
ACTA MATHEMATICA VIETNAMICA 247
Volume 32, Number 2-3, 2007, pp. 247-257

HILBERT’S FOURTEENTH PROBLEM AND ALGEBRAIC
EXTENSIONS WITH AN APPENDIX ON ROBERTS TYPE

COUNTEREXAMPLES

SHIGERU KURODA

1. Introduction

Let k be a field, k[x] = k[x1, . . . , xn] the polynomial ring in n variables over
k for n ∈ N, and k(x) the field of fractions of k[x]. Then, Hilbert’s Fourteenth
Problem asks whether the k-subalgebra L ∩ k[x] of k[x] is finitely generated
whenever L is a subfield of k(x) containing k. In 1950’s, Zariski [30] showed that
L ∩ k[x] is always finitely generated if the transcendence degree trans.degk L of
L over k is at most two, while Nagata [26] gave the first counterexample having
trans.degk L = 4 in case of n = 32. In 1990, Roberts [28] constructed a different
type of counterexample having trans.degk L = 6 when n = 7. Following Nagata
and Roberts, several new counterexamples have been constructed. Mukai [25]
and Steinberg [29] refined Nagata’s construction. Kojima-Miyanishi [12] and the
author [15] generalized Roberts’ counterexample for n > 7, while Freudenburg [9]
and Daigle-Freudenburg [1] made use of Roberts’ counterexample to obtain ones
for n = 6 and n = 5, respectively.

The author improved Roberts type construction thoroughly, and obtained sev-
eral remarkable new counterexamples. For example, the answer to Hilbert’s Four-
teenth Problem is affirmative if trans.degk L 6 2 by Zariski [30], while negative
if trans.degk L > 4 by Nagata [26]. It have been a great concern whether there
exists a counterexample having trans.degk L = 3 since 1958’s. The author [16]
settled this problem in the negative by giving counterexamples in case of n = 4.
The author [17] also gave the first counterexamples for n = 3. Due to Zariski [30],
n = 3 is the smallest possible dimension where a counterexample can exist, and
if L is a counterexample for n = 3, then k(x)/L is necessarily an algebraic ex-
tension. The counterexamples in [17] are the first counterexamples in the case
where k(x)/L is an algebraic extension.

In the present article, we survey recent results on Hilbert’s Fourteenth Prob-
lem, focusing on the case where k(x)/L is an algebraic extension. We discuss
relations between finite generation of the k-algebra L ∩ k[x] and the structure
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of the extension k(x)/L by giving a series of quite simple counterexamples (Sec-
tion 2). We also sketch an outline of a general construction of counterexamples
(Section 3). This construction covers all the counterexamples of Roberts type.
In Appendix, we collect some other kind of Roberts type counterexamples which
involve the kernels of derivations.

To conclude this section, we remark on two important and well studied prob-
lems which are both special cases of Hilbert’s Fourteenth Problem - the problem
of finite generation of the invariant ring for a group action on k[x], and that of
the kernel of a derivation of k[x]. Hilbert originally studied the former problem,
especially in the case where the action is linear. Nagata [26] in particular settled
this original problem of Hilbert in the negative. Roberts’ counterexample [28] is
easily described as the kernel of a derivation (cf. [3]). However, k(x)/L never be
an algebraic extension if L is a counterexample in these special cases.

2. Algebraic extensions

First, we recall an important affirmative result on Hilbert’s Fourteenth Prob-
lem.

Theorem 2.1 (Noether [27]). Let G be a finite group acting on the k-algebra
k[x]. Then, the invariant ring k[x]G is finitely generated.

An action of G on k[x] naturally extends to that on k(x). Then, we have
k[x]G = k(x)G ∩ k[x]. Hence, the theorem above is an affirmative answer to
Hilbert’s Fourteenth Problem. Furthermore, k(x)/k(x)G is an algebraic extension
if G is a finite group.

