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SOME OPEN QUESTIONS ON POLYNOMIAL
AUTOMORPHISMS AND RELATED TOPICS

Abstract. This is a collection∗ of open questions presented at the Open Ses-
sion of the International School and Workshop “Polynomial Automorphisms
and Related Topics”, October 9-20, 2006, Hanoi, Vietnam.

On (K/k)-forms of the algebraic tori

TAC KAMBAYASHI
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The multiplicative group C∗ of the complex numbers as a complex Lie group
has two “real forms”, namely the real Lie groups R∗

>0 and SO(2). (Each of the
latter groups becomes isomorphic to C∗ through base-field extension from R to
C, hence the name.) On the other hand, the underlying variety of C∗ may be
identified as the hyperbola (XY = 1 in C2), and this has three real forms, i.e., the
hyperbola, the real circle (X2+Y 2 = 1) and the imaginary circle (X2+Y 2 = −1),
all considered as affine varieties defined over R. All this is classical and elementary
knowledge.

In a recent work [2] (a gist of which was offered in the Hanoi Conference 2006)
we expanded this knowledge to higher dimensions and to general separably alge-
braic base-field extensions. Our interest covered the forms of algebraic tori as well
as those of their underlying varieties Spec(K[X1, X

−1
1 , . . . , Xn, X

−1
n ]). However,

in the present short note, in the interest of brevity we shall confine our attention
to the algebraic tori only and shall explain the known facts and open problems
on the (K/k)-forms of these group-schemes.

1. Setting of the main problems and approach to solution
For any field K let Tn

K (often denoted as (Gm,K)n in the literature) be the
n-dimensional algebraic torus split over K. Let K/k be a finite Galois extension

Key words and phrases. Polynomial Automorphisms, Jacobian Conjecture.
∗ Edited by Stefan Maubach and Nguyen Van Chau.



304 SOME OPEN QUESTIONS ON POLYNOMIAL AUTOMORPHISMS

with Galois group Γ =Gal(K/k). Then, one is interested in finding all (K/k)-
forms of Tn

K . Namely:
THE BASIC PROBLEM. For each given n > 0 find all k-group-schemes G,

up to k-isomorphisms, such that

K ⊗k G ∼=K Tn
K ,

where the K-isomorphism “ ∼=K” is that of K-group-schemes.
Consider the K-automorphism group of Tn

K , which one may identify with
GLn(Z), irrespective of the field K. As is well-known [4], the k-isomorphism
classes of (K/k)-forms of Tn

K are parametrized in total by H1(Γ,GLn(Z)). Since
Γ acts trivially on GLn(Z), we see that H1(Γ,GLn(Z)) ∼= Hom(Γ,GLn(Z))/≈,
where ≈ means conjugacy by an element of GLn(Z).

It follows that the study of (K/k)-forms of Tn
K begins with a study of integral

representation of Γ. In particular, one wishes to determine what finite subgroups
exist in GLn(Z) of a given n > 0. One then takes up individual faithful map Γ −→
GLn(Z), twist the Γ-action on Tn

K by that map to GLn(Z), and then takes the
quotient by the twisted action. All (K/k)-forms of Tn

K are obtainable that way.

2. The known and the unknown facts
The known facts about the forms of algebraic tori are as follows:

Dimension 1 All k-forms of T1
K , more often denoted as Gm,K , split at a qua-

dratic extension of k, and there are exactly two 1-dimensional k-group
schemes up to k-isomorphisms that split at a given Q = k[

√
d ]: the trivial

one Gm,k and the affine k-group-scheme

(0.1) U1 := Spec(k[X, Y ]/〈X2 − d−1Y 2 − 1〉),
whose group operations are easily defined. (This is well-known, but see [2]
for details.)

