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HERBIE: A CUBIC LINEAR COUNTEREXAMPLE
TO THE DEPENDENCE PROBLEM

MICHIEL DE BONDT

Abstract. We show that there exists a cubic linear counterexample to the
(Homogeneous) Dependence Problem in dimension 53. More generally, there
exists a power linear counterexample of degree d to the (H)DP (in sufficiently
large dimensions), if and only if there exists any counterexample of degree d
to the (H)DP.

1. Introduction

The study of power linear maps started in 1983, when L.M. Drużkowksi showed
that in order to prove the Jacobian Conjecture, one only needs to prove the cubic
linear case, see [6]. The Jacobian Conjecture asserts that for a polynomial map

F = (F1, F2, . . . , Fn) ∈ C[x]n

with C[x] = C[x1, x2, . . . , xn], the so-called Keller condition

detJF ∈ C∗

where J F is the Jacobian of F , implies that F is invertible, i.e. there exists a
polynomial map

G = (G1, G2, . . . , Gn)

such that
F (G) = G(F ) = x

where x = (x1, x2, . . . , xn) is the identity map.
Now Drużkowski showed that in order to prove this conjecture, one may assume

that F is of special cubic linear form, i.e.

(1.1) F = (x1 + L3
1, x2 + L3

2, . . . , xn + L3
n) = x + L∗3

where Li = Ai1x1 + Ai2x2 + · · ·+ Ainxn is a linear form for each i. On the other
hand, if the Jacobian Conjecture turns out not to be true, then one can find a
counterexample of the form (1.1) as well.
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A conjecture that is studied in connection to the JC is the so-called Linear De-
pendence Problem for (Homogeneous) Jacobians. This problem is the following:
Assume H is a homogeneous map in dimension n of degree d > 2, such that JH
is nilpotent. Is there a vector v over C such that vt · JH = 0. Or equivalently:
is there a vector v over C such that 〈v, H〉 = 0, where 〈·, ·〉 is the usual bilinear
product. We call this problem HDP (n, d). We get a more general problem if H
does not need to be homogeneous, which we call GDP (n, d).

It is known that GDP (n, d) has an affirmative answer, if and only if either
n 6 2 or n = 3 and d 6 3, see e.g. [8]. The homogeneous variant of this
conjecture has an affirmative answer for n 6 3, see [1]. Also, HDP (4, 2) and
HDP (4, 3) have affirmative answers, see e.g. [8]. But in [2], it is shown that
HDP (5, d) has a negative answer for all even d > 6. Furthermore, HDP (n, d)
has a negative answer for all n > 6 and d > 4 and HDP (n, 3) has a negative
answer for all n > 10.

So there exists a cubic counterexample to the homogeneous dependence prob-
lem in dimension 10. We show that there exists a counterexample of cubic lin-
ear form as well. The proof essentially uses the same reduction techniques as
Drużkowksi used for the JC, which were later refined by G. Gorni and G. Zampieri
to relate other problems to the special cubic linear case as well, see [9] or [8, §6.4].

In section 1, we show that there exists a counterexample to the power linear
dependence problem, i.e. a counterexample of cubic linear form to the homoge-
neous dependence problem. In section 2, we study a conjecture on power linear
maps of large degree, formulated by He Tong on the conference.

2. Power linear counterexamples to the dependence problem

The map

H =




6x10(x9x1 − x10x2)
6x9(x9x1 − x10x2)
6x10(x9x3 − x10x4)
6x9(x9x3 − x10x4)
6x10(x9x5 − x10x6)
6x9(x9x5 − x10x6)
6x9(x1x4 − x2x3)
6x9(x3x6 − x4x5)

6(x8(x1x4 − x2x3) − x7(x3x6 − x4x5))
x3

9




is a cubic homogeneous counterexample to the Linear Dependence Problem (JH
is nilpotent). One can verify that there are 53 cubic linear powers such that each
component of H can be written as a Z-linear combination of these powers:

H1 = (x1 + x9 + x10)3 − (x1 + x9)3 − (x1 + x10)3 + x3
1 −

(x9 + x10)3 + x3
9 + x3

10 − (x2 + x10)3 − (x2 − x10)3 + 2x3
2
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H2 = −(x2 + x9 + x10)3 + (x2 + x9)3 + (x2 + x10)3 − x3
2 +

