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SOME FAMILIES OF POLYNOMIAL AUTOMORPHISMS II.

ERIC EDO

Abstract. We work with families of polynomial automorphisms of the com-
plex affine plane whose generic length is 2. We obtain two new results which
show some differences between the behavior of these families and the family
of generic length 3 studied in [2].

1. Introduction

We first recall some notations from [2]. We denote by G the group of poly-
nomial automorphisms of the complex plane A2

C = Spec(C[X, Y ]). An ele-
ment σ ∈ G is defined by a pair of polynomials (f, g) ∈ C[X, Y ]2 such that:
C[f, g] = C[X, Y ] and we set σ = (f, g). We define the degree of σ ∈ G by:
deg(σ) = max{deg(f), deg(g)}. We denote by A the subgroup of affine automor-
phisms (of degree 1) and by B the subgroup of triangular automorphisms (of the
form (aX +P (Y ), bY + c) with a, b ∈ C∗, c ∈ C and P ∈ C[Y ]). By the Jung-van
der Kulk theorem (cf. [5] and [6]), G is the amalgamated product of A and B
along A ∩ B. This property allows us to define the multidegree of σ ∈ G as the
sequence of the degrees of the triangular automorphism in a decomposition of σ
as a product of affine and triangular automorphisms (cf. [3]). We denote by Gd

the set of all automorphisms of G whose multidegree is d = (dl, . . . , d1) where
d1, . . . , dl > 2 are integers. For example, for all d1, d2 > 2, we have

G(d2,d1) = {a3b2a2b1a1 ; a1, a3 ∈ A , a2 ∈ A r B , b1, b2 ∈ B , deg(bi) = di}

We denote by G(C[Z]) the group of polynomial C[Z]-automorphisms of A2
C[Z] =

Spec C[Z][X, Y ]. For σ ∈ G(C[Z]) and z ∈ C, we denote by σZ→z ∈ G the auto-
morphism obtained by substituting Z = z in σ. For almost all values z ∈ C
the multidegree of σZ→z equals the multidegree of σ considered as a C(Z)-
automorphisms of A2

C(Z) = Spec C(Z)[X, Y ]. We call this multidegree the generic
multidegree of σ.

The group G can be endowed with the structure of an infinite-dimensional
algebraic variety (cf. [11], see also [7], [8] and [9] for a recent development of the
theory of ind-affine varieties). If H ⊂ G, we denote by H the closure of H in
G for the Zariski topology associated with this structure. The most important
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thing to remember about this topology is the following: For all σ ∈ G(C[Z]),
the map z 7→ σZ→z is a continuous map from C to G. For example, the set
G(d2,d1) contains all elements σZ→0 where the generic multidegree of σ ∈ G(C[Z])
is (d2, d1).

This is the main result of [2] (see [2] Theorem 1.2 and his corollary):

Theorem 1.1. Let a, b > 2 and c > 1 be integers. We have

G(a+c(ab−1)) ∩G(a+(c−1)(ab−1),b,a) 6= ∅,

but if (a, b) 6= (2, 2), then

G(a+c(ab−1)) 6⊂ G(a+(c−1)(ab−1),b,a).

Examining at the proof of Theorem 1.1 in [2], we can set b = 1. With d = a−1
and e = cd we obtain

Theorem 1.2. Let d, e > 1 be integers. If e ∈ d N then

G(d+e+1) ∩ G(e+1,d+1) 6= ∅.

As an example (for d = e = 1), we can consider the following automorphism
N ∈ G(C[Z]):

N := (X − 2Y (XZ + Y 2)− Z(XZ + Y 2)2, Y + Z(XZ + Y 2))

This is the famous Nagata’s automorphism. For all z ∈ C∗, NZ→z has mul-
tidegree (2, 2) (this is the generic multidegree of N) but NZ→0 is a triangular
automorphism of degree 3. Hence Nagata’s automorphism gives the following:
(X − ZY 3, Y ) ∈ G(3) ∩ G(2,2) 6= ∅ (cf.[2] §4.3). The main ingredient of the proof
of Theorem 1.2, is the construction of automorphisms in G(C[Z]) generalizing
Nagata’s one.

In this paper we improve Theorem 1.2 in the following two ways (Theorem 1.3
and Theorem 1.4):

Theorem 1.3. Let d, e > 1 be integers. If e ∈ d N then

G(d+e+1) ⊂ G(e+1,d+1).