Dimension 2 The k-isomorphism classes of nontrivial (K/k)-forms of T2
K =

(Gm,K)2 correspond to the conjugacy classes of nontrivial finite subgroups ⊂
GL(2,Z). Such subgroups have all been known, and their conjugacy classes
are represented by cyclic groups Cn of order n and dihedral groups Dn of
order 2n for n = 2, 3, 4 or 6. (This fact is deduced from a theorem due to F.
E. Diederichsen and I. Reiner [1, XI-§74], [3]; another method is to use the
modular group acting on the upper half plane [2].) Now, in an outstanding
paper [6], Voskresenskii gave a complete list of all nontrivial (K/k)-forms
of T2

K each corresponding to a cyclic or dihedral group as above. His de-
scription is clear; but the list is too long to reproduce here.

Dimension 3 Tahara [5] takes pains to list up all nontrivial finite subgroups
⊂ GL3(Z). However, (K/k)-forms of T3

K are not treated there. It seems too
hard to calculate actual torus forms from finite subgroups on Tahara’s list, as
one seems in need of a new idea to avoid all-too-cumbersome computations.
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Remark. We take note of the fact that the (K/k)-forms of T2
K in Voskresenskii’s

list [6] are all described in terms of RL′|L(G) and R(1)
L′|L(G) for suitable fields

L′ ⊃ L, where RL′|L is the Weil descent functor, R(1)
L′|L(G) is the kernel of the

norm map RL′|L(G) −→ G, and G is a known L′-group-scheme, usually the same
as T1

L′ .

Examples. (a) The U1 above is identifiable as R(1)
Q|k(T

1
Q).

(b) Let Q := k[
√
d] be a quadratic extension, with char(k) 6=2. We gave in [2]

an example of a (Q/k)-form of T2
Q, named U2, as follows: As an affine k-scheme,

U2 := Spec(B2), where

(0.2) B2 := k[X, Y, Z,Z−1]/〈X2 − dY 2 − Z〉 = k[x, y, z, z−1].

One can easily check that Q⊗k B2
∼= k[T1, T

−1
1 , T2, T

−1
2 ], so that the underlying

scheme of U2 is a (Q/k)-form of that of T2
Q. We omit here the description of its

group structure. It is not hard to show that this U2 = RQ|k(T1
Q).

Here is our main question:

Question. Can one describe all (K/k)-forms of T3
K up to k-isomorphisms?

Most desirably, can one do it in such a manner that there should be (a) some
simple ingredients like T1 = Gm, (b) combinations of RL′|L’s and R(1)

L′|L’s applied
to the items in (a), and these exhaustibly represent all 3-dimensional (K/k)-
forms?

As evidence suggesting the latter part of the preceding question might hold
valid, we wish to mention Voskresenskii’s result [6] as explained already (see
Remark and Example above) and our result about the real forms of algebraic
tori as outlined in Section 3 just below.

3. Real forms of algebraic tori
Let Q := k[

√
d] be a quadratic extension of k, where char(k) 6= 2 and d ∈ k\k2.

We shall now seek the (Q/k)-forms of Tn
Q for general n. Since Gal(Q/k) = C2

∼=
Z/2Z, let us first look at integral representations of C2. So, let M be a finite
Z[C2]-module, Z-free of rank n. We write Z[C2] = Z[ε], with ε2 = 1. Now, draw
upon Diederichsen-Reiner Theorem [1, Thm. 74.3] to find that, as Z[ε]-modules,

(0.3) M ∼= A⊕ B ⊕ C,

where A,B are finite free Z-modules such that ε ·a = a (∀a ∈ A), ε · b = −b (∀b ∈
B); and where C is a direct sum of Z-modules of the type Z ⊕ Zy such that
ε · z = −z (∀z ∈ Z = the first summand) and ε · y = 1 + y.