In what follows, we assume that k is of characteristic zero, and give a series of
counterexamples to Hilbert’s Fourteenth Problem in the case where k(x)/L is an
algebraic extension.

Assume that n = 3. Consider the Laurent polynomials

(2.1) f1 = (1 + x1x
d2

2 )x1−d
2 , f2 = (1 − x1x

d2

2 )x−d
2 , f3 = x−1

2 + x3,

where d ∈ N.
As a consequence of [19, Theorem 1.1 and Proposition 5.1], we have the fol-

lowing

Theorem 2.2. Assume that n = 3. Then, [k(x) : k(f1, f2, f3)] = d. If d > 3,
then k(x)/k(f1, f2, f3) is not a Galois extension and k(f1, f2, f3) ∩ k[x] is not
finitely generated.

Note that k(f1, f2, f3, x2) = k(x1, x2, x3) and xd
2 + f1f

−1
2 xd−1

2 − 2f−1
2 = 0.

From Theorems 2.1 and 2.2, one might expect that L∩k[x] is finitely generated
whenever k(x)/L is a Galois extension, that is, L is the invariant field of a group
action on k(x). However, this is not true.

Assume that n = 4. The field k(x) is generated by

(2.2) v1 = x−1
1 , v2 = x6

1x2 − x−1
1 , v3 = x4

1x3 + x−3
1 , v4 = x4 + x−1

1
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over k(v1, v2, v3, v4) = k(x). So, we may define an action of Z/2Z = {1, σ} on
k(x) by

(2.3) σ · v1 = v2, σ · v2 = v1, σ · v3 = v3, σ · v4 = v4.

Then, k(x)/k(x)Z/2Z is a Galois extension of degree two, and

k(x)Z/2Z = k(v1 + v2, v1v2, v3, v4)
= k(x6

1x2, x
−1
1 (x6

1x2 − x−1
1 ), x4

1x3 + x−3
1 , x4 + x−1

1 ).

As a consequence of the main theorem of [20], we have the following

Theorem 2.3. The k-algebra k(x)Z/2Z ∩ k[x] is not finitely generated.

By Zariski [30] and Theorems 2.2 and 2.3, we obtain the following table.

Answers to Hilbert’s Fourteenth Problem

n 6 2 n = 3 n > 4
[k(x) : L] = 2 Affirmative ? Negative
[k(x) : L] > 3 Affirmative Negative Negative

Problem 2.1. Assume that n = 3. Let L be a subfield of k(x) containing k such
that [k(x) : L] = 2. Is the k-subalgebra L ∩ k[x] of k[x] finitely generated?

Note that k(x)/L is necessarily a Galois extension if [k(x) : L] = 2, while we
do not have a counterexample with [k(x) : L] = 2 when n = 3. So, one might
expect that L ∩ k[x] is finitely generated whenever n = 3 and k(x)/L is a Galois
extension. However, this is not true.

Assume that n = 3. Let δ1 and δ2 be natural numbers with δ1 < δ2 such that
δ2 is not divisible by δ1, let δ0 be the greatest common divisor of δ1 and δ2, and
let ε be an integer at least equal to the least common multiple of δ1 and δ2. We
define Laurent polynomials by

(2.4) g1 = (x−1
2 − x1x

ε
2)

δ1, g2 = (x−1
2 + x1x

ε
2)

δ2, g3 = x−δ0
2 + x3.

The following result is mentioned in [19].

Theorem 2.4. The k-algebra k(g1, g2, g3) ∩ k[x] is not finitely generated.

