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A PROOF OF THE EQUIVALENCE OF THE DIXMIER,
JACOBIAN AND POISSON CONJECTURES

PASCAL KOSSIVI ADJAMAGBO AND ARNO VAN DEN ESSEN

1. Notations, definitions and the main results

Throughout this paper R denotes a commutative ring with 1 and n is a pos-
itive integer. The polynomial ring in x1, . . . , xn over R is denoted by R[n] or
R[x1, . . . , xn]. The n-th Weyl algebra over R, denoted by An(R), is the associa-
tive R-algebra with generators y1, . . . , y2n and relations

[yi, yi+n] = 1 for all 1 6 i 6 n and [yi, yj ] = 0 otherwise.

The n-th canonical Poisson algebra Pn(R) over R is the polynomial ring R[2n]

endowed with the canonical Poisson bracket {, } defined by

{f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂xi+n
− ∂f

∂xi+n

∂g

∂xi
)

An R-endomorphism φ of R[2n] such that {φ(f), φ(g)} = {f, g} for all f, g is
called an endomorphism of Pn(R). Finally let C be the field of complex numbers.
Then we have the following conjectures.

Poisson Conjecture(PC). For every n the following statement holds:
PC(n,C). Every endomorphism of Pn(C) is an automorphism.

Dixmier Conjecture(DC). For every n the following statement holds:
DC(n,C). Every endomorphism of An(C) is an automorphism.

Jacobian Conjecture(JC). For every n the following statement holds:
Every C-endomorphism φ of C[n] with detJφ = 1 is an automorphism, where
Jφ = (∂φ(xi)

∂xj
)16i,j6n.

It is well-known that DC(n,C) implies JC(n,C) (see [2] and [6]). Recently it
was shown by Tsuchimoto in [8] that conversely JC(2n,C) implies DC(n,C).
(see also the preprint [3] of Belov and Kontsevich). His proof uses the theory of
p-curvatures. Another proof was given in [1].
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In this paper we give a self-contained, purely algebraic proof of this last impli-
cation and use the Poisson Conjecture to show that all three conjectures described
above are equivalent (see Theorem 4.1). Our proof is inspired by the paper [3].

The contents of this paper are arranged as follows: in section 2 we study endo-
morphisms of canonical Poisson algebras over commutative rings. In particular
we show that if n! is a unit in R, then every endomorphism of Pn(R) has Jacobian
determinant 1. It follows that JC(2n,C) implies P (n,C). Therefore, to obtain
the equivalence of the three conjectures, it remains to show that the n-dimensional
Poisson Conjecture over C implies the n-dimensional Dixmier Conjecture over C.
This is done in section 4 by reduction modulo a suitable prime number. The
machinery to carry out this reduction is developed in section 3, where we study
endomorphisms of Weyl algebras over rings of positive characteristic.

2. Endomorphisms of canonical Poisson algebras over
commutative rings

Throughout this section R denotes a commutative ring. Let A = R[2n], (e) :=
(e1, . . . , e2n) the standard basis of the free A-module E := A2n and (e∗) :=
(e∗1, . . . , e

∗
2n) the dual basis of (e). The canonical symplectic form on E is the

bilinear form given by

ω :=
n∑

i=1

e∗i ∧ e∗i+n

where e∗i ∧ e∗i+n is the alternating 2-form on E defined as follows: if p < q then
(e∗i ∧ e∗i+n)(ep, eq) = 1 if i = p and i+ n = q and 0 otherwise. If L is an A-linear
endomorphism of E, then L∗ω is by definition equal to ω ◦ (L, L). Furthermore
if L∗ω = ω, then L is called symplectic. A polynomial map F := (F1, . . . , F2n) ∈
A2n is called symplectic if the A-linear map on E defined by the matrix (JF )t is
symplectic.

Theorem 2.1. There is equivalence between
(i) F is symplectic.
(ii) F ∗ : A→ A, p→ p(F ) is an endomorphism of Pn(R).
Furthermore, if i) or ii) holds and n! is a unit in R, then detJF = 1.

The proof of this result is based on the following lemma. If B is a bilinear form
on E we write M(e)(B) to denote the matrix (B(ei, ej))16i,j62n.