In June of 2006 Tadao Oda and the author had a discussion on the real forms of
algebraic tori, both of us then being unaware of the theorem just above. A little
later, based on his own analysis, he communicated to this author the following
conjecture: every Z[ε]-module Z-free of finite rank is a direct sum of copies of
Z[ε],Z[ε]/Z(1 − ε) and Z[ε]/(1 + ε).
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Rather recently the present author became aware of Diederichsen-Reiner The-
orem and noticed that a proof of Oda’s Conjecture follows easily from that the-
orem. Therefore, we have a ready-made

Theorem. Every (Q/k)-form of algebraic torus of any dimension is k-isomorphic
to a direct product of copies of T1

k,U1=R(1)
Q|k(T

1
Q) and U2 = RQ|k(T1

Q).

This result implies that from dimension 3 and up there should occur no es-
sentially new (Q/k)-forms of algebraic tori. Is this just a reflection of the fact
[Q : k]=2, or also of the fact that algebraic tori are after all a direct product of
conic curves? We do not know.
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Let V be the hypersurface in C4 given by x + x2y + z2 + u3 = 0. V is
diffeomorphic to C3 but not isomorphic to C3 (the Makar-Limanow invariant of V
equals C[x]). On V we have a C1-action given by t(x, y, z, u) = (t6x, t−6, t3z, t2u).
The fixed point set of the cyclic subgroup Z6 ⊂ C∗ is disconnected.

Problem. Is V × C1 isomorphic to C4?

If the answer is yes, then we obtain an example of nonlinearizable C∗-action on
C4 and also an example of nonlinearizable C∗ × C∗-action on C4. If the answer
is no, then we are able (more or less) to prove that all C∗ ×C∗-actions on C4 are
linearizable.
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The  Lojasiewicz exponents of nondegenerate singularities and poly-
nomials
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1. Local case
Let f : (Cn, 0) → (C, 0) be a holomorphic function germ with isolated critical

point at 0 i.e. the mapping grad f = ( ∂f
∂z1
, . . . , ∂f

∂zn
) : (Cn, 0) → (Cn, 0) has an

isolated zero at 0 (as usual we identify a function-germ with its representative). In
this case f is called a singularity. One of interesting invariants of the singularity
f is the  Lojasiewicz exponent L0(f) of f at 0 which is defined by

L0(f) = inf{θ : |grad f(z)| > C |z|θ in a ngh. of 0 for some constant C > 0}.

There are many known properties and effective formulas for L0(F ) (see [CK],
[L-JT], [L], [P]). The basic property of L0(F ) is that it is a rational positive
number.

The simplest singularities are non-degenerate singularities. They are defined
via Newton polyhedrons – a combinatorial object connected with f. Let us recall
it. For simplicity we consider the case n = 2 (in the general case definitions are
similar). In 2-dimensional case Newton polyhedrons are called Newton diagrams.

Let

f(x, y) =
∑

α,β

aα,βx
αyβ

be the expansion of f in a neighbourhood of 0 ∈ C2 in a convergent Taylor series.
We put

supp f := {(α, β) ∈ N2
0 : aα,β 6= 0}.

The Newton diagram Γ+(f) of f is the convex hull of (supp f) + R2
+ (where

R2
+ := {(x, y) ∈ R2 : x > 0, y > 0}). The boundary of Γ+(f) is the union of

two half-lines and a finite number of compact and pairwise non-parallel segments.
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The Newton polygon Γ(f) is the set of these compact segments.

For each segment S ∈ Γ(f) we define:
1. x(S) – the abscissa of the point, when the line determined by S intersects

the horizontal axis,
2. y(S) – the ordinate of the point, when the line determined by S intersects

the vertical axis,

3. in(S) =
∑

(α,β)∈S aα,βx
αyβ .

The reduced Newton polygon Γ(f)∗ is obtained from Γ(f) by omitting the
exceptional segments according to the rule:
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(a) we omit the first segment if abscissas of their ends lie on the lines x = 0
and x = 1, respectively,

(b) we omit the last segment if ordinates of their ends lie on the lines y = 0
and y = 1, respectively.

In other words exceptional segments are segments in Γ(f) which lie in the wall
of thickness 1 around the axes.

