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A NOTE ON SINGULARITY AND NON-PROPER VALUE SET
OF POLYNOMIAL MAPS OF C2

NGUYEN VAN CHAU

Abstract. Some properties of the relation between the singular point set and
the non-proper value curve of polynomial maps of C2 are expressed in terms
of Newton-Puiseux expansions.

1. Introduction

Recall that the so-called non-proper value set Af of a polynomial map f =
(P,Q) : C2 −→ C2, P,Q ∈ C[x, y], is the set of all point b ∈ C2 such that there
exists a sequence C2 3 ai → ∞ with f(ai) → b. The set Af is empty if and only
if f is proper and f has a polynomial inverse if and only if f has not singularity
and Af = ∅. The mysterious Jacobian conjecture (JC) (See [4] and [8]), posed
first by Keller in 1939 and still open, asserts that if f has not singularity, then f
has a polynomial inverse. In other words, (JC) shows that the non-proper value
set of a non-singular polynomial map of C2 must be empty. In any way one
may think that the knowledge on the relation between the singularity set and the
non-proper value set should be useful in pursuit of this conjecture.

Jelonek in [9] observed that for non-constant polynomial map f of C2 the non-
proper value set Af , if non empty, must be a plane curve such that each of its
irreducible components can be parameterized by a non-constant polynomial map
from C into C2. Following [6], the non-proper value set Af can be described in
term of Newton-Puiseux expansion as follows. Denote by Π the set of all finite
fractional power series ϕ(x, ξ) of the form

(1.1) ϕ(x, ξ) =
nϕ−1∑

k=1

akx
1− k

mϕ + ξx
1− nϕ

mϕ , nϕ, mϕ ∈ N, gcd{k : ak 6= 0} = 1,

where ξ is a parameter. For convenience, we denote ψ ≺ ϕ if ϕ(x, ξ) = ψ(x, c+
lower terms in x). We can fix a coordinate (x, y) such that P and Q are monic
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in y, i.e degy P = deg P and degy Q = degQ. For each ϕ ∈ Π we represent

P (x, ϕ(x, ξ)) = pϕ(ξ)x
aϕ
mϕ + lower terms in x, 0 6= pϕ ∈ C[ξ]

Q(x, ϕ(x, ξ)) = qϕ(ξ)x
bϕ
mϕ + lower terms in x, 0 6= qϕ ∈ C[ξ]

J(P,Q)(x, ϕ(x, ξ)) = jϕ(ξ)x
Jϕ
mϕ + lower terms in x, 0 6= jϕ ∈ C[ξ].

(1.2)

Note that aϕ, bϕ and Jϕ are integer numbers.
A series ϕ ∈ Π is a horizontal series of P ( of Q ) if aϕ = 0 and deg pϕ > 0 (resp.

bϕ = 0 and deg qϕ > 0), ϕ is a dicritical series of f = (P,Q) if ϕ is a horizontal
series of P or Q and max{aϕ, bϕ} = 0 and ϕ is a singular series of f if deg jϕ > 0.
Note that for every singular series ϕ of f the equation J(P,Q)(x, y) = 0 always
has a root y(x) of the form ϕ(x, c+lower terms in x), which gives a branch curve
at infinity of the curve J(P,Q) = 0. We have the following relations:

i) If f (resp. P , Q) tends to a finite value along a branch curve at infinity
γ, then there is a dicritical series ϕ of f (resp. a horizontal series ϕ of P , a
horizontal series ϕ of Q) such that γ can be represented by a Newton-Puiseux of
the form ϕ(x, c+ lower terms in x);

ii) If ϕ is a dicritical series of f and

f(x, ϕ(x, ξ)) = fϕ(ξ) + lower terms in x;

then deg fϕ > 0 and its image is a component of Af .
iii) (Lemma 4 in [6])

Af =
⋃

ϕ is a dicritical series of f

fϕ(C).

This note is to present the following relation between the singularity set of f
and the non-proper value set Af in terms of Newton-Puiseux expansion.

Theorem 1.1. Suppose ψ ∈ Π, aψ > 0 and bψ > 0, (aψ, bψ) = (Md,Me),
M ∈ N, gcd(d, e) = 1. Assume that ϕ ∈ Π is a dicritical series of f such that
ψ ≺ ϕ. If ψ is not a singular series of f , then

(i) (deg pψ, deg qψ) = (Nd,Ne) for some N ∈ N,
(ii) aϕ = bϕ = 0 and

pϕ(ξ) = Lcoeff(pψ)CdξDd + . . .

qϕ(ξ) = Lcoeff(qψ)CeξDe + . . .
(1.3)

for some C ∈ C∗ and D ∈ N.