We claim that k(x)/k(g1, g2, g3) is a Galois extension if k contains a primitive
δith root ζi of unity for i = 1, 2. In fact, observe that the field k(x) is generated
by ḡ1 := x−1

2 − x1x
ε
2, ḡ2 = x−1

2 + x1x
ε
2 and g3 over k. Define σ1, σ2 ∈ Autk k(x)

by
σ1(ḡ1) = ζ1ḡ1, σ1(ḡ2) = ḡ2, σ1(g3) = g3

σ2(ḡ1) = ḡ1, σ2(ḡ2) = ζ2ḡ2, σ2(g3) = g3,

and let H be the subgroup of Autk k(x) generated by σ1 and σ2. Then, we have
k(x)H = k(g1, g2, g3). Therefore, k(x)/k(g1, g2, g3) is a Galois extension. The
Galois group H is isomorphic to (Z/δ1Z) × (Z/δ2Z). Note that the assumption
on δ1 and δ2 implies that ζ1 or ζ2 cannot be a rational number.
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Problem 2.2. Assume that n = 3 and k = Q. Let L be a subfield of k(x)
containing k such that k(x)/L is a Galois extension. Is the k-subalgebra L∩ k[x]
of k[x] always finitely generated?

In the cases of Theorems 2.3 and 2.4, the Galois groups are abelian. So, one
may want to ask for which finite group G does there exist L for which L ∩ k[x]
is not finitely generated and k(x)/L is a Galois extension with Galois group
isomorphic to G. The answer is any finite group G 6= {1} as follows.

Since the case where G = Z/2Z is treated in Theorem 2.3, let us assume that
the number |G| of elements of G is at least three. Assume further that G is acting
faithfully and transitively on the subset {1, . . . , n − 1} of indices. Since G acts
on itself faithfully and transitively by left multiplication, such an action always
exists for n = |G|+1. On the other hand, G cannot act faithfully on {1, 2}, since
|G| > 3 by assumption. Accordingly, the assumption above implies that n > 4.
The field k(x) is generated by

(2.5) w1 = (n − 2)x−1
1 , wi = x6

1xi − x−1
1 (i = 2, . . . , n − 1), wn = xn + x−1

1

over k. We define an action of G on k(x) by

(2.6) σ · wi = wσ·i (i = 1, . . . , n − 1) and σ · wn = wn for each σ ∈ G.

Since this action is faithful, the Galois group of k(x)/k(x)G is isomorphic to G.
The following theorem is a consequence of the main result of [20].

Theorem 2.5. For the action of G on k(x) defined above, k(x)G ∩ k[x] is not
finitely generated.

3. Construction of counterexamples

In this section, we sketch an outline of the construction of Roberts type coun-
terexamples. First, we illustrate the mechanism which makes a k-subalgebra R of
k[x] not to be finitely generated. Roughly speaking, there are two major factors
about it:

• R contains a certain infinite system of polynomials;
• R does not contain certain kind of polynomials.

For instance, let us look at the k-subalgebra

(3.1) R = k[{xi
1x

j
2 | i ∈ Z>0, j ∈ N}],

where Z>0 denotes the set of nonnegative integers. It is easy to see that R is not
finitely generated. The reason is that R contains xi

1x2 for each i ∈ Z>0, whereas
R does not contain xi

1 for any i ∈ N. The next figure shows (i, j) ∈ (Z>0)2 such
that xi

1x
j
2 belongs to R.

Now, consider the two conditions for a k-subalgebra R of k[x]:
(a) There exists g ∈ k[x] \ k such that R contains a polynomial of the form

gxl
n + (terms of lower degree in xn) for each l ∈ N.
(b) No polynomial in which the monomial xl

n appears with nonzero coefficient
is contained in R for any l ∈ N.
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j

i(0, 0)

R contains xi
1x2 for each i ∈ Z>0

R does not contain xi
1 for any i ∈ N

Proposition 3.1 (cf. [19, Lemma 2.1]). If a k-subalgebra R of k[x] satisfies the
conditions (a) and (b), then R is not finitely generated.