Remark 1. Since we assume that f has an isolated critical point at 0 ∈ C2, then
it is easy to show that Γ(f)∗ = ∅ if and only if in an appropriate linear system of
coordinates in C2

f(x, y) = xy +
∑

α,β
α+β>3

hα,βx
αyβ.

For such f we have L0(f) = 1. Then, in the sequel, the assumption that Γ(f)∗ 6= ∅
is not very restrictive.

We say f is nondegenerate (in the Kouchnirenko’s sense) [K] if for every S ∈
Γ(f) the system of equations

∂

∂x
in(S) = 0,(∗)

∂

∂y
in(S) = 0,

has no solutions in C∗×C∗.

Remark 2. It is easy to prove that for exceptional segments S ∈ Γ(f) f is
nondegenerate on S. Hence it suffices to consider the system
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Theorem 1. ([L], Thm 2.1) If f is a nondegenerate singularity at 0 ∈ C2 and
Γ(f)∗ 6= ∅, then

(∗∗) L0(f) = max
S∈Γ(f)∗

(x(S), y(S))− 1.

By this theorem and Remark 2 if f is nondegenerate then L0(f) can be read
of its Newton diagram.

In n-dimensional case one can analogously define the above notions for a sin-
gularity f : (Cn, 0) → (C, 0). Namely, we define

1. L0(f),
2. supp f,
3. Γ+(f), Γ(f),
4. z1(S), . . . , zn(S) for each face S ∈ Γ(f), where (z1, . . . , zn) are coordinates

in Cn.

5. nondegenerateness of f.
Now, we may pose the problem

Problem 0.1. Define appropriately exceptional faces of Γ(f) such that

L0(f) = max
S∈Γ(f)∗

(z1(S), . . . , zn(S))− 1.

2. Global case
If f : Cn → C is a polynomial one can similarly define the  Lojasiewicz exponent

L∞(f) of f at infinity by

L∞(f) = sup{θ : |grad f(z)| > C |z|θ for z � 0 for some constant C > 0}
and similar notions connected with the Newton polyhedron of f at infinity (see
[L2], [BA], [O], [S]).

Problem 0.2. Find effective formulas for L∞(f) in nondegerate case in n- di-
mensional case.

Remark 3. As in local case the 2-dimensional case at infinity is completely
solved [L2].
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[K] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976),
1–31.

[L-JT] M. Lejeune-Jalabert and B. Teissier, Cloture integrale des idéaux et equisingularité, École
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Hilbert’s Fourteenth Problem and the invariant fields of Z/2Z
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Let k[X ] be the polynomial ring in n variables over a field k for some n ∈ N,
and k(X) the field of fractions of k[X ]. Then, Hilbert’s Fourteenth Problem asks
whether the k-algebra L ∩ k[X ] is finitely generated whenever L is a subfield of
k(X) containing k. In 1958, Nagata solved this problem by giving a counterex-
ample, where k(X) is transcendental over L. In the case where k(X) is algebraic
over L, we gave a counterexample of extension degree [k(X) : L] = d for each
d > 3 when n > 3, and for each d > 2 when n > 4. On the other hand, L∩ k[X ]
is always finitely generated if n 6 2 due to Zariski. Clearly, L ∩ k[X ] = k[X ] if
[k(X) : L] = 1, i.e., L = k(X). However, the following problem remains open.

Problem. Assume that n = 3, and L is a subfield of k(X) containing k. Is the
k-algebra L ∩ k[X ] finitely generated if [k(X) : L] = 2?

Note that [k(X) : L] = 2 if and only if L is the invariant subfield of k(X) for
some action of Z/2Z over k.

Are locally finite polynomial automorphisms linked to locally fi-
nite derivations?