Lemma 2.1. Let F = (F1, . . . , F2n) ∈ A2n. Then

M(e)(((JF )t)∗ω) = ({Fi, Fj})16i,j62n.

Proof. Let 1 6 p, q 6 2n. Then (((JF )t)∗ω)(ep, eq) = ω((JF )tep, (JF )teq). Ob-
serve (JF )tep =

∑2n
j=1

∂Fp

∂xj
ej . So

(e∗i ∧ e∗i+n)((JF )tep, (JF )teq) =
∂Fp

∂xi

∂Fq

∂xi+n
− ∂Fp

∂xi+n

∂Fq

∂xi
,
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which gives the desired result.

Corollary 2.1. Let F = (F1, . . . , F2n) ∈ A2n. There is equivalence between
i) F is symplectic i.e. ((JF )t)∗ω = ω.
ii) {Fi, Fj} = {xi, xj} for all 1 6 i, j 6 2n.
iii) F ∗ is an endomorphism of Pn(R).

Proof. By taking F = (x1, . . . , x2n) in the above lemma we see that M(e)(ω) =
({xi, xj})16i,j62n. Furthermore, since two bilinear forms B1 and B2 are equal if
and only if their matrices M(e)(B1) and M(e)(B2) are equal, the equivalence of i)
and ii) follows from the lemma above. Finally, using that F ∗ is a homomorphism
with F ∗(xi) = Fi for all i, the implication iii)→ii) is obvious and the implication
ii)→iii) follows from the fact that the Poisson bracket is bilinear, antisymmetric
and satisfies Leibniz’ rule i.e. {a, bc} = {a, b}c+ {a, c}b for all a, b, c ∈ A.

Proof of Theorem 2.1. The first statement follows from Corollary 2.1. So let F
be symplectic and let as before L be the A-linear map of E = A2n defined by
the matrix (JF )t. Put v := e∗1 ∧ . . .∧ e∗2n the standard volume form on E. Since
ωn = n!(−1)

n(n−1)
2 v (see for example [7], Exemple 1.4, page 123) and n! is a unit

in R it follows that ωn is a volume form on E. Furthermore, since F is symplectic
L∗ω = ω and hence L∗(ωn) = (L∗(ω))n = ωn. On the other hand it is well-known
that since ωn is a volume form we have that L∗(ωn) = (detL)ωn (see Exercise on
page 21 of [7]). Since {ωn} forms a basis of the A-module of all 2n-forms on E, it
follows that det(L) = 1. Since det(L) = det(JF )t = det(JF ) we get det(JF ) = 1,
as desired.

3. Endomorphisms of Weyl algebras over rings of positive
characteristic

Throughout this section R denotes a non-zero commutative ring and p is a
prime number such that p.1R = 0. It follows that

(*) If 0 6= r ∈ R and m.r = 0, with m ∈ Z, then m ∈ pZ.

The following proposition is well-known. Therefore we only give the proof for the
case n = 1. The general case is done by induction on n.

Let Z(An(R)) denote the center of An(R) i.e. the set of all elements of An(R)
which commute with all elements of An(R).

Proposition 3.1. Z(An(R)) = R[yp
1 , . . . , y

p
2n].

Proof. (in case n = 1). Let Z = Z(A1(R)) and z =
∑
ai(y2)yi

1 ∈ Z. Then
[y2, z] = 0 implies that

∑
iai(y2)yi−1

1 = 0. So by (*) we get

z =
∑

apj(y2)y
pj
1 .

Using [z, y1] = 0 we also find that apj(y2) ∈ R[yp
2] for all j. Consequently the

center Z is contained in the ring R[yp
1, y

p
2]. Conversely yp

1 commutes with y1 and
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y2, whence belongs to the center. Similarly yp
2 belongs to the center. So the ring

R[yp
1, y

p
2] is contained in the center Z. Hence Z = R[yp

1, y
p
2], as desired.

Now let φ be an R-endomorphism of An(R). Put Pi = φ(yi) and as before
Z = Z(An(R)). The main result of this section is

Theorem 3.1. An(R) = ⊕06αi<pZP
α1
1 . . .Pα2n

2n .