Remark 1. If e ∈ d N, for each triangular automorphism τ of degree d + e + 1,
we construct effectively an automorphism σ ∈ G(C[Z]) with generic multidegree
(e + 1, d + 1) and such that σZ→0 = τ . There are two steps. First, we construct
an automorphism σ′ ∈ G(C[Z]) such that the d largest coefficients of τ and
σ′

Z→0 are equal (see Lemma 2.3). Second, we adjust the e + 1 low coefficients by
multiplication by a triangular automorphism of degree e + 1.

Remark 2. As a particular case (when d = 1), for all e > 1, Theorem 1.3 gives
G(e+2) ⊂ G(e+1,2).
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Remark 3. Theorem 1.1 gives G(7) ∩ G(2,3,2) 6= ∅, but G(7) 6⊂ G(2,3,2). We have
no example of such a phenomenon in the length 2 case. Theorem 1.3 is very
important because it is a particular case of the following conjecture.

Conjecture 1.1. For all integers d, e > 1, we have G(d+e+1) ⊂ G(e+1,d+1).

The aim is to completely describe the closure of the set of automorphisms of
fixed multidegree and, in the length 2 case, to prove

Conjecture 1.2. For all integers d, e > 1, we have

G(e+1,d+1) =
⋃

e′6e , d′6d

G(e′+1,d′+1) ∪
⋃

c6d+e+1

G(c+1).

Remark 4. One can easily show that G(e+1,d+1) ⊃
⋃

e′6e , d′6d G(e′+1,d′+1).
Conjecture 1.2 is very interesting because the two parts of the inclusions are
difficult to prove. In this paper we only study the ⊃ part. Theorem 1.3 implies
the inclusion ⊃ under the assumption e ∈ d N. The other inclusion is already not
easy for d = e = 1. For example we have to prove that G(2,2) ∩ G(4) = ∅.

In the following theorem we try to understand what happens when the as-
sumption e ∈ d N is not satisfied.

Theorem 1.4. Let d, e > 1 be integers, if d is even and e ∈ d
2N then

G(d+e+1) ∩ G(e+1,d+1) 6= ∅.

Remark 5. In the proof of Theorem 1.4, an unexpected link appears between
this problem and the theory of hypergeometric functions.

Remark 6. As a particular case (when d = 2), for all e > 1, Theorem 1.44 gives:
G(e+3) ∩G(e+1,3) 6= ∅.

Remark 7. Conjecture 1.1 seems to be difficult as soon as d and e are ”big”
with gcd(d, e) = 1. The next step will be to prove that G(8) ∩ G(5,4) 6= ∅.

2. Proof of Theorem 1.3

We are beginning with the following lemma.

Lemma 2.1 (Computing coefficients). Let R be a Q-algebra, let m > 0 be an
integer and let P (Y ) ∈ R[Y ] be a polynomial of degree m (deg(P ) = m). Let
S(T ) =

∑∞
n=0 sn(Y ) Tn ∈ R[Y ][[T ]] be a formal series with polynomial coeffi-

cients. We set:{
Q1(Y, Z) := Y + ZY 2P (Y ) ∈ R[Y, Z]
Q2(Y, Z) := Y + ZY 2S(ZY ) ∈ R[Y ][[Z]].

The following assumptions are equivalent:

i) Q2(Q1(Y, Z), Z) = Y in R[Y ][[Z]],
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i)’ Q1(Q2(Y, Z), Z) = Y in R[Y ][[Z]],

ii) P (Y ) + (1 + TP (Y ))2S(T (1 + TP (Y ))) = 0 in R[Y ][[T ]],

ii)’ S(T ) + (1 + TS(T ))2P (Y (1 + TS(T ))) = 0 in R[Y ][[T ]],

iii) we have s0(Y ) = −P (Y ) and for all n > 1

sn(Y ) =
(−1)n+1

n

m(n+1)∑

j=0

(
j + 2n + 1

n− 1

)
pn,j Y j

where for all j ∈ {0, . . . , m(n + 1)} the coefficients pn,j are defined by

(∗) (2P (Y ) + Y P ′(Y )) P (Y )n =
m(n+1)∑

j=0

pn,j Y j .

