{**} & \mathcal{M}^{**} \\ \mathcal{B}^{**} \end{bmatrix}$, and the module action of T on T^{**} coincides with the restriction of the (first or second) Arens product on T^{**} to image of T in T^{**} under the canonical embedding. The module action of T on $T^{(3)}$ coincides with the restriction of the dual action of T^{**} on $T^{(3)}$ to the image of T in T^{**} under the canonical embedding and we define the product \circ of action of T on $T^{(3)}$ by:

$$\begin{bmatrix} \alpha & \gamma \\ & \beta \end{bmatrix} \circ \begin{bmatrix} a & m \\ & b \end{bmatrix} = \begin{bmatrix} \alpha \circ a & \gamma \circ a \\ & \gamma \circ m + \beta \circ \beta \end{bmatrix}$$

and

for each

$$\begin{bmatrix} a & m \\ b \end{bmatrix} \circ \begin{bmatrix} \alpha & \gamma \\ \beta \end{bmatrix} = \begin{bmatrix} a \circ \alpha + m \circ \gamma & b \circ \gamma \\ b \circ \beta \end{bmatrix}$$
$$\begin{bmatrix} a & m \\ b \end{bmatrix} \in T \text{ and } \begin{bmatrix} \alpha & \gamma \\ \beta \end{bmatrix} \in T^{(3)}.$$

It is clear that if \mathfrak{I} is a closed two sided ideal of T, then there exist closed ideals \mathcal{I} of \mathcal{A} and \mathcal{J} of \mathcal{B} and a closed \mathcal{A}, \mathcal{B} -submodule \mathcal{M}' of \mathcal{M} such that $\mathfrak{I} = \mathcal{I} \oplus \mathcal{M}' \oplus \mathcal{J}$ and $\mathcal{I}\mathcal{M} \cup \mathcal{M}\mathcal{J} \subseteq \mathcal{M}'$. In this paper we identify every closed two sided ideal \mathfrak{I} of T with $\begin{bmatrix} \mathcal{I} & \mathcal{M}' \\ \mathcal{J} \end{bmatrix}$, where \mathcal{I} is a closed two sided ideal of \mathcal{A} and \mathcal{J} is a closed two sided ideal of \mathcal{B} . The following theorem is proved in [1].

Theorem 4.1. Let \mathcal{A} and \mathcal{B} be unital Banach algebras, let \mathcal{M} be a unital Banach \mathcal{A}, \mathcal{B} -module, and let $\mathfrak{I}, \mathcal{I}$ and \mathcal{J} be closed two sided ideals of T, \mathcal{A} and \mathcal{B} , respectively. Then,

$$H^1(T,\mathfrak{I}^*)\simeq H^1(\mathcal{A},\mathcal{I}^*)\oplus H^1(\mathcal{B},\mathcal{J}^*).$$

Corollary 4.2. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a unital Banach \mathcal{A}, \mathcal{B} -module. Then T is ideally amenable if and only if both \mathcal{A} and \mathcal{B} are ideally amenable.

Corollary 4.3. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and let $\mathcal{M} = 0$. Then, $\mathcal{A} \oplus \mathcal{B}$ is ideally amenable if and only if both \mathcal{A} and \mathcal{B} are ideally amenable.

By repeating the same calculations as for derivations D from T into \mathfrak{I}^* , we have

$$H^1(T, \mathfrak{I}^{(3)}) \simeq H^1(\mathcal{A}, \mathcal{I}^{(3)}) \oplus H^1(\mathcal{B}, \mathcal{J}^{(3)}).$$

So, T is 3-ideally amenable if and only if \mathcal{A} and \mathcal{B} are 3-ideally amenable, and we have the following theorem:

Theorem 4.4. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and let \mathcal{M} be a unital Banach \mathcal{A}, \mathcal{B} -module. Then, for each $n \geq 1$ it holds

$$H^1(T, \mathfrak{I}^{(2n-1)}) \simeq H^1(\mathcal{A}, \mathcal{I}^{(2n-1)}) \oplus H^1(\mathcal{B}, \mathcal{J}^{(2n-1)}).$$

So, T is (2n-1)-ideally amenable if and only if A and B are (2n-1)-ideally amenable.