Before we prove this result we deduce some fundamental consequences.

Proposition 3.2. i) φ(Z) ⊂ Z.
ii) If φ(Z) = Z, then φ(An(R)) = An(R).
iii) If φ|Z : Z → Z is injective, then φ : An(R) → An(R) is injective.

Proof. i) Let z ∈ Z. Then φ(z) commutes with each φ(yi) = Pi, hence with
each element Pα1

1 . . .Pα2n
2n . Also φ(z) commutes with Z. So by Theorem 3.1 φ(z)

commutes with An(R) i.e. φ(z) ∈ Z.
ii) Let a ∈ An(R). By Theorem 3.1 we can write a in the form

a =
∑

zαP
α1
1 . . .Pα2n

2n , zα ∈ Z.

Since φ(Z) = Z, there exist z∗α ∈ Z such that zα = φ(z∗α). Also Pi = φ(yi). Hence

a = φ(
∑

z∗αy
α1
1 . . . yα2n

2n ) ∈ φ(An(R)).

So An(R) = φ(An(R)).
iii) Let a ∈ An(R) with φ(a) = 0. Observe that by Proposition 3.1 a can be
written in the form a =

∑
zαy

α1
1 . . .yα2n

2n , with zα ∈ Z and all 0 6 αi < p. Then
φ(a) = 0 implies that

∑
φ(zα)Pα1

1 . . .Pα2n
2n = 0. Since by i) each φ(zα) belongs

to Z, it follows from the direct sum decomposition in Theorem 3.1 that all φ(zα)
are zero. From the injectivity of φ|Z it then follows that all zα are zero, which
gives that a is zero.

Before we turn to the proof of Theorem 3.1 we give the following useful lemma
concerning the degree of an R-endomorphism φ of An(R). The degree of φ,
denoted by degyφ, is by definition the maximun of the degrees of the elements
φ(yi), where the degree of a non-zero element a of An(R) is the maximum of
the degrees of the monomials cyα appearing in a. By Proposition 3.2 i) and
Proposition 3.1 it follows that φ induces an R-endomorphism of the polynomial
ring Z(An(R)) = R[yp

1 , . . . , y
p
2n], which we denote by φpol.

Writing xi instead of yp
i for all i, the degree of φpol, denoted by degxφpol, is

the maximum of all degrees of the polynomials φ(xi) in R[x1, . . . , x2n].

Lemma 3.1. degyφ=degxφpol.

Proof. Since φ(yp
i ) ∈ R[yp

1, . . . , y
p
2n] we get that

φ(yp
i ) =

∑
cj(y

p
1)

j1 . . . (yp
2n)j2n
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for some cj ∈ R. So

φpol(xi) =
∑

cjx
j1
1 . . . xj2n

2n

whence degxφpol(xi) =maxcj 6=0(j1 + . . .+ j2n). Consequently

degyφ(yp
i ) = p degx φpol(xi).

Finally, since degyφ(yp
i ) =degyφ(yi)p = pdegyφ(yi), the desired result follows.

Proof of Theorem 3.1. Consider the Z-module

N =
∑

06αi<p

ZPα1
1 . . .Pα2n

2n .

Using the inner derivations [Pi,−] on An(R) one readily obtains that N is a free
Z-module of rank p2n. From Proposition 3.1 we obtain that

M := An(R) =
∑

06αi<p

Zyα1
1 . . . yα2n

2n

and, using the derivations [yi,−], it follows that M is also a free Z-module of
rank p2n.
First assume that R is a domain and put S = Z\{0}. Since N ⊂M we get that
S−1N ⊂ S−1M . Furthermore both modules are S−1Z-vector spaces of dimension
p2n, hence they are equal. So there exists a non-zero element u in Z with uM ⊂ N
i.e. for each m ∈M there exist uα ∈ Z such that

um =
∑

06αi<p

uαP
α1
1 . . .Pα2n

2n .

From Lemma 3.2 below we obtain that u|uα in Z for each α. Since An(R) is a
domain, it follows that m ∈ N , whence M ⊂ N .So An(R) = N , as desired.