(x9 + x10)3 − x3
9 − x3

10 + (x1 + x9)3 + (x1 − x9)3 − 2x3
1

H3 = (x3 + x9 + x10)3 − (x3 + x9)3 − (x3 + x10)3 + x3
3 −

(x9 + x10)3 + x3
9 + x3

10 − (x4 + x10)3 − (x4 − x10)3 + 2x3
4

H4 = −(x4 + x9 + x10)3 + (x4 + x9)3 + (x4 + x10)3 − x3
4 +

(x9 + x10)3 − x3
9 − x3

10 + (x3 + x9)3 + (x3 − x9)3 − 2x3
3

H5 = (x5 + x9 + x10)3 − (x5 + x9)3 − (x5 + x10)3 + x3
5 −

(x9 + x10)3 + x3
9 + x3

10 − (x6 + x10)3 − (x6 − x10)3 + 2x3
6

H6 = −(x6 + x9 + x10)3 + (x6 + x9)3 + (x6 + x10)3 − x3
6 +

(x9 + x10)3 − x3
9 − x3

10 + (x5 + x9)3 + (x5 − x9)3 − 2x3
5

H7 = (x1 + x4 + x9)3 − (x1 + x4)3 − (x1 + x9)3 − (x4 + x9)3 +
x3

1 + x3
4 − (x2 + x3 + x9)3 + (x2 + x3)3 + (x2 + x9)3 +

(x3 + x9)3 − x3
2 − x3

3

H8 = (x3 + x6 + x9)3 − (x3 + x6)3 − (x3 + x9)3 − (x6 + x9)3 +
x3

3 + x3
6 − (x4 + x5 + x9)3 + (x4 + x5)3 + (x4 + x9)3 +

(x5 + x9)3 − x3
4 − x3

5

H9 = (x1 + x4 + x8)3 − (x1 + x4)3 − (x8 + x1)3 − (x8 + x4)3 +
x3

1 + 2x3
4 − (x2 + x3 + x8)3 + (x2 + x3)3 + (x8 + x2)3 +

(x8 + x3)3 − x3
2 − (x3 + x6 + x7)3 + (x3 + x6)3 +

(x7 + x3)3 + (x7 + x6)3 − x3
6 − 2x3

3 + (x4 + x5 + x7)3 −
(x4 + x5)3 − (x7 + x4)3 − (x7 + x5)3 + x3

5

H10 = x3
9

Furthermore, one can check that these 53 linear powers are linearly independent.
The number 53 is responsible for the dimension of the cubic linear counterexample
to the homogeneous dependence problem.

It is not known whether there exists a quadratic counterexample to the HDP .
But there does exist a quadratic counterexample to the GDP , namely the map

Ĥ =




x2

x2
1 − x3

2x1x2 − x4

x2
2




is a quadratic counterexample to GDP (4, 2). Hence the map

H =




x2

x2
1 − x3 + 1

2x1x2 − x4 − 2
x2

2 + 1




is a quadratic counterexample to the GDP as well.
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Now H = B · G, where

G =




(x2 + 1)2

(x2 − 1)2

(x1 + 1)2

(x1 + x2)2

(2x1 + x3 + 1)2

(2x1 + x3 − 1)2

(x3 + x4 + 1)2

(x3 + x4 − 1)2




and

B =




1
4 −1

4 0 0 0 0 0 0
0 0 1 0 −1

4
1
4 0 0

−1
2 −1

2 −1 1 1
4 −1

4 −1
4

1
4

1
2

1
2 0 0 0 0 0 0




Definition 2.1. We call a map quadratic affine, if and only if it is of the form
(L2

1, L
2
2, . . . , L

2
n) with deg Li 6 1 for all i.

G = (L2
1, L

2
2, . . . , L

2
8) is quadratic affine with

L =




L1

L2

L3

L4

L5

L6

L7

L8




=




x2 + 1
x2 − 1
x1 + 1
x1 + x2

2x1 + x3 + 1
2x1 + x3 − 1
x3 + x4 + 1
x3 + x4 − 1




Theorem 2.1. If J (BG) is nilpotent, then J (G(Bx)) is nilpotent as well.

Proof. Assume (J (BG))n = 0. Then

J (G(Bx))n+1 = ((JG)x=Bx · B)n+1

= (JG)x=Bx · (B · (JG)x=Bx)n · B
= (JG)x=Bx · (J (BG))n

x=Bx · B
= 0

whence J (G(Bx)) is nilpotent.

Since J (BG) = JH is nilpotent, so is J (G(Bx)),
so G(Bx) is a candidate counterexample to the GDP .