Next, we discuss how to construct a field L which will be a Roberts type
counterexample. Let Φ : Zm×Zr → Qn be an injective homomorphism of groups
for m, r ∈ Z>0, and A a k-subalgebra of the polynomial ring k[y] = k[y1, . . . , ym]
in m variables over k. We define a k-subalgebra AΦ of k(x) as follows:

Let k[y±1] and k[z±1] be the Laurent polynomial rings in y1, . . . , ym and
z1, . . . , zr over k, respectively. We denote yα = yα1

1 · · ·yαm
m , zβ = zβ1

1 · · ·zβr
r and

xγ = x
γ1
1 · · ·xγn

n for each α = (α1, . . . , αm), β = (β1, . . . , βr) and γ = (γ1, . . . , γn).
Let k(Φ−1(Zn)) be the field generated by yα ⊗ zβ for (α, β) ∈ Φ−1(Zn) over k.
Since Φ is injective, a homomorphism Φ∗ : k(Φ−1(Zn)) → k(x) is defined by
Φ∗(yα ⊗ zβ) = xΦ((α,β)) for each (α, β) ∈ Φ−1(Zn). Then, we define

(3.2) AΦ = Φ∗((A ⊗k k[z±1]) ∩ k(Φ−1(Zn))).

By definition, AΦ is contained in the Laurent polynomial ring in x1, . . . , xn

over k, but is not contained in k[x] in general. The important fact is that there
exist a great many choices of A and Φ for which R = AΦ ∩ k[x] satisfies the
conditions (a) and (b). By Proposition 3.1, a field L is a counterexample to
Hilbert’s Fourteenth Problem if L ∩ k[x] = AΦ ∩ k[x] for such A and Φ.

Proposition 3.2. Let Φ : Zm × Zr → Qn be an injective homomorphism of
groups, and A a k-subalgebra of k[y]. If k(A)∩ k[y±1] ⊂ A, then k(AΦ)∩ k[x] =
AΦ ∩k[x]. Here, k(R) denotes the field of fractions of R for each integral domain
R.

Proposition 3.2 is proved as follows. It suffices to show that k(AΦ)∩k[x] ⊂ AΦ.
For each f ∈ k(AΦ)∩k[x], there exist g1, g2 ∈ (A⊗kk[z±1])∩k(Φ−1(Zn)) such that
Φ∗(g1/g2) = Φ∗(g1)/Φ∗(g2) = f . By definition, Φ−1

∗ (k[x]) ⊂ k[y±1] ⊗k k[z±1].
So, g1/g2 belongs to k[y±1] ⊗k k[z±1]. Write g1/g2 =

∑
β∈Zr aβ ⊗ zβ , where

aβ ∈ k[y±1] for each β. To conclude that f ∈ AΦ, it remains only to verify that aβ

is in A for each β. Suppose the contrary. Then, g′1 = g1−g2
∑

β∈Zr(aβ −a′β)⊗zβ

is a nonzero element of A ⊗k k[z±1], and g′1/g2 =
∑

β∈Zr a′β ⊗ zβ 6= 0. Here,
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a′β = aβ if aβ 6∈ A, and a′β = 0 otherwise for each β. Regard g′1/g2, g′1 and g2

as Laurent polynomials in z1, . . . , zr over k[y±1]. By taking the leading terms
for some term ordering, we get an equality (a′β0

⊗ zβ0)(c ⊗ zβ2) = b ⊗ zβ1 from
the equality (g′1/g2)g2 = g′1, where β0, β1, β2 ∈ Zr and b, c ∈ A \ {0}. Then,
a′β0

= b/c. Hence, a′β0
belongs to k(A), and thus belongs to A by the assumption

that k(A) ∩ k[y±1] ⊂ A. This contradicts that a′β0
is not an element of A.

Therefore, aβ is in A for each β, thereby completing the proof.
We note that every counterexample of Roberts type has the form k(AΦ) for

some A and Φ. Of course, we need to choose Φ and A carefully so that R =
AΦ∩k[x] satisfies (a) and (b), but we omit the detailed discussion on this subject
here.

Finally, we list A and Φ used to realize the counterexamples given in Section 2.
To construct k(f1, f2, f3), we take (m, r) = (3, 0) and

A = k[(1 + y1)yd−1
2 , (1− y1)yd

2 , y2 + y3],

and define Φ : Z3 → Q3 by Φ((α1, α2, α3)) = (α1, d
2α1 − α2, α3).