Lemma 3.2. If m ∈M satisfies

(3.1) um =
∑

06αi<p

uαP
α1
1 . . .Pα2n

2n

then u|uα in Z for each α.

Proof. Let m 6= 0 and use induction on d :=max{ |α| , |uα| 6= 0}. If d = 0, then
um = u0, u0 ∈ Z. Write m =

∑
zαy

α on the free Z-basis yα, 0 6 αi < p. Then
u0 = um =

∑
(uzα)yα. So u0 = uz0 i.e. u|u0 in Z.

Now let d > 0 and uα 6= 0,with αj > 0 for some 1 6 j 6 n. Applying the inner
derivation [Pj+n,−] to equation (3.1) gives

u[Pj+n, m] =
∑

uααjP1
α1 . . .Pj

αj−1 . . .P2n
α2n .
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Observe that 0 < αj < p and uα 6= 0, so by (*) uααj 6= 0. The induction
hypothesis implies that u|αjuα, whence u|uα in Z. Repeating this argument we
obtain that u|uα for all α with |α| > 0 and uα 6= 0. Say uα = uvα, vα ∈ Z. Then

um = u0 +
∑

|α|>0,06αi<p

uvαP
α.

So u(m−
∑
vαP

α) = u0. Hence by the case d = 0 above, it follows that u|u0 in
Z. So u|uα in Z for all α, as desired.
i) Let R be an arbitrary commutative ring. Replacing R by the finitely generated
Z-algebra of R generated by the coefficients of the Pi with respect to the mono-
mials yα, we may assume that R is a finitely generated Z-algebra. In particular
R is noetherian and hence its nilradical is a finite intersection of prime ideals.
Since a finite power of the nilradical equals the zero ideal we obtain that the zero
ideal is a finite product of prime ideals, say (0) = p1p2 . . .ps.
ii) Let p be a prime ideal in R. Then R := R/p is a domain. So, as shown above

An(R) ⊂
∑

06αi<p

Z(An(R))P 1
α1 . . .P 2n

α2n

=
∑

06αi<p

R[yp
1, . . . , y

p
2n]P 1

α1 . . .P 2n
α2n .

Hence
An(R) ⊂

∑

06αi<p

R[yp
1 , . . . , y

p
2n]Pα1

1 . . .Pα2n
2n + pAn(R).

So by Proposition 3.1 we get An(R) ⊂ N + pAn(R).
iii) Finally we use that p1p2 . . .ps = (0) and that pi ⊂ R ⊂ Z. Namely by
ii) we get that An(R) ⊂ N + p1An(R) and An(R) ⊂ N + p2An(R), whence
An(R) ⊂ N + p1N + p1p2An(R) ⊂ N + p1p2An(R). Repeating this argument
gives

An(R) ⊂ N + p1 . . .psAn(R) = N.

So An(R) = N , as desired.

4. The proof of the main theorem

The main result of this paper is

Theorem 4.1. For each n > 1 we have the following implications:
DC(n,C) → JC(n,C), JC(2n,C) → P (n,C) and P (n,C) → D(n,C)
i.e. the Dixmier, Jacobian and Poisson Conjectures are equivalent.

As already observed in the introduction it remains to prove the last implication.
Therefore we first consider the statement P (n,C). More precisely, for every d > 1
we analyse the statement P (n,C, d), which asserts that the Poisson Conjecture
holds for all endomorphisms of Pn(C) of degree 6 d. This means that if F =
(F1, . . . , F2n) satisfies deg Fi 6 d and {Fi, Fj} = {xi, xj} for all i, j , then F has
an inverse of degree 6 d2n−1, according to [6], Proposition 2.3.1. To rewrite this
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statement in terms of polynomial equations we consider the universal polynomial
map of degree d in 2n variables x = (x1, . . . , x2n) i.e.