Remark 8. With the notations of iii) in Lemma 2.1, we have

s1(Y ) = (2P (Y ) + Y P ′(Y )) P (Y ).

Proof of Lemma 2.1. The equivalence i) ⇐⇒ i)’ is clear. We set T = ZY . Easy
computations give

Q2(Q1(Y, Z), Z) = Y + ZY 2{P (Y ) + (1 + TP (Y ))2S(T (1 + TP (Y )))}

and

Q1(Q2(Y, Z), Z) = Y + ZY 2{S(T ) + (1 + TS(T ))2P (Y (1 + TS(T )))}.

We deduce i) ⇐⇒ ii) and i)’ ⇐⇒ ii)’.

Let us assume ii)’. Setting T = 0 in ii)’, we obtain: s0(Y ) = −P (Y ). Let
n > 1 be an integer. We set:

P1(Y ) := (2P (Y ) + Y P ′(Y )) P (Y )n =
m(n+1)∑

j=0

pn,j Y j .

According to Cauchy’s formula, we have (the path of integration is any little
circle around 0)

sn(Y ) =
1

2πi

∮
S(T )
Tn+1

dT = − 1
2πi

∮
(1 + TS(T ))2P (Y (1 + TS(T )))

Tn+1
dT

We change from the variable T to W = TS(T ) with

T = v(W ) = − W

(1 + W )2P (Y (1 + W ))
.

We obtain
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sn(Y ) = − 1
2πi

∮
(1 + W )2P (Y (1 + W ))

v′(W )
v(W )n+1

dW

=
(−1)n+1

2πin

∮
(1 + W )2n+1{2P (Y (1 + W ))

+ Y (1 + W )P ′(Y (1 + W ))}P (Y (1 + W ))n dW

Wn

=
(−1)n+1

2πin

∮
(1 + W )2n+1P1(Y (1 + W ))

dW

Wn

=
(−1)n+1

2πin

∮ m(n+1)∑

j=0

pn,j Y j(1 + W )j+2n+1 dW

Wn

=
(−1)n+1

2πin

m(n+1)∑

j=0

pn,j Y j

∮
(1 + W )j+2n+1 dW

Wn

=
(−1)n+1

n

m(n+1)∑

j=0

(
j + 2n + 1

n− 1

)
pn,j Y j .

By uniqueness of the coefficients sn(Y ) this computation proves ii)’ ⇐⇒
iii).

Remark 9. One can use a purely algebraic version of Cauchy’s formula (La-
grange’s formula: see Corollary 5.4.3. p. 42 in [12]) in the proof of Lemma 2.1.
We use complex analysis only for the comfort of the reader.

Example 2.1 (Lemma 2.1). We set R = Q, m = 2 and P (Y ) = 25Y 2 +10Y −4.
We have

s0(Y ) = −P (Y ) = −25Y 2 − 10Y + 4,

s1(Y ) = (2P (Y ) + Y P ′(Y ))P (Y ) = 2500Y 4 + 1750Y 3 − 300Y 2 − 200Y + 32,

(2P (Y ) + Y P ′(Y ))P (Y )2 = 2(31250Y 6 + 34375Y 5 − 300Y 2 − 80Y + 16),

hence
−s2(Y ) = 31250× 11Y 6 + 34375× 10Y 5 − 300× 7Y 2 − 80× 6Y + 16× 5).

Lemma 2.2 (A triangular automorphism). Let m > 0 be an integer and let a ∈
C∗ be a nonzero complex number. We consider the Q-algebra of polynomials in
m variables: R = C[X1, . . . , Xm]. We set

P (Y ) = aY m +
m∑

i=1

Xi Y
i−1 ∈ R[Y ] (degY (P ) = m).

Let n > 1 be an integer. For all j ∈ {0, . . . , m(n + 1)}, we denote by pn,j the
coefficients associated to the polynomial P by the formula (∗) in Lemma 2.1.
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Then τ = (pn,mn, pn,mn+1, . . . , pn,mn+m−1) ∈ Rm is a C-automorphism of R and
pn,m(n+1) = (m + 2) an+1.