STEFAN MAUBACH
Department of Mathematics Radboud University
6525 ED Nijmegen, The Netherlands
E-mail: s.maubach@science.ru.nl

We define a polynomial map F : Cn −→ Cn to be locally finite if deg(Fn) is
bounded, i.e. max(deg(Fn)) is finite. This definition is equivalent to “for each
g ∈ C[n] the vector space generated by g, F (g), F 2(g), . . . is finite dimensional”,
and also to “there exist n ∈ N, ai ∈ C such that

∑n
i=0 aiF

i = 0”.
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Now, as we know, if D is a locally finite derivation, then FD := exp(D) exists
and is an automorphism of C[n]. It is also a locally finite polynomial automor-
phism: given g ∈ C[n], we know that g,D(g),D2(g), . . . is finite dimensional,
which implies that g, FD(g), F 2

D(g), . . . is finite dimensional. Now the obvious
conjecture is: does the converse hold?

Conjecture. Is a locally finite polynomial automorphism an exponent of a locally
finite derivation?

Note that it is conjectured that the exponents of locally finite derivations gen-
erate the automorphism group (this is equivalent to stating that the exponents
of locally nilpotent derivations, plus the affine maps, generate the automorphism
group).

The conjecture is proven in case the linear part of F has different nonzero
eigenvalues λ1, . . . , λn such that λe1

1 λ
e2
2 · · ·λen

n = 1 where ei ∈ N, implies e1 =
e2 = . . . = en = 0.
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Do there exist odd polynomial automorphisms over F4, F8, . . .?
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Write Fq for the field with q = pm elements. Given a polynomial automor-
phism F of F[n]

q , we get a bijection BF : Fn
q −→ Fn

q . Note that, contrary to

infinite fields, an endomorphism of F[n]
q can be non-invertible but induce a bijec-

tive map BF : Fn
q −→ Fn

q (like the map X3 on F[1]
3 ).

What was done in the paper [1] is compute which bijections of Fn
q can be made

by tame automorphisms of F[n]
q . It turned out that

• if q is odd, or if q = 2, one can make any bijection.
• If q = 2m where m > 2, then one can only make half of the bijection: any

tame automorphism of F[n]
q , seen as a bijection Fn

q −→ Fn
q will induce an

even permutation of the symmetric group with qn elements.
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The question is thus:

Conjecture. If q = 2m where m > 2, then any polynomial automorphism of
F[n]

q induces an even bijection Fn
q −→ Fn

q .

Note that answering this question in the negative would imply that one has
found a non-tame automorphism, with trivial proof that it is non-tame.
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Open Problems and Comments
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Let X be a normal affine variety defined over the complex field C with an
effective algebraic action of an algebraic group G. Let ϕ : X → X be an un-
ramified endomorphism which commutes with the G-action. The following is the
equivariant version of the generalized Jacobian conjecture.

Conjecture 1. With the above settings, ϕ is a finite morphism.

If X has the Euler number χ(X) = 1 then the conjecture says that ϕ is an
automorphism.

Suppose that the algebraic quotient Y := X//G exists under the above setting.
Then ϕ induces an endomorphism ψ : Y → Y . We have the following result.

Theorem 2. (cf. [8]) Let the notations and assumptions be the same as in the
above conjecture. Suppose that G is a reductive algebraic group. Then the endo-
morphism ψ : Y → Y is unramified.

If G is a unipotent algebraic group, ψ is not necessarily unramified as shown
by the following example.

Example 3. Let X be an affine smooth surface with an A1-fibration ρ : X → C
such that C ∼= A1 and ρ has two irreducible multiple fibers of multiplicity 2
(cf. [4, Example 2.2.7]). Let 2F0, 2F1 be the multiple fibers of ρ. Let P0 = ρ(F0)
and P1 = ρ(F1). Let ν : C ′ → C be the double covering which ramifies over the
point P0 and the point at infinity P∞. Let ν−1(P1) = {Q1, Q2}. Let X̃ be the
normalization of the fiber product X×CC