To construct k(x)Z/2Z, we take (m, r) = (4, 0) and

A = k[y2, y1(y2 − y1), y3 + y3
1 , y4 + y1],

and define Φ : Z4 → Q4 by Φ((α1, α2, α3, α4)) = (−α1 + 6α2 + 4α3, α2, α3, α4).
To construct k(g1, g2, g3), we take (m, r) = (3, 0) and

A = k[(y2 − y1)δ1, (y2 + y1)δ2 , y−δ0
2 + y3],

and define Φ : Z3 → Q3 by Φ((α1, α2, α3)) = (α1, εα1 − α2, α3).
To construct k(x)G, we take m = n, r = 0 and A = k[w′

1, . . . , w
′
n−1]

G[yn + y1].
Here, w′

1 = (n− 2)y1 and w′
i = yi − y1 for i = 2, . . . , n− 1, and the action of G on

k[w′
1, . . . , w

′
n−1] is defined by σ ·w′

i = w′
σ·i for each i. We define Φ : Zn → Qn by

Φ((α1, . . . , αn)) = (−α1 + 6(α2 + α3 + · · ·+ αn−1), α2, α3, . . . , αn) .

We note that, in the cases of the counterexamples of Roberts [28], Freuden-
burg [9], and Daigle-Freudenburg [1], we take (m, r) to be (4, 3), (4, 2) and (4, 1),
respectively.

4. Appendix

In this appendix, we collect some typical counterexamples of Roberts type
which are obtained as the kernels of derivations.

Let R be a commutative k-domain. A k-linear map D : R → R is called a
derivation if D(fg) = D(f)g + fD(g) for each f, g ∈ R. Then, the kernel

RD = {f ∈ R | D(f) = 0}
of D becomes a k-subalgebra of R. Note that D extends naturally to a derivation
of the field K of fractions of R, and RD = KD ∩ R by definition. Therefore,
the problem of finite generation of k[x]D is a special case of Hilbert’s Fourteenth
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Problem if D is a derivation of k[x]. Since k is of characteristic zero, we get
trans.degk k(x)D < trans.degk k(x) = n if D 6= 0. Consequently, k[x]D is always
finitely generated if n 6 3 by Zariski [30]. On the other hand, there exists D such
that k[x]D is not finitely generated if n = 4. For instance, consider a derivation
of k[x] defined by

D(x1) = tx1x
t+1
3 + tx1x

t+1
2 + (1− t)xt+2

1

D(x2) = tx2x
t+1
1 + tx2x

t+1
3 + (1− t)xt+2

2

D(x3) = tx3x
t+1
2 + tx3x

t+1
1 + (1− t)xt+2

3

D(x4) = xt
1x

t
2x

t
3,

where t ∈ Z>0. Then, we have the following

Theorem 4.1 (cf. [18]). Assume that n = 4. Then, the kernel of the derivation
D defined as in (4.1) is not finitely generated if t > 3.

A derivation D of k[x] is said to be locally nilpotent if, for each f ∈ k[x], there
exists l ∈ N such that Dl(f) = 0. We say that D is triangular if D(xi) belongs to
k[x1, . . . , xi−1] for i = 1, . . . , n, and that D is nice if D2(xi) = 0 for i = 1, . . . , n.
A triangular derivation and a nice derivation are both locally nilpotent.

It is known that k[x]D is always finitely generated if D is a locally nilpotent
derivation of k[x] such that D(f) = 1 for some f ∈ k[x] (see for example [6,
Corollary 1.3.23]). Van den Essen [4, Conjecture 6.12] conjectured that there
exists a derivation D of k[x] with D(f) = 1 for some f ∈ k[x] such that k[x]D is
not finitely generated in case D is not locally nilpotent.

This conjecture was solved in the affirmative by the author.