The following properties of G = (L2
1, L

2
2, . . . , L

2
8) and B hold:

• L2
1, L

2
2, . . . , L

2
8 are linearly independent over C,

• Li ∈ C[x1, x2, x3, x4] for all i,
• (x1, x2, x3, x4) 7→ B(x1, x2, x3, x4, 0, 0, 0, 0) is invertible,
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The above properties imply that G(Bx) is a quadratic affine counterexample to
the GDP .

The following properties of H hold for all i : 1 6 i 6 8:

Hi =
n∑

j=1

BijL
d
i

where Bij is the j-th entry of the i-th row of B.

Lemma 2.1. Let f be a homogeneous polynomial of degree d over C. Then f
can be written as a sum of d-th powers Ld

i of linear forms.

Proof. Since each polynomial is a sum of monomials, we may assume that f
is a monomial. Assume first that f = xr

1x
d−r
2 . We show that f can be writ-

ten as a sum of xd
1, (x1 + x2)d, (x1 + 2x2)d, . . . , (x1 + dx2)d. So assume that

this is not the case. The space of homogeneous polynomials in x1 and x2 of
degree d is (d + 1)-dimensional, for it is generated by the d + 1 polynomials
xd

1, x
d−1
1 x2, . . . , x1x

d−1
2 , xd

2. Since the d + 1 linear powers xd
1, (x1 + x2)d, (x1 +

2x2)d, . . . , (x1 +dx2)d do not generate all homogeneous polynomials in x1 and x2

of degree d, they are linearly dependent, say that

(2.1) λ0x
d
1 + λ1(x1 + x2)d + λ2(x1 + 2x2)d + · · ·+ λd(x1 + dx2)d = 0

with λi 6= 0 for some i. We show by induction on d that this is impossible.
Differentiating (2.1) to x2 gives

λ1(x1 + x2)d−1 + 2λ2(x1 + 2x2)d−1 + · · ·+ dλd(x1 + dx2)d−1 = 0.

Substituting x1 = x1 − x2 and writing λ′
i := (i + 1)λi+1 gives

λ′
0x

d−1
1 + λ′

1(x1 + x2)d−1 + · · ·+ λ′
d−1(x1 + (d − 1)x2)d−1 = 0

and λi = 0 for all i follows by induction on d.
Assume next that f is a monomial in m > 2 indeterminates and that every

monomial of degree d in less than m indeterminates can be written as a sum of
linear d-th powers. Then f = gh, where g is a bivariate monomial of degree t
and h is a monomial of degree d− t in m− 2 indeterminates. Since g is bivariate,
we can write g as a linear combination of t-th powers of linear forms, say that

g = Lt
1 + Lt

2 + · · ·+ Lt
r.

Then f = hLt
1 +hLt

2 + · · ·+hLt
r , so it suffices to write hLt

i as a sum of linear d-th
powers. For that purpose, we first write hyt as a sum of linear d-th powers. This
is possible, since hyt only has m−2+1 < m indeterminates. Next, we substitute
y = Li.

Corollary 2.1. For each degree d > 3, there exists a power linear counterexample
of degree d to the HDP .

Proof. Let H be a counterexample of degree d that is not necessarily power linear
(such H exist, see [2]). According to Lemma 2.1, there exists a set of, say, N linear
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forms Li, such that each component of H can be written as a linear combination
of the components of G := (Ld

1, L
d
2, . . . , L

d
N), i.e. H = BG for some matrix B.

The construction of a power linear counterexample of degree d to the HDP is
similar as that of the quadratic affine map given above.

Corollary 2.2. There exists a quadratic linear counterexample to the HDP , if
and only if there exists a quadratic counterexample to the HDP .

3. Power linear Keller maps of large degree

Definition 3.1. We write (Ax)∗d for the map ((A1x)d, (A2x)d, . . . , (Anx)d).

On the conference “Polynomial automorphisms and related topics”, He Tong
formulated the following conjecture:

Conjecture 3.1 (He Tong). There exists a function E : N → N, such that for
special power linear Keller maps in dimension n of the form F = x+(Ax)∗d, d >
E(corankA) implies that F is “ditto triangularizable”, i.e. there is a T ∈ GLn(C)
such that

1. J (T−1FT ) is triangular (i.e. F is linearly triangularizable),
2. T−1FT is special power linear as well (i.e. T−1FT = x + (Bx)∗d for some

matrix B).

The following theorem shows that this conjecture has an affirmative answer.

Theorem 3.1. Let F = x + (Ax)∗d be a special power linear Keller map from
Cn to Cn and c = corankA. Assume that d > (2c+1 − 1)2. Then there is a
T ∈ GLn(C) such that T−1FT is of the form

T−1FT = x + (Bx)∗d

such that B is a triangular matrix.