′ and let ρ̃ : X̃ → C ′ be the natural A1-
fibration induced by ρ. Then ρ̃ has two multiple fibers of multiplicity 2 lying over
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the points Q1, Q2 and has one reduced, reducible fiber ρ̃∗(Q0) = G1 +G2, where
ν−1(P0) = {Q0}. LetX ′ := X̃−G2. Then X ′ is isomorphic toX and the covering
morphism ϕ̃ : X̃ → X restricted ontoX ′ is a non-finite unramified endomorphism
of degree 2. Since the A1-fibration ρ is trivial on the open set U = C − {P0, P1},
write ρ−1(U) = U × A1. Similarly, the A1-fibration ρ′ : X ′ → C ′, which is
induced by ρ̃, is trivial on the subset U ′ := ν−1(U). If we take a fiber parameter
t on ρ−1(U) = U × A1 = U × Spec C[t], then t is also a fiber parameter on
ρ′−1(U ′) = U ′×A1. Since X is affine, the partial derivative ∂/∂t multiplied by a
suitable regular function a on C gives rise to a locally nilpotent derivation δ on
the coordinate ring B = Γ(X,OX). Then δ defines a non-trivial Ga action σ on
X such that ρ is the quotient morphism. Since the covering morphism X̃ → X

is a finite étale morphism, the Ga-action σ lifts uniquely to a Ga-action σ̃ on X̃
which stabilizes the component G2. Hence the Ga-action σ lifts up uniquely to a
Ga-action σ′ on X ′ such that ϕ · σ′ = σ · ϕ. In other terms, the locally nilpotent
derivation δ lifts up uniquely to a locally nilpotent derivation δ′ on the coordinate
ring B′ of X ′ such that ϕ∗ · δ = δ′ · ϕ∗. Then the algebraic quotients X//Ga

and X ′//Ga are C and C ′ respectively, and the induced morphism ψ : C ′ → C
coincides with ν. However, by the construction, ν is ramified.

Notwithstanding, with the assumption that Γ(X,OX) is factorial if G is unipo-
tent, one can hope that ψ is still unramified. If dimX = 2, the factoriality of
Γ(X,OX) implies that the quotient morphism µ : X → Y is a smooth morphism.
The following result entails the unramifiedness of ψ when dimX = 2.

Lemma 4. Let µ : X → Y and µ′ : X ′ → Y ′ be two A1-fibrations between
affine varieties, and let ϕ : X ′ → X be an étale morphism. Let ψ : Y ′ → Y
be a morphism such that ψ · µ′ = µ · ϕ. Then there exists an exact sequence of
OX ′-Modules

µ′
∗Ω1

Y ′/Y −→ ϕ∗Ω1
X/Y −→ Ω1

X ′/Y ′ −→ 0 .

If µ′ and µ are smooth morphisms, then ψ is an étale morphism if and only if
ϕ∗Ω1

X/Y

∼−→ Ω1
X ′/Y ′.

The equivariant Jacobian conjecture can be decomposed into the following
conjectures.

Conjecture 5. Let X be a normal affine variety with an effective algebraic group
action of G. Suppose that the algebraic quotient Y = X//G exists. Let ϕ : X → X
be an unramified endomorphism which commutes with the G-action on X. Let
ψ : Y → Y be the induced endomorphism. Then ψ is a finite morphism.

Conjecture 6. Let the notations and assumptions be the same as in Conjecture
5. Suppose that the Euler number χ(X) = 1 and that the induced endomorphism
ψ is an automorphism. Then the endomorphism ϕ is an automorphism.

Note that the equivariant generalized Jacobian conjecture is the ordinary gen-
eralized Jacobian conjecture when G is trivial. The Conjecture 6 was treated
in [6] without assuming that ϕ is unramified (see [1] also). By Gurjar [2], the
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two-dimensional quotient of An under an algebraic group action of a reductive
group is isomorphic to A2/Γ, where Γ is a small finite subgroup of GL (2,C).
Thus, if one notes that χ(A2/Γ) = 1, the Conjecture 5 in this case is reduced
to ask whether an unramified endomorphism of A2/Γ is an automorphism. In-
deed, the generalized Jacobian conjecture for A2/Γ is equivalent to the following
(cf. [9]):

Conjecture 7. Let ϕ be an unramified endomorphism of A2 which commutes
with a linear action of a small finite subgroup Γ of GL (2,C). Then ϕ is an
automorphism.