Corollary 4.5. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and $\mathcal{M} = 0$. Then, $\mathcal{A} \oplus \mathcal{B}$ is (2n-1)-ideally amenable if and only if both \mathcal{A} and \mathcal{B} are (2n-1)-ideally amenable.

Derivations from T into $\mathfrak{I}^{(2n)}$ are different from those into $\mathfrak{I}^{(2n-1)}$ for $n \geq 1$. Therefore, we have different results in this case.

Lemma 4.6. Let $\delta : T \to \mathfrak{I}^{(2n)}$ be a continuous derivation. Then, there exist $\gamma_{\delta} \in \mathcal{M}^{\prime(2n)}$ continuous derivations $\delta_1 : \mathcal{A} \to \mathcal{I}^{(2n)}$, $\delta_4 : \mathcal{B} \to \mathcal{J}^{(2n)}$, and a continuous map $\rho : \mathcal{M} \to \mathcal{M}^{\prime(2n)}$ such that

(i) $\delta \begin{bmatrix} a & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \delta_1(a) & a.\gamma_{\delta} \\ 0 \end{bmatrix}$ for all $a \in \mathcal{A}$, (ii) $\delta \begin{bmatrix} 0 & 0 \\ b \end{bmatrix} = \begin{bmatrix} 0 & -\gamma_{\delta}.b \\ \delta_4(b) \end{bmatrix}$ for all $a \in \mathcal{B}$, (iii) $\delta \begin{bmatrix} 0 & m \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & \rho(m) \\ 0 \end{bmatrix}$ for all $m \in \mathcal{M}$.

(iv) $\rho(a.m) = \delta_1(a).m + a.\rho(m),$

(v)
$$\rho(m.b) = \rho(m).b + m.\delta_4(b)$$

(vi) if $\delta_{\mathcal{A}} : \mathcal{A} \to \mathcal{I}^{(2n)}$ and $\delta_{\mathcal{B}} : \mathcal{B} \to \mathcal{J}^{(2n)}$ are continuous derivations and $\rho_{\mathcal{M}} : \mathcal{M} \to \mathcal{M}^{'(2n)}$ is a continuous map that satisfies (iv) and (v), then $D : T \to \mathfrak{I}^{(2n)}$ defined by $\begin{bmatrix} a & m \\ & b \end{bmatrix} \mapsto \begin{bmatrix} \delta_{\mathcal{A}}(a) & \rho_{\mathcal{M}}(m) \\ & \delta_{\mathcal{B}}(b) \end{bmatrix}$ is a continuous derivation. In [4] the following sets are defined. For every $n \ge 1$ we denote the centralizer of \mathcal{A} in $\mathcal{I}^{(2n)}$ by $Z_{\mathcal{A}}(\mathcal{I}^{(2n)}) = \{x \in \mathcal{I}^{(2n)} : x.a = a.x \text{ for all } a \in \mathcal{A}\}$, and similarly $Z_{\mathcal{B}}(\mathcal{J}^{(2n)}) = \{z \in \mathcal{J}^{(2n)} : z.b = b.z \text{ for all } b \in \mathcal{B}\}$. The set

$$ZR_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{\prime(2n)}) = \{\rho_{x,z}: \mathcal{M} \to \mathcal{M}^{\prime(2n)}: x \in Z_{\mathcal{A}}(\mathcal{I}^{(2n)}), z \in Z_{\mathcal{B}}(\mathcal{J}^{(2n)})\}$$

is called the set of central Rosenblum operators on \mathcal{M} with coefficients in $\mathcal{M}^{(2n)}$ and $\rho_{x,z}(m) = x.m - m.z$ (\mathcal{M} is unital). We also have

$$Hom_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{'(2n)}) = \{\varphi: \mathcal{M} \to \mathcal{M}^{'(2n)}: \varphi(a.m) = a.\varphi(m), \\ \varphi(m.b) = \varphi(m).b, \text{ for all } a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\}.$$