Here, Lcoeff(h) indicates the coefficient of the leading term of h(ξ) ∈ C[ξ].
Theorem 1.1 does not say anything about the existence of dicritical series ϕ,

but only shows some properties of pair ψ ≺ ϕ. Such analogous observations for
the case of non-zero constant Jacobian polynomial map f was obtained earlier in
[7].
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For the case when J(P,Q) ≡ const. 6= 0, from Theorem 1.1 (ii) it follows that
if Af 6= ∅, then every irreducible components of Af can be parameterized by
polynomial maps ξ 7→ (p(ξ), q(ξ)) with

(1.4) deg p/ deg q = degP/ degQ.

This fact was presented in [6] and can be reduced from [3]. The estimation (1.4)
together with the Abhyankar-Moh Theorem on embedding of the line to the
plane in [1] allows us to obtain that a non-constant polynomial map f of C2 must
have singularities if its non-proper value set Af has an irreducible component
isomorphic to the line. In fact, if Af has a component l isomorphic to C, by
Abhyankar-Moh Theorem one can choose a suitable coordinate so that l is the
line v = 0. Then, every dicritical series ϕ with fϕ(C) = l must satisfy aϕ = 0
and bϕ < 0. For this situation we have

Theorem 1.2. Suppose ϕ is a dicritical series ϕ of f with aϕ = 0 and bϕ < 0.
Then, either ϕ is a singular series of f or there is a horizontal series ψ of Q such
that ψ is a singular series of f and ψ ≺ ϕ.

The proof of Theorem 1.1 presented in the next sections 2- 4 is based on those
in [7]. The proof of Theorem 1.2 will be presented in Section 5.

2. Associated sequence of pair ψ ≺ ϕ.

From now on, f = (P,Q) : C2 −→ C2 is a given polynomial map, P,Q ∈
C[x, y]. The coordinate (x, y) is chosen so that P and Q are polynomials monic
in y, i.e. degy P = deg P and degy Q = degQ. Let ψ, ϕ ∈ Π be given. In this
section and the two next sections 3-4 we always assume that ψ is not a singular
series of f , ϕ is a dicritical series of f and ψ ≺ ϕ.

Let us represent

(2.1) ϕ(x, ξ) = ψ(x, 0)+
K−1∑

k=0

ckx
1− nk

mk + ξx
1− nK

mK ,

where nψ
mψ

= n0
m0

< n1
m1

< · · · < nK−1

mK−1
< nK

mK
= nϕ

mϕ
and ck ∈ C may be the zero,

so that the sequence of series {ϕi}i=0,1...,K defined by

(2.2) ϕi(x, ξ) := ψ(x, 0) +
i−1∑

k=0

ckx
1− nk

mk + ξx
1− ni

mi , i = 0, 1, . . . , K − 1,

and ϕK := ϕ satisfies the following properties:
S1) mϕi = mi.
S2) For every i < K at least one of polynomials pϕi and qϕi has a zero point

different from the zero.
S3) For every φ(x, ξ) = ϕi(x, ci) + ξx1−α, ni

mi
< α <

ni+1

mi+1
, each of the polyno-

mials pφ and qφ is either constant or a monomial of ξ.
The representation (2.1) of ϕ is thus the longest representation such that for

each index i there is a Newton-Puiseux root y(x) of P = 0 or Q = 0 such that
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y(x) = ϕi(x, c+ lower terms in x), c 6= 0 if ci = 0. This representation and the
associated sequence ϕ0 ≺ ϕ1 ≺ · · · ≺ ϕK = ϕ is well defined and unique. Further,
ϕ0 = ψ.

For simplicity in notations, below we shall use lower indices “i” instead of the
lower indices “ϕi”.

For each associated series ϕi, i = 0. . . . , K, let us represent

P (x, ϕi(x, ξ)) = pi(ξ)x
ai
mi + lower terms in x

Q(x, ϕi(x, ξ)) = qi(ξ)x
bi
mi + lower terms in x,

(2.3)

where pi, qi ∈ C[ξ]− {0}, ai, bi ∈ Z and mi := mult(ϕi).