There are several known results (see [8]).

Lemma 8. The following assertions hold.

(1) Suppose that G is a reductive algebraic group. Suppose further that ψ is an
automorphism and that a general fiber of the quotient morphism µ : X → Y
contains a dense orbit. Then ϕ is an automorphism.

(2) The generalized Jacobian conjecture holds if dimX = 1.
(3) Let G be a reductive algebraic group. Suppose that dimY = 1 and that a

general fiber of µ contains a dense orbit. Suppose further that Γ(X,OX)∗ =
C∗. Then ϕ is an automorphism.

(4) Let G be a unipotent algebraic group. Suppose that the induced unramified
endomorphism ψ : Y → Y is an automorphism. Then ϕ is an automor-
phism.

Lemma 9. Suppose that the multiplicative group Gm acts linearly and effectively
on the affine space An. Write the Gm-action as

t(x1, . . . , xn) = (tα1x1, . . . , t
αnxn)

with α1 6 α2 6 · · · 6 αn. Suppose further that α1 > 0. Let m be the dimension of
the Gm-fixed point locus. If the Jacobian conjecture for Am holds, then ϕ : An →
An, which is a Gm-equivariant unramified endomorphism, is an automorphism.

Theorem 10. (cf. [7]) Let an algebraic group G of positive dimension act ef-
fectively on a normal affine surface X and let ϕ : X → X be a G-equivariant
unramified endomorphism. Suppose that Γ(X,OX)∗ = C∗ and that Γ(X,OX) is
factorial if G is unipotent. Suppose further that X is not elliptic-ruled 1. Then
ϕ is an automorphism.

If one uses results obtained in [3,5,11,12], one can obtain the following result.

Theorem 11. The following assertions hold.

(1) Let ϕ : A3 → A3 be an unramified endomorphism which commutes with an
effective Gm-action. If the Jacobian conjecture for A2 and the Conjecture 7
hold, then ϕ is an automorphism.

1X is said to be elliptic-ruled if X is birational to a P1-bundle over an elliptic curve
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(2) Let ϕ : A3 → A3 be an unramified endomorphism which commutes with a
fixed-point free Ga-action. If the Jacobian conjecture for A2 holds, ϕ is an
automorphism.

References

[1] J. Ax, The elementary theory of finite fields, Ann. of Math. 88 (1968), 239–271.
[2] R.V. Gurjar, Two dimensional quotients of Cn are isomorphic to C2/Γ, preprint.
[3] Sh. Kaliman, Free C+-actions on C3 are translations, Invention. Math. 156 (2004), 163–

173.
[4] T. Kambayashi and M. Miyanishi, On two recent views of the Jacobian Conjecture, Con-

temporary Mathematics 369 (2005), 113–138.
[5] M. Koras and P. Russell, Contractible threefolds and C∗-actions on C3, J. Algebraic Geom.

6 (1997), no. 4, 671–695.
[6] K. Masuda, G-endomorphisms of affine G-varieties which induce automorphisms of the

invariant subrings of the coordinate rings, J. Algebra, to appear.

[7] K. Masuda and M. Miyanishi, Étale endomorphisms of algebraic surfaces with Gm-actions,
Math. Ann. 319 (2001), 493–516.

[8] K. Masuda and M. Miyanishi, Equivariant Jacobian conjectures, preprint.
[9] M. Miyanishi and K. Masuda, Generalized Jacobian conjecture and related topics, the Pro-

ceedings of International Colloquium on Algebra, Arithmetic and Geometry, 427–466, Tata
Institute of Fundamental Research and International Mathematical Union, January, 2000.

[10] M. Miyanishi, Curves on rational and unirational surfaces, Tata Institute of Fundamental
Research, Lectures on Mathematics and Physics 60, Springer Verlag, 1978.