Before we prove this theorem, we need a lemma:

Lemma 3.1. Let R be a nonzero relation with degyi
R 6 1 such that

R
(
xd

1, x
d
2, . . . , x

d
r , (λ1,1x1 + λ1,2x2 + · · ·+ λ1,rxr)d,

(λ2,1x1 + λ2,2x2 + · · ·+ λ2,rxr)d,

. . . , (λc,1x1 + λc,2x2 + · · ·+ λc,rxr)d
)

= 0.(3.1)

If d > 2c+1(2c+1−2), then two of the arguments of R above are linearly dependent.

Proof. Let m be the degree of R. Without loss of generality, we may assume
that Ry1 6= 0. Assume furthermore that λ1,1λ2,1 · · ·λc′,1 6= 0 and λc′+1,1 = · · · =
λc,1 = 0. Then there exists a relation R̃ ∈ K[z1, z2, . . . , zc′+1] with deg R̃ 6 m

and degzi
R̃(z) 6 1 for all i, such that

(3.2) R̃
(
xd

1, (λ1,1x1 + · · ·+ λ1,rxr)d, . . . , (λc′,1x1 + · · ·+ λc′,rxr)d
)

= 0
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where K = C(x2, x3, . . . , xr). Now let t1, t2, . . . , tk be the terms of R̃ and define

gi := ti(x1, λ1,1x1 + · · ·+ λ1,rxr, . . . , λc′,1x1 + · · ·+ λc′,rxr)

for all i. Then (3.2) comes down to

gd
1 + gd

2 + · · ·+ gd
k = 0.

Assume that d > 2c+1(2c+1 − 2). Since R̃ has degree 6 1 with respect to each of
its c′ + 1 arguments, it has

k 6 2c′+1 6 2c+1

terms, whence d > k(k − 2).
From [3, Cor. 3.2], using Lefschetz’ principle on the algebraic closure K̄ of K,

it follows that there are i 6= j such that gi and gj are linearly dependent over K̄
and hence over K as well.

Since ti and tj are not linearly dependent over K (otherwise they would not
have been separated as individual terms), two arguments of R̃ must be linearly
dependent over K. Since the leading coefficients with respect to x1 of both
arguments of R̃ are constants in C these arguments of R̃ are linearly dependent
over C. The arguments of R̃ are a subset of those of R, so the desired result
follows.

Proof of Theorem 3.1. If there is a permutation P such that P−1AP is triangular,
then P−1FP is of the form x + (Bx)∗d such that B is a triangular matrix and
we are done. So assume that a permutation P as above does not exist. Then it
follows from [7, lemma 1.2] (see also [8, prop. 6.3.9]) that A has a principal minor
determinant that does not vanish, say that some principal minor of size (m×m)
has a nonzero determinant.

Since J (Ax)∗d is nilpotent, the sum of the determinants of its principal minors
of size (m× m) is zero. It follows that

(3.3)
∑

16i1<i2<···<im6n

Mi1,i2,...,im(Ai1x)d−1(Ai2x)d−1 · · ·(Aimx)d−1 = 0

where Aj is the j-th row of A and Mi1,i2 ,...,im is the principal minor determinant
of A that corresponds to the row and columns with indices i1, i2, . . . , im.

Since not all Mi1 ,i2,...,im are zero, it follows from (3.3) that

R =
∑

16i1<i2<···<im6n

Mi1 ,i2,...,imyi1yi2 · · ·yim

is a nontrivial relation between (A1x)d−1, (A2x)d−1, . . . , (Anx)d−1. Clearly,
degyi

R 6 1 for all i. It follows from 3.1, noticing that d − 1 > 2c+1(2c+1 − 2),
that

(Aipx)d−1 = λ(Ajqx)d−1

for some λ ∈ C and ip 6= jq, furthermore Mi1,i2 ,...,im 6= 0 for certain i1 < i2 <
· · · < im.
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Since Mi1,i2 ,...,im 6= 0, it follows that (Aipx)d−1 6= 0. Subtracting row jq of A
λ times from row ip of A results in a matrix with more zero rows than A. So
if T−1 is the elementary matrix that subtracts row jq λ times from row ip, then
T−1FT is of the form x + (Bx)∗d such that B has more zero rows than A. Now
the result follows by induction on the number of nonzero rows of A.

At the very end, we present a table on what is known about the HDP for power
linear Keller maps of several degrees d in several dimensions n. We know that
the HDP has an affirmative answer for large degrees compared to the dimension
and a negative answer if the degree d > 3 is fixed and the dimension is sufficiently
large.
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