Theorem 4.7. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and let \mathcal{M} be a unital Banach \mathcal{A}, \mathcal{B} -module. Then, we have

(i) $ZR_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{\prime(2n)}) \subseteq Hom_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{\prime(2n)}).$ (ii) If $\varphi \in Hom_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{\prime(2n)})$ then

$$\Delta_{\varphi} \left[\begin{array}{cc} a & m \\ & b \end{array} \right] = \left[\begin{array}{cc} 0 & \varphi(m) \\ & 0 \end{array} \right] \in Z^{1}(T, \mathfrak{I}^{(2n)}).$$

and Δ_{φ} is inner if and only if φ is a central Rosenblum operator on \mathcal{M} with coefficients in $\mathcal{M}'^{(2n)}$.

(iii) If \mathcal{A} and \mathcal{B} are (2n)-ideally amenable, then

$$H^{1}(T, \mathfrak{I}^{(2n)}) \simeq \frac{Hom_{\mathcal{A}, \mathcal{B}}(\mathcal{M}, \mathcal{M}^{'(2n)})}{ZR_{\mathcal{A}, \mathcal{B}}(\mathcal{M}, \mathcal{M}^{'(2n)})}$$

Proof. The proof of statements (i) and (ii) is clear. For (iii), let the linear map $\mathfrak{f}: Hom_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}'^{(2n)}) \to H^1(T,\mathfrak{I}^{(2n)})$ be defined by $\varphi \mapsto \overline{\Delta}_{\varphi}$, where $\overline{\Delta}_{\varphi}$ denotes the equivalence class of Δ_{φ} in $H^1(T,\mathfrak{I}^{(2n)})$. Then \mathfrak{f} is surjective, so we have

$$H^{1}(T, \mathfrak{I}^{(2n)}) \simeq \frac{Hom_{\mathcal{A}, \mathcal{B}}(\mathcal{M}, \mathcal{M}^{'(2n)})}{\ker \mathfrak{f}}$$

If $\varphi \in \ker \mathfrak{f}$ then, by statement (ii), $\mathfrak{f}(\varphi)$ is inner and, again by (ii), $\varphi \in ZR_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{\prime(2n)})$. Hence,

$$H^{1}(T, \mathfrak{I}^{(2n)}) \simeq \frac{Hom_{\mathcal{A}, \mathcal{B}}(\mathcal{M}, \mathcal{M}^{\prime(2n)})}{ZR_{\mathcal{A}, \mathcal{B}}(\mathcal{M}, \mathcal{M}^{\prime(2n)})} \cdot$$

Theorem 4.8. Let T be a triangular Banach algebra and let \mathfrak{I} be a two sided closed ideal of T. If $D: T \to \mathfrak{I}$ is a continuous derivation, then $D^{**}: T^{**} \to \mathfrak{I}^{**}$ is a continuous derivation.