FU
i := (FU

1 , . . . , F
U
2n)

where each FU
i :=

∑
A

(i)
α xα with |α| 6 d and all A(i)

α are different variables.
Let A := (. . . , A(i)

α , . . .) and denote by C[A] the polynomial ring in A over C.
Consider the polynomials Pij := {FU

i , F
U
j } − {xi, xj} for all 1 6 i < j 6 2n and

let J := (g1(A), . . . , gr(A)) be the ideal in C[A] generated by the coefficients of all
monomials xα appearing in all Pij . Then by Theorem 2.1 and Corollary 2.1 the
canonical image of FU in (C[A]/J)[x]2n has Jacobian determinant 1 and hence,
by the formal inverse function theorem, it has a formal inverse in (C[A]/J)[[x]]2n,
represented by some G(A) in C[A][[x]]2n. Let I be the ideal in C[A] generated by
the coefficients in G(A) of all xα with |α| > D := d2n−1 and let h1(A), . . . , ht(A)
be a system of generators of I .

Proposition 4.1. If P (n,C, d) holds, there exist b(i)j in C[A] and a positive in-
teger ρ such that

(4.1) hi(A)ρ =
∑

j

b
(i)
j (A)gj(A) for all 1 6 i 6 t.

Proof. Let a ∈ CA be a zero of J . Then, since P (n,C, d) holds, the map FU (A =
a) is invertible and its inverse is equal to G(A = a). So by [6], Proposition 2.3.1
deg G(A = a) 6 d2n−1 = D. Hence a is a zero of I . So every zero of J is a zero
of I . Then (4.1) follows from the Nullstellensatz.

As an immediate consequence of Proposition 4.1 we get

Corollary 4.1. Let R be a subring of C containing the coefficients of the polyno-
mials hi(A), b(i)j (A) and gj(A). If a is a proper ideal of R and f an endomorphism
of Pn(R/a) of degree 6 d, then f has an inverse of degree 6 D(= d2n−1).

Next we study the statement D(n,C), i.e. the statement that every C- endo-
morphism of An(C) is an automorphism. Since An(C) is a simple ring and the
kernel of a C-endomorphism is a two-sided ideal which is not the whole ring, it
follows that every C-endomorphism of An(C) is automatically injective. Hence
the Dixmier Conjecture is equivalent to saying that every C-endomorphism of
An(C) is surjective.

We will show below that P (n,C) implies a more refined statement. To describe
it observe that a C-endomorphism φ of An(C) is surjective if and only if there
exist ψ1, . . . , ψ2n in An(C) such that φ(ψi) = yi for all i. If all ψi have degree
6 N , for some N , we say that φ is N-surjective.

Proposition 4.2. Let d > 1. Then P (n,C) implies

(4.2) Every C-endomorphism of An(C) of degree 6 d is D := d2n−1-surjective.
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Proof. i) By contradiction. So let φ be a C-endomorphism of An(C), say of degree
d, which is not D-surjective. This means that there do not exist ψ1, . . . , ψ2n of
degree 6 D in An(C) such that

φ(ψ1) − y1 = 0, . . . , φ(ψ2n) − y2n = 0.

So if we consider the universal Weyl algebra elements of degree D, i.e. the ex-
pressions ψU

i =
∑

|α|6D c
(i)
α yα, where all c(i)α are different variables and consider

the formal expressions

φ(ψU
i ) − yi :=

∑

|α|6D

c(i)α φ(y1)α1 . . .φ(y2n)α2n − yi

then the coefficients P1(C), . . . , Ps(C) of all monomials yα appearing in these
expressions (each Pi(C) is a polynomial in the polynomial ring C[C], which is
generated over C by all coefficients c(i)α ), have no common zero in CC . So by the
Nullstellensatz there exist Q1(C), . . . , Qs(C) in C[C] such that

(4.3) 1 =
∑

Qj(C)Pj(C).

ii) Now let R be the Z-subalgebra of C generated by 1
n! , all coefficients of the

monomials yα appearing in the φ(yi), all coefficients appearing in the hi, gj

and the b(i)j and all coefficients appearing in all Qj and Pj . Then φ is an R-
endomorphism of An(R) and R is a finitely generated Z-algebra contained in C.
Let m be a maximal ideal in R. Then by [4], V, section 3, no.4, theorem 3, R/m
is a finite field, say of characteristic p > 0. So p ∈ m. Hence p is not a unit in
R, whence pR is a proper ideal in R. Reducing the equations in (4.3) modulo
pR we deduce that the endomorphism φ̄ of An(R/pR), obtained by reducing the
coefficients of φ mod pR, is not D-surjective.