The property that P and Q are polynomials monic in y ensures that the
Newton-Puiseux roots at infinity y(x) of each equations P (x, y) = 0 and Q(x, y) =
0 are fractional power series of the form

y(x) =
∞∑

k=0

ckx
1− k

m , m ∈ N, gcd{k : ck 6= 0} = 1,

for which the map τ 7→ (τm, y(τm)) is meromorphic and injective for τ large
enough . Let {ui(x), i = 1, . . .deg P} and {vj(x), j = 1, . . .degQ} be the collec-
tions of the Newton-Puiseux roots of P = 0 and Q = 0, respectively. In view of
the Newton theorem we can represent

(2.4) P (x, y) = A

degP∏

i=1

(y − ui(x)), Q(x, y) = B

degQ∏

j=1

(y − vi(x)).

We refer the readers to [2] and [5] for the Newton theorem and the Newton-
Puiseux roots.

For each i = 0. . . . , K, let us define
- Si := {k : 1 6 k 6 degP : uk(x) = ϕi(x, aik + lower terms in x), aik ∈ C};
- Ti := {k : 1 6 k 6 degQ : vk(x) = ϕi(x, bik + lower terms in x), bik ∈ C};
- S0

i := {k ∈ Si : aik = ci};
- T 0

i := {k ∈ Ti : bik = ci}.
Represent

pi(ξ) = Aip̄i(ξ)(ξ − ci)#S
0
i , p̄i(ξ) :=

∏

k∈Si\S0
i

(ξ − aik),

and
qi(ξ) = Bi q̄i(ξ)(ξ − ci)#T

0
i , q̄i(ξ) :=

∏

k∈Ti\T 0
i

(ξ − bik).

Note that Ai = Lcoeff(pi) and Bi = Lcoeff(qi).
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Lemma 2.1. For i = 1, . . . , K

Ai = Ai−1p̄i−1(ci−1), deg pi = #Si = #S0
i−1,

ai
mi

=
ai−1

mi−1
+ #S0

i−1(
ni−1

mi−1
− ni
mi

),

Bi = Bi−1 q̄i−1(ci−1), deg qi = #Ti = #T 0
i−1,

bi
mi

=
bi−1

mi−1
+ #T 0

i−1(
ni−1

mi−1
− ni
mi

).

Proof. Note that ϕ0(x, ξ) = ψ(x, ξ) and ϕi(x, ξ) = ϕi−1(x, ci−1) + ξx
1− ni

mi for i >
0. Then, substituting y = ϕi(x, ξ), i = 0, 1, . . . , K, into the Newton factorizations
of P (x, y) and Q(x, y) in (2.4) one can easy verify the conclusions.

3. Polynomials ji(ξ)

Let {ϕi} be the associated series of the pair ψ ≺ ϕ. Denote

∆i(ξ) := aipi(ξ)q̇i(ξ) − biṗi(ξ)qi(ξ).

As assumed, ψ is not a singular series of f . So, we have

J(P,Q)(x, ψ(x, ξ)) = jψx
Jψ
mψ + lower terms in x, jψ ≡ const. ∈ C∗

and

J(P,Q)(x, ϕi(x, ξ)) = jix
Ji
mi + lower terms in x, ji ≡ const. ∈ C∗

for i = 0, . . . , K.

Lemma 3.1. Let 0 6 i < K. If ai > 0 and bi > 0, then

∆i(ξ) ≡

{
−miji if ai + bi = 2mi − ni + Ji,

0 if ai + bi > 2mi − ni + Ji.

Further, ∆i(ξ) ≡ 0 if and only if pi(ξ) and qi(ξ) have a common zero point. In
this case

pi(ξ)bi = Cqi(ξ)ai, C ∈ C∗.

Proof. Since ai > 0 and bi > 0, taking differentiation of Df(t−mi , ϕi(t−mi , ξ)),
we have that

mijit
−Ji+ni−2mi−1 + higher terms in t = −∆i(ξ)t−ai−bi−1 + higher terms in t.

Comparing two sides of it we can get the first conclusion. The remains are left
to the readers as an elementary exercise.
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4. Proof of Theorem 1.1

Consider the associated sequence {ϕi}Ki=1 of the pair ψ ≺ ϕ. Since ϕ is a
dicritical series of f and aψ = a0 > 0, bψ = b0 > 0, we can see that

deg p0 > 0, deg q0 > 0.