Theorem 4.2 ([23]). Assume that n > 5 and t > 3. Let D̃ be the extension of
the derivation D defined as in (4.1) obtained by setting D̃(x5) = 1 and D̃(xi) = 0
for i = 6, . . . , n. Then, k[x]D̃ is not finitely generated.

We note that the derivation D defined as in (4.1) is not locally nilpotent. The
following problem remains unsettled.

Problem 4.1. Assume that n = 4. Is k[x]D finitely generated whenever D is a
locally nilpotent derivation of k[x]?

Daigle-Freudenburg [1] gave a triangular derivation whose kernel is not finitely
generated in case of n = 5, while Daigle-Freudenburg [2] showed that the kernel
of a triangular derivation is always finitely generated if n = 4 (see also [24]). It
is known that a triangular derivation D of k[x] necessarily satisfies the following
condition if n > 2:

(†) There exists f1, . . . , fn ∈ k[x] with D(f1) = 0 such that k[f, f2, . . . , fn] =
k[x] .
In case n > 2, it is difficult to construct a locally nilpotent derivation of k[x] not



254 SHIGERU KURODA

satisfying (†). The first example of such a locally nilpotent derivation was given
by Freudenburg [8] as follows (see also [7], [10]).

Recall that, for each (n − 1)-tuple g = (g2, . . . , gn) of elements of k[x], a
derivation ∆g of k[x] is defined by ∆g(f) = J(f, g2, . . . , gn) for each f ∈ k[x].
Here, J(h1, . . . , hn) denotes the determinant of the n by n matrix (∂hi/∂xj)i,j

for h1, . . . , hn ∈ k[x].

Theorem 4.3 (Freudenburg [8]). Assume that n = 3. The derivation ∆(F,G) of
k[x] is locally nilpotent and does not satisfy (†) for F = x1x3 + x2

2 and G =
x3F

2 + 2x2
1x2F − x5

1.

Using ∆(F,G) above, we define a derivation D of k[x] for each n > 5 by
(4.1)

D(xi) = FG3∆(F,G)(xi) (i = 1, 2, 3), D(x4) = F 2x12
1 RS, D(x5) = G3x1RS

and D(xi) = FG3x2
i−1R (i = 6, . . . , n), where R = x3

1−Fx2 and S = Fx3+2x2
1x2.

Then, we have the following

Theorem 4.4 (cf. [22, Theorem 1.1]). Assume that n > 5. Then, the derivation
D of k[x] defined as above is locally nilpotent and does not satisfy (†). The kernel
k[x]D is not finitely generated.

On what follows, we consider derivations of the polynomial ring

k[x,y] = k[x1, . . . , xm, y1, . . . , yn]

in m + n variables over k for m, n ∈ Z>0 satisfying D(xi) = 0 for each i.
We say that D is elementary if D(yi) belongs to k[x1, . . . , xm] for i = 1, . . . , n.

It is easy to see that an elementary derivation is nice, and hence locally nilpotent.
Van den Essen-Janssen [5] showed that k[x,y]D is finitely generated if m 6 2 or
n 6 2 in case D is elementary. Khoury [13] showed that k[x,y]D is finitely
generated if n = 3, D is elementary and D(yi) is a monomial for each i.

Assume that n = m + 1 and t ∈ Z>0. Kojima-Miyanishi [12] studied the
elementary derivation Dt,m of k[x,y] defined by

(4.2) D(yi) = xt+1
i for i = 1, . . . , m and D(yn) = (x1 · · ·xm)t.

Theorem 4.5 (Kojima-Miyanishi [12]). If m > 3 and t > 2, then the kernel of
Dt,m is not finitely generated.

Roberts’ counterexample [28] is obtained as the special case where m = 3.
If t = 0, then Dt,m(yn) = 1, and so k[x,y]Dt,m is finitely generated for any

m > 0 as mentioned. If m 6 2, then k[x,y]Dt,m is finitely generated for any t > 0
due to van den Essen-Janssen [5] or Khoury [13]. Kurano [14] showed that the
kernel of D1,3 is generated by twelve elements. Finally, we showed the following

Theorem 4.6 ([15, Corollary 1.5]). If m > 4, t > 1 or m = 3, t > 2, then the
kernel of Dt,m is not finitely generated.