Proof of Lemma 2.2. We show that τ is a triangular C-automorphism. Let k ∈
{1, . . . , m}. Modulo C[Xk+1, . . . , Xm] we have

(2P (Y ) + Y P ′(Y ))P (Y )n

=

(
(m + 2)aY m +

k∑

i=1

(i + 1)Xi Y
i−1

)(
aY m +

k∑

i=1

Xi Y i−1

)n

=(m + 2) an+1 Y m(n+1) + ((m + 2)n + k + 1)anXkY
mn+k−1 + Ln(Y ).

where Ln(Y ) ∈ R[Y ] and degY (Ln) < mn + k − 1.
Hence pn,mn+k−1 = ((m + 2)n + k + 1) an Xk modulo C[Xk+1, . . . , Xm] and the
coefficient ((m + 2)n + k + 1) an is nonzero. This shows that τ is a triangular
C-automorphism of R and (when k = m) pn,m(n+1) = (m + 2) an+1.

Example 2.2 (Lemma 2.2). Let a ∈ C∗ be a nonzero complex number. We set
m = 2 and n = 2. Let τ = (p2,4, p2,5) be the triangular automorphism defined
in Lemma 2.2. We have R = C[X1, X2] and P (Y ) = aY 2 + X2Y + X1 ∈ R[Y ].
From (Formula (∗) in Lemma 2.1)

(2P (Y ) + Y P ′(Y ))P (Y )2 =
6∑

j=0

p2,jY
j

we get
τ = (10a2X1 + 10aX2

2 , 11a2X2)
and

τ−1 = ((10a2)−1X1 − (121a5)−1X2
2 , (11a2)−1X2).

Lemma 2.3 (The incomplete triangular automorphism). Let m > 0 and let n >
1 be integers. Let x0 ∈ C∗ be a nonzero complex number and let x1, . . . , xm ∈ C
be m complex numbers.There exist (m + 1)n + 2 complex numbers xm+1, . . . ,
x(m+1)(n+1)+1 ∈ C such that

(X +
(m+1)(n+1)+1∑

k=0

xk Y (m+1)(n+1)+1−k , Y ) ∈ G((m+1)n+1,m+2).

Proof of Lemma 2.3. We set

c0 :=
{

(−1)n

n

(
m(n + 1) + 2n + 1

n − 1

)}−1

.

Let a ∈ C∗ be a (n + 1)st root of c0
m+2 (i.e. a is such that (m+ 2)an+1 = c0). For

all k ∈ {1, . . . , m}, we set

ck :=
{

(−1)n

n

(
m(n + 1) + 2n + 1− k

n − 1

)}−1

xk.
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We denote by τ = (pn,mn, pn,mn+1, . . . , pn,mn+m−1) the triangular automorphism
of C[X1, . . . , Xm] defined in Lemma 2.2 and we set

(a1, . . . , am) := τ−1(cm, . . . , c1) ∈ Cm,

(i.e we have ck = pn,m(n+1)−k(a1, . . . , am) for all k ∈ {1, . . . , m}).
Consider

P (Y ) = aY m +
m∑

i=1

ai Y i−1 ∈ C[Y ] (deg(P ) = m).

We define S(T ) :=
∑∞

j=0 sj(Y )T j ∈ C[Y ][[T ]] by assumptions of Lemma 2.1 (R =
C). We set Q1(Y, Z) = Y + ZY 2P (Y ) ∈ C[Z][Y ], S6n−1(T ) =

∑n−1
j=0 sj(Y )T j

and Q2(Y, Z) := Y + ZY 2S6n−1(Y Z) ∈ C[Z][Y ]. We consider the following two
polynomials:

{
g(X, Y ) := Zn+1X + Q1(Y, Z) ∈ C[Z][X, Y ]
f(X, Y ) := Z−n−1(Q2(g(X, Y ), Z)− Y ) ∈ C(Z)[X, Y ]

By i) of Lemma 2.1, we have Q2(g(X, Y ), Z) = Q2(Q1(Y, Z), Z) = Y modulo
Zn+1, hence f(X, Y ) ∈ C[Z][X, Y ]. Since Jac(f, g) = 1 (the determinant of
the jacobian matrix), we have σ := (f, g) ∈ G(C[Z]) (cf. Lemma 1.1.8, p. 5
in [1] or Proposition 4.4 in [2]). In G(C(Z)), the automorphism σ splits into
σ = b2πb1 with b1 = (Zn+1X + Q1(Y, Z) , Y ), b2 = (Z−n−1(Q2(Y, Z)− X) , Y )
and π = (Y, X). The generic multidegree of σ is (deg(b2), deg(b1)) equal to

(degY (Q2) , degY (Q1)) = (2+n−1+deg(sn−1) , 2+deg(P )) = ((m+1)n+1, m+2).