[11] M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological
Theories - to the memory of Dr. Takehiko MIYATA, Kinokuniya, 1985, 37-51.

[12] M. Miyanishi, Open algebraic surfaces, Centre de Recherches Mathématiques, Vol 12, Uni-
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The integer case of the plane Jacobian conjecture as a problem
on integer points in plane curve
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Given F = (P,Q) ∈ Z[x, y]2, a polynomial map with integer coefficients. The
mysterious Jacobian conjecture (JC), posed first by Keller in 1939 asserts that
such a map F is invertible and has a polynomial inverse with integer coefficients
if Jacobian JF := PxQy−PyQx ≡ 1 . It was observed in [C] that if JF ≡ 1 and
if the complex plane curve P = 0 has infinitely many integer points, then such
a map F has a polynomial inverse with integer coefficients. This observation
reduces the integer case of (JC) to a question of the algebra-arithmetic geometry.

Question 1. (Integer case of (JC)) Whether the Jacobian condition JF ≡ 1
ensures that the curve P = 0 has infinitely many integer points ?
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In fact, the proof in [C] shows that if F has not polynomial inverse, then the
numbers of integer points in curves P = k, k ∈ Z[i], must be uniformly bounded.
In view of Siegel’s theorem [Abh. Deutsch. Akad. Wiss. Berlin Kl. Phys.-Mat.
1929, no. 1] such a curve P = 0 with infinitely many integer points must be a
rational curve.

Question 2. (Rational case of (JC)). Whether a polynomial map f = (p, q) ∈
C[x, y]2 with Jf ≡ c ∈ C∗ is invertible if the curve p = 0 is a rational curve ?.

Note that such a map f is invertible if the curve p = 0 has an irreducible
component homeomorphic to C or if all fibres of p are irreducible and the generic
fiber of p is a rational curve (see [R], [LW] and [NN]).
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Is SAutR[t][x1, . . . , xn] → SAutR[t]/(tm)[x1, . . . , xn] surjective?
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The ring R is commutative with unity and t is an indeterminate. The notation
SAut stands for the Special Automorphism Group, i.e. the group of automor-
phisms with Jacobian determinant equal to one. The application in question in
the title is the morphism of groups induced by the canonical epimorphismR[t] −→
R[t]/(tm). Note that for m = 1 the answer is trivially yes. This question has
positive answer for any ring containing Q and any m,n > 1 (see [EMV]). When R
has positive characteristic p, or more generally when pr = 0 for some r ∈ R/

√
(0)

and for n = 1 then the automorphism α : x1 7→ x1 + rtxp
1 ∈ SAutR[t]/(tm)[x1]

furnishes a negative answer ∀m > 2.
So the remaining cases are : n > 2 and Q 6⊂ R. The motivation for the question

comes from [V] where the non- surjectivity case given above is at the origin of
the construction of some “bad” objects (see the references.)
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Stable Tameness

DAVID WRIGHT
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Washington University in St. Louis
St. Louis, MO 63130, USA

Let R = k[n], the polynomial ring in n variables over a field k. Let GA2(R)
denote the automorphisms of A2

R.

Problem 1. Are all elements of GA2(R) stably tame?

Remark. The length of an element of GA2(R) is defined the minimal number of
elementary automorphisms in a factorization of it in GA2(K), whereK is the field
of fractions of R. This question is answered affirmatively for elements of length
6 3 in [1]. Sooraj Kuttykrishnan has now resolved the length 4 case. These
results assume only that R is a UFD, with Kutttykrishnan’s result requiring a
further mild condition.

Problem 2. What is the structure of GA2(R)?

Remark. Actually it is proved in [2] and [3] that GA2(R) has the structure of
an amalgamated free product

Af2(k) ∗Bf2(k) W ,
where Af2(k) is the affine group over k, Bf2(k) is the lower triangular affine group,
and W is an obscure group which is a bit difficult to define (see Theorem 1 of [2]).
We would like to have a better understanding of W .
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