Thereby, finite generation of k[x,y]Dt,m was completely determined.
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Finite generation of k[x,y]Dt,m

m 6 2 m = 3 m > 4
t = 1 Finitely generated Finitely generated Not finitely generated
t > 2 Finitely generated Not finitely generated Not finitely generated

Next, we consider the elementary derivation of k[x,y] defined by D(yi) = xδi

for i = 1, . . . , n, where δi ∈ (Z>0)m for each i. Let εi
i,j be the ith component of

δi − δj for each i and j.
In the notation above, we have the following

Theorem 4.7 ([15, Theorem 1.4]). Assume that m > 3, n = 4 and εi
i,j > 0 for

each 1 6 i 6 3, 1 6 j 6 4 with i 6= j. If

(4.3)
ε11,4

min{ε11,2, ε
1
1,3}

+
ε22,4

min{ε22,3, ε
2
2,1}

+
ε33,4

min{ε33,1, ε
3
3,2}

6 1,

then k[x,y]D is not finitely generated.

The following conjecture remains unsolved.

Conjecture 4.1 ([15, Conjecture 4.8]). Assume that m = 3, n = 4, and εi
i,j > 0

for any i 6= j. If the inequality (4.3) is not satisfied, then k[x,y]D is finitely
generated.

In case of (m, n) = (4, 2), the kernel of an elementary derivation is always
finitely generated as mentioned, while Freudenburg [11] gave a nice derivation
of k[x,y] whose kernel is not finitely generated. We generalize the derivation of
Freudenburg as follows.

For nonnegative integers u, v and αi, βi, wi for i = 1, 2, set

P = xα2
2 y1 − xα1

1 y2, Q1 = xα1
1 y3 − y1P

u+1 , Q2 = xα2
2 y3 − y2P

u+1.

We define a derivation D of k[x,y] for (m, n) = (2, 4) by D(xi) = 0 for i = 1, 2,
and

(4.4) D(yi) = xαi
i for i = 1, 2, D(y3) = P u+1, D(y4) = xβ1

1 xβ2
2 P vQw1

1 Qw2
2 .

Then, it is readily verified that D(P ) = 0 and D(Qi) = 0 for i = 1, 2. This
implies that D(yi)2 = 0 for each i, and hence D is a nice derivation.

Theorem 4.8 (cf. [21]). Assume that (m, n) = (2, 4). Then, the kernel of the
derivation D defined as in (4.4) is not finitely generated if αi > 1, βi > 1 and
wi > 0 for i = 1, 2, and

0 6 v 6 u and
β1

α1
+

β2

α2
6 1.

The nice derivation of Freudenburg [11] is the special case where αi = t + 1,
βi = t, wi = 0 for i = 1, 2 and u = v = t with t > 2. At present, it is
not known whether the kernel of a nice derivation of k[x,y] is always finitely
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generated if (m, n) = (1, 4). On the other hand, Daigle-Freudenburg [1] gave a
triangular derivation whose kernel is not finitely generated when (m, n) = (1, 4).
We generalize it as follows.

Let ti be a nonnegative integers for i = 1, 2, 3, 4. We define a derivation D of
k[x,y] for (m, n) = (1, 4) by D(x1) = 0, and

(4.5) D(y1) = xt1
1 , D(y2) = xt2

1 y1, D(y3) = xt3
1 y2, D(y4) = xt4

1 .

Theorem 4.9 (cf. [21]). Assume that (m, n) = (1, 4) and D is the derivation
of k[x,y] defined as in (4.5). If t4 < t1 and 4t1 + t2 + max{t2, t3} 6 6t4, then
k[x,y]D is not finitely generated.

The triangular derivation of Daigle-Freudenburg [1] is the special case where
t1 = t + 1, t2 = t3 = 0 and t4 = t with t > 2.