We have σZ→0 ∈ G((m+1)n+1,m+2) and the second component of σZ→0 is Q1(Y, 0) =
Y . We prove that for all k ∈ {0, . . . , m} the coefficient of Y (m+1)(n+1)+1−k in the
first component of σZ→0 is xk.

Modulo Tn+1, we have S(T ) = S6n−1(T ) + sn(Y )Tn. Then, by ii) of Lemma
2.1, we deduce

0 = P (Y ) + (1 + TP (Y ))2{S6n−1(T (1 + TP (Y )) + sn(Y )Tn(1 + TP (Y ))n}.

Hence (again modulo Tn+1), we have

P (Y ) + (1 + TP (Y ))2S6n−1(T (1 + TP (Y )) = −sn(Y )Tn

On the other hand,

Q2(Q1(Y, Z), Z) = Y + ZY 2{P (Y ) + (1 + TP (Y ))2S6n−1(T (1 + TP (Y )))}.

Hence, modulo Zn+2, we have (with T = ZY )

Q2(Q1(Y, Z), Z) = Y − Zn+1Y n+2sn(Y )

= Y +
(−1)n

n
Zn+1

m(n+1)∑

j=0

(
j + 2n + 1

n− 1

)
pn,jY

n+2+j .
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For all k ∈ {1, . . . , m}, the coefficient of Y (m+1)(n+1)+1−k of the first component
of σZ→0 is, ( where j = m(n + 1)− k),

(−1)n

n

(
m(n + 1) + 2n + 1− k

n− 1

)
pn,m(n+1)−k(a1, . . . , am)

=
(−1)n

n

(
m(n + 1) + 2n + 1− k

n− 1

)
ck

= xk .

The coefficient of Y (m+1)(n+1)+1 of the first component of σZ→0 is (cf. Lemma
2.2)

(−1)n

n

(
m(n + 1) + 2n + 1

n− 1

)
(m+2)an+1 =

(−1)n

n

(
m(n + 1) + 2n + 1

n − 1

)
c0 = x0.

Example 2.3 (Lemma 2.3). We set m = 2, n = 2, x0 = 1, x1 = 1 and x2 = 0.
We compute x3, . . . , x10 such that

(X +
10∑

k=0

xkY 10−k, Y ) ∈ G(7,4).

We have c0 =
2
11

, c1 =
1
5
, c2 = 0 and a =

1
3
√

22
.

We have (a1, a2) = τ−1(c2, c1) = τ−1(0, 1
5), where (cf. Example of Lemma 2.2)

τ−1 = ((10a2)−1X1 − (121a5)−1X2
2 , (11a2)−1X2).

We obtain a1 = − 4
25

a and a2 =
2
5

a.
We have
P (Y ) = aY 2 + a2Y + a1 =

a

25
(25Y 2 + 10Y − 4),

−s2(Y ) = ( a
25)3(31250× 11Y 6 + 34375× 10Y 5 − 300× 7Y 2 − 80× 6Y + 16× 5)

= Y 6 + Y 5 − 42
6875

Y 2 − 48
34375

Y +
8

34375
.

Finally,

(X + Y 4(Y 6 + Y 5 − 42
6875

Y 2 − 4834375Y +
8

34375
) , Y ) ∈ G(7,4),

in other words, x3 = 0, x4 = − 42
6875

, x5 = − 48
34375

, x6 = 834375 and x7 = x8 =
x9 = x10 = 0.