Represent (a0, b0) = (Md,Me) with gcd(d, e) = 1. Without loss of generality we
can assume that

deg pK > 0, aK = 0 and bK 6 0.

Then, from the construction of the sequence ϕi it follows that

(4.1)

{
pi(ci) = 0 and ai > 0, i = 0, 1, . . . , K − 1
qi(ci) = 0 if bi > 0

Then, by induction using Lemma 2.1, Lemma 3.1 and (4.1) we can obtain without
difficulty the following.

Lemma 4.1. For i = 0, 1, . . . , K − 1 we have

ai > 0, bi > 0, (a)

ai
bi

=
#Si
#Ti

=
d

e
(b)

and
#S0

i

#T 0
i

=
d

e
, p̄i(ξ)e = q̄i(ξ)d. (c)

Now, we are ready to complete the proof.
First note that deg pψ = #S0 and deg qψ = #T0. Then, from Lemma 4.1 (c)

it follows that
(deg pψ, deg qψ) = (Nd,Ne)

for N = gcd(deg pψ, deg qψ) ∈ N. Thus, we get Conclusion (i).
Next, we will show bK = 0. Indeed, by Lemma 2.1 (iii) and Lemma 4.1 (b-c)

we have

bK
mK

=
bK−1

mK−1
+ #T 0

K−1(
nK−1

mK−1
− nK
mK

)

=
e

d
[
aK−1

mK−1
+ #S0

K−1(
nK−1

mK−1

nK
mK

)]

=
e

d

aK
mK

= 0,

as aK = 0. Thus, we get
aK = bK = 0.
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Now, we detect the form of polynomials pK(ξ) and qK(ξ)). Using Lemma 2.1
(ii-iii) to compute the leading coefficients AK and BK we can get

AK = A0(
∏

k6K−1

p̄k(ck)), BK = B0(
∏

k6K−1

q̄k(ck)).

Let C be a d−radical of (
∏
k6K−1 p̄k(ck)). Then, by Lemma 2.1 (ii) and Lemma

4.1 (c) we have that
AK = A0C

d, BK = B0C
e.

Let D := gcd(#S0
K−1,#T

0
K−1). Then, by Lemma 4.1 (b-c) we get

deg pK = #S0
K−1 = Dd, deg qK = #T 0

K−1 = De.

Thus,

pK(ξ) = A0C
dξDd + . . .

qK(ξ) = B0C
eξDe + . . .

This proves Conclusion (ii). �

5. Proof of Theorem 1.2

Suppose ϕ is a dicritical series ϕ of f with aϕ = 0 and bϕ < 0. Since bϕ < 0,
there is a horizontal series ψ of Q such that ψ ≺ ϕ. We will show that ψ is a
singular series of f .

Observe that ϕ is a horizontal series of P since aϕ = 0. Hence, deg pψ > 0,
since ψ ≺ ϕ. Represent

P (x, ψ(x, ξ)) = pψ(ξ)x
aψ
mψ + lower terms in x,

Q(x, ψ(x, ξ)) = qψ(ξ) + lower terms in x,

J(P,Q)(x, ψ(x, ξ)) = jψ(ξ)x
Jψ
mψ + lower terms in x.

Since aψ > 0 and bψ = 0, taking differentiation of Df(t−mψ , ψ(t−mψ , ξ)) we have
that

mψjψ(ξ)tJψ+nψ−2mψ−1 + h.terms in t = −aψpψ(ξ)q̇ψ(ξ)t−aψ−1 + h.terms in t.

Comparing two sides of it we get that

mψjψ(ξ) = −aψpψ(ξ)q̇ψ(ξ).

As deg pψ > 0, we get deg jψ(ξ) > 0, i.e. ψ is a singular series of f . �

6. Last comment

To conclude the paper we want to note that instead of the polynomial maps f =
(P,Q) we may consider pairs f = (P,Q) ∈ k((x))[y]2, where k is an algebraically
closed field of zero characteristic and k((x)) is the ring of formal Laurent series
in variable x−1 with finite positive power terms. Then, in view of the Newton
theorem the polynomial P (y) and Q(y) can be factorized into linear factors in
k((x))[y]. And the notions of horizontal series, dicritical series and singular
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series can be introduced in an analogous way. In this situation the statements of
Theorem 1.1 and Theorem 1.2 are still valid and can be proved in the same way
as in sections 2-5.
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