iii) On the other hand by Proposition 3.2 i) the endomorphism φ̄ of An(R/pR)
induces an endomorphism φ̄pol on the polynomial ring Z(An(R/pR)). From The-
orem 4.2 below and Lemma 3.1 we deduce that φ̄pol is an endomorphism of
Pn(R/pR) of degree 6 d. Then by Corollary 4.1 (applied to a = pR) we deduce
that φ̄pol has an inverse of degree 6 D = d2n−1. It follows from Proposition 3.2
ii), iii) that φ̄ is an automorphism of An(R/pR). Let τ be its inverse. Then the
restriction of τ to the center of An(R/pR), denoted by τpol, is equal to φ̄−1

pol and
hence, as observed before, has degree 6 D. Since degxτpol=degyτ (by Lemma
3.1), we deduce that τ has degree 6 D. So φ̄ is D-surjective, a contradiction with
ii).

Theorem 4.2. Let φ be an endomorphism of An(R) and φ̄ the induced endo-
morphism of An(R/pR). Then the restriction of φ̄ to Z(An(R/pR)), denoted by
φ̄pol, is an endomorphism of Pn(R/pR).

To prove this theorem we give another description of the Poisson bracket on
Pn(R/pR). Put W := R[yp

1 , . . . , y2n
p] and xi := yp

i for each i.

Lemma 4.1. Let A ∈ W and B ∈ An(R). Then [A,B] ∈ pAn(R).
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Proof. Since [ , ] is R-bilinear we may assume that A = (yp
1)

α1 . . . (y2n
p)α2n and

B = y1
β1 . . .y2n

β2n . Using Leibniz’ rule we may even assume that A = yi
p and

B = yj , in which case the result is clear.

Proposition 4.3. Let a, b ∈ R/pR[x1 . . . , x2n] and A,B ∈ W such that a =
A(mod pAn(R)) and b = B(mod pAn(R)). Then 1

p [A,B] is a well-defined element
of An(R) and

{a, b} =
1
p
[A,B](mod pAn(R)).

Proof. Since R has no Z-torsion the first statement follows from Lemma 4.1. To
prove the formula, observe that both { , } and [ , ] are bilinear, antisymmetric
and satisfy Leibniz’ rule. Therefore it suffices to show that

{xi, xj} =
1
p
[yp

i , yj
p](mod pAn(R))

for all i < j. If j 6= i + n both sides are zero. So assume j = i + n. Then the
result follows from the following formula

(4.4)
1
p
[yp

i+n, y
p
i ] =

1
p

p−1∑

k=0

(p!)2

(k!)2(p− k)!
yk
i y

k
i+n = −1(mod pZ[yi, yi+n])

which can be found in [5].

Proof of Theorem 4.2. To prove that φ̄pol is an endomorphism of Pn(R/pR) it
suffices to show that {φ̄pol(xi), φ̄pol(xj)} = {xi, xj} for all i < j. Since yp

i ∈ Z it
follows that φ(yp

i ) = A + pA′ with A in W and A′ in An(R). Similarly φ(yp
j ) =

B + pB′ with B in W and B′ in An(R). Then by Proposition 4.3

{φ̄pol(xi), φ̄pol(xj)} =
1
p
[A,B](mod pAn(R)).

Since by Lemma 4.1 both [A,B′] and [A′, B] belong to pAn(R) we get

1
p
[φ(yp

i ), φ(yp
j )] =

1
p
[A,B] + [A,B′] + [A′, B] + p[A′, B′] =

1
p
[A,B](mod pAn(R)).

So {φ̄pol(xi), φ̄pol(xj)} = 1
p [φ(yp

i ), φ(yp
j )](mod pAn(R)).

If j 6= i+n the righthand side is equal to zero and hence equals {xi, xj}. Finally
if j = i+n the righthand side equals φ(1

p [yp
i , y

p
i+n])(mod pAn(R)), which by (4.4)

is equal to 1 and hence equals {xi, xi+n}.
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