Proof of Theorem 1.3. Let d, e > 1 be integers such that e ∈ d N. We set m =
d− 1 > 0 and n = ed > 1 (m and n are integers). Let γ ∈ G(d+e+1). There exist
affine automorphisms α1, α2 ∈ A and a polynomial b ∈ C[Y ] such that γ = α2βα1,
where β = (X + b(Y ), Y ) ∈ B is a triangular automorphism of degree deg(b) =
d+e+1 = (m+1)(n+1)+1. By Lemma 2.3, there exist a triangular automorphism
β1 ∈ B of degree (m + 1)n + 1 and an automorphism σ ∈ G(C[Z]) of generic
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multidegree ((m+1)n+1, m+2) such that β = β1σZ→0. More precisely (see the
proof of Lemma 2.3), there exist b1, b2 two triangular automorphisms of G(C(Z))
such that: σ = b2πb1 and (deg(b2), deg(b1)) = ((m+1)n+1, m+2). We consider
the automorphism σ′ := α2β1b2πb1α1 ∈ G(C[Z]). Since deg(β1b2) = (m+1)n+1
and deg(b1) = m+2, the generic multidegree of σ′ is (n(m+1)+1, m+2). Hence,

γ = α2βα1 = α2β1σZ→0α1 = σ′
Z→0 ∈ G(n(m+1)+1,m+2) = G(e+1,d+1).

3. Proof of Theorem 1.4

Theorem 1.4. Let d, e > 1 be integers, if d is even and e ∈ d
2N then:

G(d+e+1) ∩ G(e+1,d+1) 6= ∅.

Lemma 3.1 (Computing coefficients). Let m > 1 be an integer. Let

S(T ) =
∞∑

n=0

Pm,n(u)Tn ∈ C[u][[T ]] (∗)

be a formal series with polynomial coefficients. We set{
Q1(Y, Z) := Y (1− ZY m − u(ZY m)2) ∈ C[u][Y, Z]
Q2(Y, Z) := Y S(ZY m) ∈ C[u][Y ][[Z]].

The following assumptions are equivalent:

i) Q2(Q1(Y, Z), Z) = Y in C[u][Y ][[Z]],

i)’ Q1(Q2(Y, Z), Z) = Y in C[u][Y ][[Z]],

ii) (1− T − uT 2)S(T (1− T − uT 2)m)) = 1,

ii)’ S(T )(1− TS(T )m − u(TS(T )m)2) = 1,

iii) For all n ∈ N, we have

(∗) Pm,n(u) =
1

(mn + 1)!

[n
2
]∑

l=0

((m + 1) n− l)!
l!(n− 2l)!

ul

Proof. The equivalence i) ⇐⇒ i)’ is clear. We set T = ZY m. An easy compu-
tation gives

Q2(Q1(Y, Z), Z) = Y (1− T − uT 2)S(T (1− T − uT 2)m)

and
Q1(Q2(Y, Z), Z) = Y S(T )(1− TS(T )m − u(TS(T )m)2).

We deduce i) ⇐⇒ ii) and i)’ ⇐⇒ ii)’.
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Let us assume ii)’. Setting T = 0 in ii)’, we obtain Pm,0(u) = 1. Let n > 1 be
an integer. According to Cauchy’s formula, we have (the path of integration is
any little circle around 0)

Pm,n(u) =
1

2πi

∮
S(T )
Tn+1

dT =
1

2πi

∮
1

1− TS(T )m − u(TS(T )m)2
dT

Tn+1

We change from the variable T to W = TS(T )m with

T = v(W ) = W (1−W − uW 2)m.

We obtain

Pm,n(u) =
1

2πi

∮
1

1−W − uW 2

v′(W )
v(W )n+1

dW

Integrating by parts (4 minus signs):

nPm,n(u) =
1

2πi

∮
1 + 2uW

(1−W − uW 2)2
dW

v(W )n
=

1
2πi

∮
W + 2uW 2

(1−W − uW 2)mn+2

dW

Wn+1

Hence nPm,n(u) is the coefficient of Wn in
W + 2uW 2

(1−W − uW 2)mn+2
∈ C[u][[W ]].

We set V = W + uW 2. Then, we have V k =
∑k

l=0

(
k
l

)
ulW l+k and

W + 2uW 2

(1−W − uW 2)mn+2

=
2V −W

(1− V )mn+2

=
∞∑

k=0

(
mn + k + 1

mn + 1

)
(2V −W )Xk

=
∞∑

k=1

(
mn + k
mn + 1

)
(2V k −WV k−1) (k ← k − 1)

=
∞∑

k=1

(
mn + k
mn + 1

)(k−1∑

l=0

(
2
(

k
l

)
−
(

k − 1
l

))
ulW l+k + 2ukW 2l

)

=
∞∑

k=1

k∑

l=0

(mn + k)!
(mn + 1)!l!(k− l)!