The following conjecture also remains unsolved.

Conjecture 4.2. Assume that (m, n) = (1, 4) and D is a derivation of k[x,y]
defined as in (4.5). If t4 < t1 and 4t1 + t2 + max{t2, t3} > 6t4, then k[x,y]D is
finitely generated.
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Mathematics, Vol. 190, Birkhäuser, Basel, Boston, Berlin, 2000.

[7] G. Freudenburg, Local slice constructions in k[X,Y, Z], Osaka J. Math. 34 (1997), 757–
767.

[8] G. Freudenburg, Actions of Ga on A3 defined by homogeneous derivations, J. Pure Appl.
Algebra 126 (1998), 169–181.

[9] G. Freudenburg, A counterexample to Hilbert’s fourteenth problem in dimension six, Trans-
form. Groups 5 (2000), 61–71.

[10] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math-
ematical Sciences, 136, Invariant Theory and Algebraic Transformation Groups, VII,
Springer-Verlag, Berlin, 2006.



HILBERT’S FOURTEENTH PROBLEM AND ALGEBRAIC EXTENSIONS 257

[11] G. Freudenburg, A survey of counterexamples to Hilbert’s fourteenth problem, Serdica
Math. J. 27 (2001), 171–192.

[12] H. Kojima and M. Miyanishi, On Roberts’ counterexample to the fourteenth problem of
Hilbert, J. Pure Appl. Algebra 122 (1997), 277–292.

[13] J. Khoury, On some properties of elementary monomial derivations in dimension six, J.
Pure Appl. Algebra 156 (2001), 69–79.

[14] K. Kurano, Positive characteristic finite generation of symbolic Rees algebra and Roberts’
counterexamples to the fourteenth problem of Hilbert, Tokyo J. Math. 16 (1993), 473-496.

[15] S. Kuroda, A generalization of Roberts’ counterexample to the Fourteenth Problem of
Hilbert, Tohoku Math. J. 56 (2004), 501–522.

[16] S. Kuroda, A counterexample to the Fourteenth Problem of Hilbert in dimension four, J.
Algebra 279 (2004), 126–134.

[17] S. Kuroda, A counterexample to the Fourteenth Problem of Hilbert in dimension three,
Michigan Math. J. 53 (2005), 123–132.

[18] S. Kuroda, Fields defined by locally nilpotent derivations and monomials, J. Algebra 293
(2005), 395–406.

[19] S. Kuroda, Hilbert’s Fourteenth Problem and algebraic extensions, J. Algebra 309 (2007),
282–291.

[20] S. Kuroda, Hilbert’s Fourteenth Problem and invariant fields of finite groups, preprint.
[21] S. Kuroda, Triangular derivations having infinitely generated kernels, preprint.
[22] S. Kuroda, Locally nilpotent derivations of maximal rank having infinitely generated ker-

nels, preprint.
[23] S. Kuroda, On the kernel of a derivation having a slice, in preparation.
[24] S. Maubach, Triangular monomial derivations on k[X1,X2,X3,X4] have kernel generated

by at most four elements, J. Pure Appl. Algebra 153 (2000) 165–170.
[25] S. Mukai, Counterexample to Hilbert’s fourteenth problem for the 3-dimensional additive

group, Preprint 1343, Research Institute for Mathematical Sciences, Kyoto University,
2001.

[26] M. Nagata, On the Fourteenth Problem of Hilbert, in Proceedings of the International
Congress of Mathematicians, 1958, Cambridge Univ. Press, London, New York, 1960,
459–462.

[27] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77
(1916), 89–92.

[28] P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new
counterexample to Hilbert’s fourteenth problem, J. Algebra 132 (1990), 461–473.

[29] R. Steinberg, Nagata’s example, in algebraic groups and Lie groups, Austral. Math. Soc.
Lect. Ser. 9, Cambridge Univ. Press, 1997, 375–384.
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