Proof. It is clear that D^{**} is a continuous linear operator. Let $\alpha_1, \alpha_2 \in \mathcal{A}^{**}$, $\beta_1, \beta_2 \in \mathcal{B}^{**}$ and $\gamma_1, \gamma_2 \in M^{**}$. Then, there are nets $(a_i), (a_j)$ in $\mathcal{A}, (b_i), (b_j)$ in \mathcal{B} and $(m_i), (m_j)$ in \mathcal{M} such that $\alpha_1 \Box \alpha_2 = w^* - \lim_i \lim_j a_i a_j, \ \beta_1 \Box \beta_2 = w^* - \lim_i \lim_j b_i b_j, \ \gamma_1 \Box \gamma_2 = w^* - \lim_i \lim_j m_i m_j, \ \alpha_1 \Box \gamma_2 = w^* - \lim_i \lim_j a_i m_j$ and
$$\begin{split} \gamma_1 \Box \beta_2 &= w^* - \lim_i \lim_j a_i b_j. \text{ Let } \Phi = \begin{bmatrix} \alpha_1 & \gamma_1 \\ \beta_1 \end{bmatrix} \text{ and } \Psi = \begin{bmatrix} \alpha_2 & \gamma_2 \\ \beta_2 \end{bmatrix} \in T^{**}.\\ \text{Then, we have} \\ D^{**} \left(\Phi \Box \Psi \right) &= D^{**} \left(\begin{bmatrix} \alpha_1 & \gamma_1 \\ \beta_1 \end{bmatrix} \Box \begin{bmatrix} \alpha_2 & \gamma_2 \\ \beta_2 \end{bmatrix} \right) \\ &= D^{**} \left(\begin{bmatrix} \alpha_1 \Box \alpha_2 & \alpha_1 \Box \gamma_2 + \gamma_1 \Box \beta_2 \\ \beta_1 \Box \beta_2 \end{bmatrix} \right) \\ &= D^{**} \left(w^* - \lim_i \lim_j \begin{bmatrix} a_i a_j & a_i m_j + m_i b_j \\ b_i b_j \end{bmatrix} \right) \\ &= w^* - \lim_i \lim_j D \left(\begin{bmatrix} a_i a_j & a_i m_j + m_i b_j \\ b_i b_j \end{bmatrix} \right) \\ &= \Phi.D^{**} (\Psi) + D^{**} (\Psi).\Psi. \\ \Box \end{split}$$

Acknowledgment

The author would like to express his sincere thanks to the referee for his valuable comments.

References

- Gh. Abbaspour Tabadkan, Ideal amenability of triangular Banach algebras, Int. J. Math. Analysis 4(26) (2010), 1285-1290.
- [2] H. G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, *Studia Math.* 128 (1998), 19-54.
- [3] B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354 (2001), 1435-1452.
- [4] B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), 441-462.
- [5] M. E. Gordji and B. Hayati, (2k 1)-Ideal amenability for suitble direct summands of Banach algebras, GJPAM 3(3) (2007), 227-231.
- [6] M. E. Gordji, F. Habibian and B. Hayati, Ideal amenability of module extension of Banach algebras, Archivum Mathematicum (BRNO) Tomus, 43 (2007), 177-184.
- [7] M. E. Gordji, F. Habibian and B. Hayati, Ideal amenability of second duals of Banach algebras, Int. Math. Forum 2(16) (2007), 765-770.
- [8] M. E. Gordji, F. Habibian and A. Rejali, Ideal amenability of module extension Banach algebras, Int. J. Contemp. Math. Sci. 2(5) (2007), 213-219
- [9] M. E. Gordji and S. A. R. Hosseiniun, Ideal amenability of Banach algebras on locally compact groups, Proc. Indian Acad. Sci. 115(3) (2005), 319-325.
- [10] M. E. Gordji and R. Memarbashi, Derivations into int n-th duals of ideals of Banach algebras, Bull. Iran Math. Soc. 34(1) (2008), 59-71.
- [11] M. E. Gordji and T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci. 114(4) (2004), 399-403.
- [12] N. Grønbæk. A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 150-162.
- [13] B. E. Johnson, Weak amenability of group algebras, Bull. Lodon Math. Soc. 23 (1991), 281-284.
- [14] H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, London Math. Soc. Mono. Ser. 22, Oxford, 2000

657

- [15] V. Runde, Lectures on Amenability, Vol. 1774, Springer, New York, 2002.
- [16] M. Shadab and G. H. Essalmzadeh, Approximate n-Ideal amenability of Banach algebras, Int. Math. Forum 5(16) (2010), 775-779.

DEPARTMENT OF MATHEMATICS, ARDABIL BRANCH ISLAMIC AZAD UNIVERSITY, ARDABIL, IRAN. *E-mail address*: jabbari_al@yahoo.com