(l + k)ulW l+k

(
2
(

k
l

)
−
(

k − 1
l

))

=
(k − 1)!
l!(k− l)!

(l + k).

When l + k = n, we have k = n − l and

0 6 l 6 k ⇐⇒ 0 6 2l 6 n ⇐⇒ 0 6 l 6 [n2].
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We deduce the following formula:

nPm,n(u) =
[n
2
]∑

l=0

(mn + n− l)!
(mn + 1)!l!(n− 2l)!

nul

and we obtain (∗) simplifying by n.

Lemma 3.2 (Gauss hypergeometric polynomials). Let m, n > 1 be integers. Let
Pm,n be the polynomial defined by (∗) in Lemma 3.1. We have

1) deg(Pm,n) = [n
2 ] and Pm,n(t) 6= 0 for all t > 0,

2) Pm,n has only simple roots.
3) There exists a complex number um,n ∈ C such that Pm,n+1(um,n) = 0 and

Pm,n+2(um,n) 6= 0.

Proof of Lemma 3.2. Part 1) of Lemma 3.2 is clear from the definition of Pm,n.
To prove part 2), let us recall some basic definitions and formulas (see [4] or [13]).
Let a, b, c, z ∈ C be complex numbers, the classical Gauss hypergeometric series
is defined by

2F1(a, b, c|z) =
∑

k∈N

(a)l(b)l

(c)l

zl

l!

where, for a complex number a ∈ C and an integer l ∈ N, the Pochhammer symbol
(a)l is defined by (a)0 = 1 and (a)l = a(a + 1) . . .(a + l− 1).

The Gauss hypergeometric function 2F1(a, b, c|z) is well defined as soon as
c ∈ −N implies ((a ∈ −N and c < a) or (b ∈ −N and c < b)).

When a ∈ −N or b ∈ −N, 2F1(a, b, c|z) is a polynomial (in z), in other cases
the radius of convergence is 1.

When the Gauss hypergeometric function is defined, it satisfies the following
general linear differential equation:

(GDE) z(z − 1)F ′′(z) + ((a + b + 1)z − c)F ′(z) + abF (z) = 0.

When 2F1(a, b, c|z) is a polynomial (i.e. when a ∈ −N or b ∈ −N), the value
for z = 1 can be computed explicitly:

(GSV) 2F1(a, b, c|1) =

{
(c−b)−a

(c)−a
if a ∈ −N

(c−a)−b

(c)−b
if b ∈ −N.

Let m, n > 0 be integers. The polynomial Pm,n defined by (∗) in Lemma 4.1
is a Gauss hypergeometric polynomial:

Pm,n(u) =
((m + 1)n)!
n!(n + 1)! 2F1(−

n

2
,−n− 1

2
,−(m + 1)n| − 4u).

In fact
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2F1(−
n

2
,−n− 1

2
,−(m + 1)n| − 4u)

=
[n
2
]∑

l=0

(−n
2 )l(−n−1

2 )l

(−(m + 1)n)l

(−4u)l

l!

=
[n
2
]∑

l=0

(−2)l(−n
2 ) . . .(−n

2 + l− 1)(−2)l(−n−1
2 ) . . .(−n−1

2 + l − 1)
(−1)l(−(m + 1)n) . . .(−(m + 1)n + l − 1)

ul

l!

=
[n
2
]∑

l=0

n!
(n− 2l)!

((m + 1)n− l)!
((m + 1)n)!

ul

l!

=
n!(n + 1)!

((m + 1)n)!
Pm,n(u).

From the general formulas we obtain the following differential equation (a =
−n

2 , b = −n−1
2 , c = −(m + 1)n and z = −4u):

(DE) u(4u+1) P ′′
m,n(u)− ((4n− 6)u+(m+1)n)P ′

m,n(u)+n(n− 1) Pm,n(u) = 0.

and the following special value:

(SV) Pm,n(−1
4
) =

((m + 1)n)!
n!(n + 1)!

(−mn + [n−1
2 ] + 1

2)[n
2
]

(−mn)[n
2
]

6= 0.

Formulas (DE) and (SV) imply that if Pm,n and P ′
m,n have a common root

then it is also a root of P ′′
m,n and by induction of all derivatives of Pm,n, which is

impossible. Hence Pm,n has only simple roots in C.

Let us prove Part 3) of Lemma 3.2 by contradiction. Since deg(Pm,n+1) =
[n+1

2 ] > 1, the polynomial Pm,n+1 has at least one root (C is an algebraically
closed field). Let us assume that all roots of Pm,n+1 are also roots of Pm,n+2.
Since Pm,n+1 has only simple roots and deg(Pm,n+2) = deg(Pm,n+1) + ε with
ε = [n+2

2 ] − [n+1
2 ] ∈ {0, 1}, there exist complex numbers a, b ∈ C such that

Pm,n+2(u) = (au+ b)Pm,n+1(u). Comparing coefficients of u0 in this equation we
can explicitly compute b:

b =
1

n + 2
(m(n + 1) + 1)!
(m(n + 2) + 1)!

((m + 1)(n + 2))!
((m + 1)(n + 1))!

.

Comparing coefficients of u1 we can explicitly compute a:

a =
(m(n + 1) + 1)!
(m(n + 2) + 1)!

((m + 1)(n + 2)− 1)!
((m + 1)(n + 1))!

.

Since a 6= 0, we have ε = 1 and n is even.
Now, we compare coefficients of u2. If n = 2, we obtain

3(m + 1)(3(m + 1)− 1) = 2(5(m + 1)− 1)(4(m + 1)− 1)

which is impossible. If n > 4, we obtain
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(m + 1)(n− 1)(n + 1)((m + 1)(n + 1)− 1)

=((m + 1)(n + 2)− 1){2((m + 1)(n + 1)− 1) + (m + 1)(n− 2)(n− 1)2},
which is impossible (since n + 1 < (n− 2)(n− 1)).

Finally, there exists a root um,n of Pm,n+1 which is not a root of Pm,n+2.

Proof. (Proof of Theorem 1.4.) Let d, e > 1 be integers with d even and e ∈ d
2 N.

We write d = 2m and e = ml where m, l > 1 are two integers. By 3) of Lemma 4.4,
there exists ul ∈ C∗ such that Pm,l+1(ul) = 0 and Pm,l+2(ul) 6= 0.
We set Q1(Y, Z) := Y (1− ZY m − ul(ZY m)2) ∈ C[Y, Z] and

Q2(Y, Z) := Y

l∑

n=0

Pm,n(ul)(ZY m)n =
l+1∑

n=0

Pm,n(ul)ZnY mn+1 ∈ C[Y, Z].

We consider the following two polynomials:
{

g(X, Y ) := Zl+2X + Q1(Y, Z) ∈ C[Z][X, Y ]
f(X, Y ) := Z−l−2(Q2(g(X, Y ), Z)− Y ) ∈ C(Z)[X, Y ]

By i) of Lemma 4.1, modulo Zl+2, we have Q2(g(X, Y ), Z) = Q2(Q1(Y, Z), Z) =
Y , hence f(X, Y ) ∈ C[Z][X, Y ]. Since Jac(f, g) = 1 (the determinant of the jaco-
bian matrix), we have σ := (f, g) ∈ G(C[Z]) (cf. Lemma 1.1.8 p. 5 in [1] or Propo-
sition 4.4 in [2]). In G(C(Z)), the automorphism σ splits into σ = b2πb1 with
b2 = (Z−l−2(Q2(Y, Z)− X) , Y ), b1 = (Zl+2X + Q1(Y, Z) , Y ) and π = (Y, X).
The generic multidegree of σ is equal to

(degY (Q2), degY (Q1)) = (ml + 1, 2m + 1) = (e + 1, d + 1).

We have, modulo Zl+3,
Q2(Q1(Y, Z), Z)

=
l+1∑

n=0

Pm,n(ul)ZnQ1(Y, Z)mn+1

=Y − Pm,l+2(ul)Zl+2Q1(Y, Z)m(l+2)+1

=Y − Pm,l+2(ul)Zl+2Y m(l+2)+1.

The automorphism σZ→0 is triangular of degree m(l + 2) + 1 = e + d + 1.
Finally, σZ→0 ∈ G(d+e+1) ∩ G(e+1,d+1).

Remark. If Pm,l(ul) = 0 then we change b2 to τb2 where τ is the triangular
automorphism τ = (X + ZY ml+1, Y ). In this way, we always have deg(b2) =
ml + 1 = e + 1.
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